

Elettra Sincrotrone Trieste

Beamlines @ Elettra-Sincrotrone Trieste

Labs @ Q2 building

Labs @ MM building

Labs @ FERMI Free Electron Laser

Com Cart

Synchrotron radiation photoelectron and soft X-ray absorption spectroscopy: applications to irradiated materials

Igor Píš

CNR - National Research Council of Italy

BACH - Beamline for Advanced diCHroism Elettra synchrotron facility

www.iom.cnr.it

Science Park Basovizza

Research fields

- Condensed matter physics
- Nanoscience
- Biophysics

www.iom.cnr.it

Elettra

ISTITUTO OFFICINA DEI MATERIALI

Synchrotron radiation

> TUNABLE WAVELENGTH> HIGH BRILLIANCE> POLARIZATION

BACH beamline

Experimental hall

BACH beamline

Experimental station

BACH beamline

Photoelectron spectroscopy (XPS)

•The energy of the electron is characteristic of the element • The intensity: element concentration

O (Auger)

100

AI (2s)

AI (2p)

Mo (4p)

ą

S (2p)

(loss)

ഗ

S (2s)

200

 $E_{\rm B} = E(N_{\rm e}-1) - E(N_{\rm e})$ - relaxation energy **Chemical shift**

Surface sensitivity

Tunable X-rays source enables to tune the probing depth from the top most surface layer to subsurface region, typically up to **5-10 nm**.

- 600, 270, 120 eV
- Variable element sensitivities
- Variable probing depth (depth profiling)

XPS

XAS spectroscopy

Element specific

SENSITIVITY TO THE CHEMICAL

ENVIRONMENT

X-ray Absorption Spectroscopy - XAS

Linear Dichroism - bond orientation

Magnetic dichroism (XMCD)

Phys. Chem. Chem. Phys., 2018,20, 26161-26172

Circularly polarized X-rays

Igor Píš – pis@iom.cnr.it – 2025

Applications

Chemical reactions at surfaces

Heterogeneous catalysis

Fe (0.5-2 ML)

Space technologies

Rashid I, lunar rover (2023)

Electronics and optoelectronics

Optical filters for X-ray detectors in space

Quantum materials

(Radiation) detectors

Application example

PIN diode X-ray dose detector

Peverini, Nanomaterials 2022, 12, 3466; Menichelli, et al. *TechRxiv.* July 07, 2022

Igor Píš – pis@iom.cnr.it – 2025 15

Si 2p XPS spectra – peak fitting

Igor Píš – pis@iom.cnr.it – 2025 16

Example – PIN diode

Si 2p XPS spectra – peak fitting

XAS absorption spectroscopy

Enjoy the Elettra!

www.elettra.eu