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Trento
TIFPA
UniTN/DF

APSS PTC

Where are we
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Trento Proton Therapy Center
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TIFPA Experimental cave @PTC- Trento

Two 
beam lines

Energy range
at beam exit:
70 – 225 MeV

Target experiments:
- Radiation Biophysics
- Radiobiology
- Space Research
- Detector Development

E. Scifoni - MAMBA School

www.tifpa.infn.it/sc-init/med-tech/p-beam-research/
PAC submission
Open to users

Tommasino et al.
NIMA 2017

Tommasino et al.
Phys Med 2019

Biology

Line

Physics

Line

Beam Production:

- Isochronous 

Cyclotron IBA 

Proteus 235

- Energy Range: 70-

225 MeV

- Beam Current: up to 

320 nA

- Typical Efficiency: 

≈55%

100 exp from 
2016, by local 

/external groups

-ESA-IBER Ground Based Facility
-ASIF Core Facility
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Hadrontherapy in Italy

05.04.2019 E. Scifoni - LNL school

• p high E ( 70-235 MeV)
TN

PV

CT

LNS

• C, p, possibly in 
future He,O, high E
 ( 80-400 MeV/u), 

• p, low E
 ( up to 62 MeV/u)

In Operartion
In Construction/
commissioning

Aviano (CRO)

Milano (IEO)
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Hadrontherapy 

• Also called 
• Ion beam therapy
• (Charged) Particle Therapy

• Radiation Therapeutic option exploiting charged 
particle beams features, physics and radiobiological 
based 

R. Wilson 
1946



Particle versus Photon radiation
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• Protons and  other ions deposit less 
dose in healthy tissue/ OAR

• Macroscopic physical advantages
• In some cases also biological 

advantages

• Clear advantage for sustainability of a 
retreatment



The obvious advantages: Physics

Protons

05.04.2019 E. Scifoni - LNL school

La Tessa et al. Radiother. Oncol. 2012

Castro ‘92

Rovituso et al. PMB 2017

Depth dose Lateral profile

H

C

Spread out Bragg peak
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Dose Delivery 

Active (Raster) Scanning

Typically:
p: ~109p/s

12C: ~ 108p/s



Exploiting Hadrontherapy
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High tumor dose, normal tissue sparing

Effective for radioresistant tumors

Effective against hypoxic tumor cells 

Increased lethality in the target because cells 
in radioresistant (S) phase are sensitized

Fractionation spares normal tissue more than 
tumor

Reduced angiogenesis and metastatization

Potential advantages

Energy
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Dose

RBE
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The less obvious: 
Biology
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Ahmad
et al. 2024



   La Largest part of the damage comes from 

secondary electrons and radicals

 Ion beam damage STAGES:

The mechanism of biological damage with 
particle beams

I. ~10-22s
II. ~10-17s

III. ~10-14s

IV. ~10-15s

V. ~10-5s

I. Propagation of ions

II. Primary ionization in the medium

III. Propagation of secondary

 electrons and radicals

IV. Electron degradation of DNA

V. Radiobiological scale effects

Local heating

E. Scifoni - MAMBA School 1618.02.2025

Scifoni et al. COST nanoIBCT EU proposal (2010)



Why we need models in radiation biology?

• To make predictions on different radiation effects 
on cells/tissue

• To implement in Treatment Planning 

• To understand and explain  phenomena on physics 
bases (computational microscopy)

E. Scifoni - MAMBA School

Courtesy from  A.Attili

“This is not a cow”

--- René Magritte

“This is a cow”

--- Anonymous physicist
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The basic Idea of Physics based modeling 
of (radiation induced) Biological effects

• Ignore as much as possible Biology 
(too complicate for you)

• Spot the differences in Physics

• Work on them as relative factors

E. Scifoni - MAMBA School

Courtesy from  A.Attili

“This is not a cow”

--- René Magritte

“This is a cow”

--- Anonymous physicist
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Radiation biophysics attempts to explain on the basis of the pattern of fundamental
 interactions, relative factors of radiation induced biologic effectiveness, e.g.:

• Different Particle type/radiation field : RBE

• Different medium, environment, oxygenation: OER 

• Impact of Radisensitizer/radioprotector substance: DEF

• Different dose delivery method (dose rate): DREF
 

Particle beam biophysics

𝐷𝑅𝐸𝐹 = ቝ
𝐷( ሶ𝐷)

𝐷( ሶ𝐷𝑟𝑒𝑓)
𝑠𝑎𝑚𝑒 𝑒𝑓𝑓𝑒𝑐𝑡

𝑅𝐵𝐸 = ቝ
𝐷(𝑟𝑒𝑓 = 𝑋𝑟𝑎𝑦𝑠)

𝐷(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝐹𝑖𝑒𝑙𝑑)
𝑠𝑎𝑚𝑒 𝑒𝑓𝑓𝑒𝑐𝑡

𝑂𝐸𝑅 = ቝ
𝐷(𝑝𝑂2)

𝐷(21%)
𝑠𝑎𝑚𝑒 𝑒𝑓𝑓𝑒𝑐𝑡

𝐷𝐸𝐹 = ቝ
𝐷([𝐶 = 0])

𝐷([𝐶])
𝑠𝑎𝑚𝑒 𝑒𝑓𝑓𝑒𝑐𝑡



Reactions with 

intra-cellular oxygen O2

Reactions with 
organic molecules 

(after direct ionization of 
RH)

Emanuele Scifoni Basics on Rad Chem

Adapted from Weber, Scifoni, Durante, Med. Phys. (2022)

Spatiotemporal scales of radiation damage
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Secondary Electrons produced by an ion along a Bragg Peak
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Fig. 1. Secondary elect rons energy spect ra in liquid water (dN / dW , inset ), as a funct ion of the

elect ron init ial energy W , produced at dif ferent depth posit ions along a Bragg peak (larger plot ).

T hese posit ions (let t ers) correspond to different values of the residual ion energy T (in M eV / u),

for a single carbon ion penet rat ing in the medium. Extended from Ref. 24.

effects.26 A simple opt ion is the binary encounter model27 and its modificat ions,

also account ing for molecular shell specific ionizat ions.28 Most models are based

on the first Born approximat ion, which imposes an energy of the project ile much

larger than the target elect ron. Different upgrades were done, including advanced

ab initio quantum molecular approaches like the cont inuum distorted wave (CDW)

method.29 Thesemethodshavea largecomputat ional cost , but in principle, can now

treat a broad range of target molecules.30 An alternat ive method is the dielect ric

response model,15,31,32 which uses photoionizat ion cross-sect ions for parametrizing

energy and momentum dependence of the energy loss funct ion. The main advantage

of this model, which makesit suitable, especially for t reat ing condensed media, is the

simultaneousaccount ing for both single-part icleand collect iveeffects in the analysis

of the response. This approach has been recent ly extended, with physically based

approximat ions to model secondary elect rons not only in water but in arbit rary

biological materials,33 including their angular dist ribut ion.34

The energy dist ribut ion of secondary elect rons in water is ext remely peaked

especially in the Bragg peak region of an ion t rack.15,24 This is visible in Fig. 1,

associat ing depth posit ions along an ion trajectory and corresponding elect ron en-

ergy spectra. Most of the init ial energies of the produced secondary elect rons are

below 100 eV.21,24,35 This feature is at the basis of the highly dense ionizat ion ef-

fect of ion beams as compared to the sparsely ionizing pat tern induced by X-rays.

Furthermore, the discovery that very low energy elect rons (< 10 eV) can be very

effect ive in the destruct ion of biomolecules,36 made very challenging the study of

these spectra with great detail down to the lower edge.37
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Track Structure simulation
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▪ The DNA Double Strand Break (DSB) is 
considered the type of lesion most directly 
related to cell killing

▪ Different radiation qualities produce the same 
spectrum of DNA lesions

▪ BUT the distribution of lesions inside the 
target can be very different

12C  High LET
1 MeV/u, ≈ 690 keV/m

12C  Low LET
200 MeV/u, ≈ 16 keV/m

Photons
x-rays

Random
DSB distribution

E. Scifoni - MAMBA School

Scholz 2006
Adv Pol Sci

Differential DNA Damage

18.02.2025 28

Courtesy of 
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Relative Biological Effectiveness (RBE):

RBE depends on:
- Physical parameters (dose, LET,

fractionation).
- Biological parameters (cell cycle,

oxygenation, end-point).

E. Scifoni - MAMBA School

Courtesy of F. Tommasino

18.02.2025
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Mechanistic RBE models

18.02.2025 E. Scifoni - MAMBA School 30

Friedrich T. Hab. Thesis(2016)

Friedrich T. Hab. Thesis(2016)



Microdosimetry based modeling

18.02.2025 E. Scifoni - MAMBA School

Bellinzona et.al. Linking Microdosimetric Measurements to Biological
E.ectiveness in Ion Beam Therapy: A review of theoretical aspects of MKM and

other models. Frontiers in Physics (2021): 623

31



GOAL: 

The Generalized Stochastic
Microdosimetric Model (GSM2)

18.02.2025 E. Scifoni - MAMBA School

• To develop a general probabilistic model that accounts for all of levels 

of stochasticity in the formation and temporal evolution of DNA 

damages induced by radiation:

 1. temporal stochasticity of DNA damage;

 

 2. spatial stochasticity of DNA damage:

  -intra-cellular level

  -inter-cellular level

 3. ionizing radiation stochasticity:

  -physical level energy deposition stochasticity 

    (microdosimetric distributions)

  -biological level DNA damage formation stochasticity

Francesco G. 
Cordoni

32
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RBE
Lesion 

statistics

Local lesion 
distribution

Local dose
distribution

Amorphous track 
structure

:    7

:    3

Photon 
equivalent 
situation

An example (LEM IV)

Courtesy of T.Friedrich

Scholz 2020



Monte Carlo Methods for Radiation Research

• MC radiation transport codes

 =Condensed history codes. 

(GEANT4(*), FLUKA, PHITS, SHIELD-HIT, EGS4, MCNPX, ..)
+ possibility to describe entire irradiation geometry

- Imposition of thresholds (i.e. G4: e->~900eV)

• MC Track Structure codes

 =Event by Event. Stochastic (physics+chemistry)

(PARTRAC, TRAX, GEANT4DNA, TOPASnBIO, RITRACKS…)
+ no, or negligible (~1eV) energy/space threshold

- Limited portion of track describable (normally “track segment”)

(*) with its wrappers TOPAS, GATE, MCHITE. Scifoni - MAMBA School18.02.2025 34



TRAX and TRAX-CHEM

18.02.2025 E. Scifoni - MAMBA School

M. Kraemer, D. Boscolo, M. Fuss & E. Scifoni
(chapter in print on T&F Book)

35



High Z Nanoparticle radiosensitization

E. Scifoni - SASP2024

Kwatra et al. Transl. Cancer Res. 2013 NP: high cellular uptake in tumours

well known adavantage for photons;
high Z ➔ high e- emission vs. high absorption

advantage with ion irradiation?
30.01.2024 36



Au NP with photons – Mechanistic insight

• Auger electrons play a crucial

role for photons

• local dose enhancement

analysis based on track structure and

LEM adaptation

E. Scifoni - SASP2024

Mc Mahon et al. 
Sci. Rep. 2011

•DEF~1.5

30.01.2024 37



High Z NP+ion local dose enhancement

30.01.2024 E. Scifoni - SASP2024

Waelzlein, Scifoni, Kramer, Durante PMB 2014

1st track structure study of ion+NP

(2014)

Observed dose enhancement not 

enough to justify relevant 

sensitization

• Extensive Cross sections implementation
for several High Z materials

• Au, Pt, Gd, Fe,Including Auger Cascades

Since NP traversal very
improbable event at 
typical fluences

Similar conclusions in Lin 2015, Martinez 2016 

38



Possible sensitization mechanisms

E. Scifoni - SASP2024

Lacombe & Scifoni
Cancer Nanotech. 2017

A) Direct traversal: 
enhanced electron 
production from Auger 
processes

B) Plasmon excitation 
coupling with strong 
electron production. 

C) Secondary electrons on 
the NP, produces 
additional electron 
emission

D) Catalytic effect on 
radiolytic species

30.01.2024 39
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Dose Rate effect
 in conventional Radiobiology 

1 rad= 1cGy

Clonogenic Survival 

It is observed a sparing effect at decreasing dose rate (at very low dose rate – “protracted” 
irradiation) 
Mechanistic Explanation easy: Potentially Letal Damage allowed to be repaired

𝐷𝑅𝐸𝐹 = ቝ
𝐷( ሶ𝐷)

𝐷( ሶ𝐷𝑟𝑒𝑓)
𝑠𝑎𝑚𝑒 𝑒𝑓𝑓𝑒𝑐𝑡

Dose-Rate Effectiveness Factor

18.02.2025 40



Cell 
popuation

Modeling dose rate effects

E. Scifoni - MAMBA School

● z → microscopical absorbed dose

● xI → type-I lesions: associated with clustered 
DNA damages which are directly lethal for 
the cell

● xII → type-II lesions: non-directly lethal 
damages that may be repaired (r), 
spontaneously converted to irreparable 
damages (a) or undergo pairwise 
combination (b).

XI

Kinetic equations (c: cell, d: domain 
in cell)

XII

𝜆 k

a

b

r

Courtesy from  A.Attili

directly lethal potentially lethal 
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Modeling dose rate effects

Courtesy from  A.Attili

D. Boscolo PhD Thesis

Herr  Plos One 2014

18.02.2025 42



Dose rate effect (Hall 1972):

• A wide range of dose-rates has been used in radiobiology or 
radiotherapy, extending from a few rads per day to thousands of rads 
in a fraction of a second.

• At ultra-high dose-rates (pulses of micro or nanoseconds) a clear 
dose-rate effect has been demonstrated for bacteria, but is less 
certain for mammalian cells; these doserates have no certain 
application in radiotherapy at the present time.

• The principal dose-rate effect is observed between 100 rads/minute 
and 10 rads/hour; the cell-killing effect of X or γ rays decreases 
continuously as the dose-rate decreases throughout this range, and 
may be explained readily in terms of the repair of sub-lethal damage 
taking place during the irradiation. 

E. Scifoni - MAMBA School18.02.2025 43
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Favaudon et al., Sci. 
Transl. Med. (2014)

Vozenin et al., 
Clin. Canc. Res.

(2019)

Dewey & Boag, 

Nature (1959)

Bourhis et al., 
Radiother. Oncol. 

(2019)

Mascia et al.,

 JAMA (2023)

UHDR exploitable for RT?

Hall (1972)

Mod. from 
M. Battestini

18.02.2025 44



E. Scifoni - MAMBA School

Conventional
Irradiation

Ultrafast
(FLASH)
Irradiation

FLASH Radiotherapy: what’s that

FLASH Radiotherapy, is a novel approach 
of  RT using ultra-high dose rate 
(>40 Gy/s overall dose rate, for a total irradiation 
time <100 ms 
 but much higher rates (up to 109 Gy/s) during 
each pulse)

aiming to get unchanged tumor control 
and protection in the normal tissue. 

Potential for widening the therapeutic window 

~0.03 Gy/s

>40 Gy/s 

TCPWC=TCP(1-NTCP)

18.02.2025 45



The FLASH Effect

E. Scifoni - MAMBA School

Irradiation with ultra-high dose rate

Vozenin et al. 2019, 
Clin. Canc. Res. 

‣ Decreasing of the normal tissue response

V. Favaudon et al. 2014, Sci. Transl. Med.

‣ Preservation of the tumor responses

CONV FLASH

SAME BIOLOGY
DIFFERENT PHYSICS

18.02.2025 46



Ultrahigh Dose Rate Response and FLASH

E. Scifoni - MAMBA School

Durante et al. Br J 
Radiol 2019

𝐷𝑅𝐸𝐹 = ቝ
𝐷( ሶ𝐷)

𝐷( ሶ𝐷𝑟𝑒𝑓)
𝑠𝑎𝑚𝑒 𝑒𝑓𝑓𝑒𝑐𝑡

Dose-Rate Effectiveness Factor

This we presently  
DON’T understand

This we 
understand
(sublethal damage 
repair etc..) e.g.:

Despite plenty of 
accumulating exp 
evidence….

DREFNT
DREFT~1

DREF

18.02.2025 47



Time structure for different particles

18.02.2025 E. Scifoni - MAMBA School

Romano et al. MP 20220

48



Parameters for observing FLASH/noFLASH

E. Scifoni - MAMBA School

From: Montay-Gruel et al. Clin Cancer Res 2020

𝑇10 =
10

ሶ𝐷
=

10

ሶ𝑛 ሶ𝐷𝑝𝑡𝑝

Laser 
driven p

𝑇 1
0

ሶ𝐷𝑝
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Why Radiation Chemistry

E. Scifoni - MAMBA School

“Pulse 
Radiolysis” in 
Scifinder

Radiation Chemistry AND 
Radiobiology in PubMed

Radiation Chemistry 
AND (FLASH 
Radiotherapy OR 
Ultraihigh dose rate)
in PubMed

Favaudon 2014

• A strong Reprise of an old Discipline in 
connection to the discovery of new 
radiotherapies, Including FLASH and SFRT

 Which are difficult to explain without it
Court. P. wardman
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Main FLASH mechanistic hypotheses

51

Transient 
hypoxia 

Intertrack 
effects

Organic radical 
recombination

Immune 
system driven
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Water
Radiolysis

(2-fold) Oxygen and radiation interplay

▪ irradiation generates free radicals which

react with the dissolved molecular

oxygen in the target:

eaq
- + O2 → O2

•-

H• + O2 → HO2
•

▪ high doses of radiation gradually

remove the O2 to produce toxic

superoxide or perhydroxyl

▪ shown already in historical experiments

(Weiss et al. 1974)

Nanoscale 
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Radiobiological oxygen enhancement

▪ oxygen is a strong

sensitizer towards
indirect radiation effects

▪ increase in sensitivity of

oxygenated tissues (or cells) 

compared to hypoxic ones
is described by OER

OER 𝑝𝑂2 =
𝐷anoxia

𝐷𝑝𝑂2

⃒same effect

pO2LET

O
E

R

Scifoni et al. 2013

Water
Radiolysis

(2-fold) Oxygen and radiation interplay

log(      )

▪ irradiation generates free radicals which

react with the dissolved molecular

oxygen in the target:

eaq
- + O2 → O2

•-

H• + O2 → HO2
•

▪ high doses of radiation gradually

remove the O2 to produce toxic

superoxide or perhydroxyl

▪ shown already in historical experiments

(Weiss et al. 1974)

Nanoscale Macroscale 
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The Oxygen Depletion Hypothesis (ROD)

E. Scifoni - MAMBA School

Wilson J. Et al. (2020) Front. Oncol
redrawn from Pratx et al.2019.

• Ultrahigh  dose rate:
 Oxygen consuption too quick for 
redifussion to restore initial levels

• Transient hypoxia generated -> 
induced radioresistabce

• Already suggested in Hall&Brenner 
1991

Zhou Med Phys 2020
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FLASH and Spatio-temporal Scales of Radiation Damage

E. Scifoni - MAMBA School

Time to deliver 10 Gy CONV

Time to deliver 10 Gy FLASH

Primary 
ionization, 
excitation, 
transport of 
secondary 
electrons

Dissociation of 
excited/ionized 
molecules

Diffusion and reaction  of 
generated radical species

Further chemical reactions
(no memory of initial track)

Enzimatic 
repair 
processes

Cellular 
&tissue 
response

a FLASH pulse

px e
C
?

Weber, Scifoni, Durante 2021
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Weber, Scifoni, Durante 2021

TRAX
Kraemer 1994

TRAXCHEM
Boscolo 2018-2022

TRAXCHEM-xt
Camazzola 2023

MS-GSM2
Battestini 2023 

FLASH and Spatio-temporal Scales of Radiation Damage
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Monte Carlo Track structure Codes for 
exploring FLASH Chemistry

• TRAX-CHEM (Boscolo et al. 2020)

• TOPASnBIO (Ramos et al. 2020)

• gMicroMC (Lai et al. 2021)

• Geant4-DNA (Tran et al. 2021)

• IONLYS-IRT (Alanazi et al. 2021)

• NASIC (Zhou et al.2021) 

E. Scifoni - MAMBA School

Heterogeneous stage (and slightly beyond…)

B
o

sc
o

lo
 e

t 
a

l. 
2

0
2

1
 u

.r.
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From TRAX to TRAX CHEM: 

2)Pre-chemical stage

3)Chemical stage

1)Physical stage

Classical version TRAX

Ionization sand excitations
 of ion and electron tracks 

• Wälzlein et al. 2014
• Kraemer et al.1994

30.01.2024 E. Scifoni - SASP2024
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Pre-chemical stage

2)Pre-chemical stage

3)Chemical stage

1)Physical stage

• Molecular dissociation:
Excited and ionized water 
molecules dissociate or relax to 
the ground state.

• Thermalisation model:

nS=2 nS=3 

r
→

r
→

r
→

r
→

r
2

→

0

8

15

23

30

38

0,5 2,4 4,3 6,1 8,0

T
h

e
rm

 d
is

t 
(n

m
)

Energy (eV)

Zaider1994

Sub-excitation electrons : 

e-aq
Products of 
molecular
dissociation
thermalise with 
the solvent

30.01.2024 E. Scifoni - SASP2024



2)Pre-chemical stage

3)Chemical stage

1)Physical stage

• Diffusion:

Jump in a random direction
Einstein Smoluchowski eq.:

D the diffusion coefficient 
∆t the time step

• Reaction:

• reaction radius

Described with a 
proximity parameter

Chemical stage

30.01.2024 E. Scifoni - SASP2024



t=10-12s

Pre-Chemical stage

Carbon 8MeV/u

TRAX-CHEM: Simulation results
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m
)
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0

-10 0

y(
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m
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40 0

20 0

0
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Boscolo, Krämer, Fuss, Durante & Scifoni,
 Chem Phys Lett 2018
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0 t=10-11s

Chemical stage

Carbon 8MeV/u

TRAX-CHEM: Simulation results
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Boscolo, Krämer, Fuss, Durante & Scifoni,
 Chem Phys Lett 2018
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Carbon 8MeV/u

TRAX-CHEM: Simulation results

t=10-10

Chemical stage
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Boscolo, Krämer, Fuss, Durante & Scifoni,
 Chem Phys Lett 2018
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Carbon 8MeV/u

TRAX-CHEM: Simulation results

t=10-9s

Chemical stage
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t=10-8s

Chemical stage

Carbon 8MeV/u

TRAX-CHEM: Simulation results
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t=10-7s

Chemical stage

Carbon 8MeV/u

TRAX-CHEM: Simulation results
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t=10-6 s

End of the 

Chemical stage

Carbon 8MeV/u

TRAX-CHEM: Simulation results
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750 keV e- 3 MeV/u He

Radiolytic yields time dependence

10-12 10-11 10-10 10-9 10-7 10-610-810-12 10-11 10-10 10-9 10-7 10-610-8

10-12 10-1010-11 10-9 10-8 10-7 10-6 10-12 10-1010-11 10-9 10-8 10-7 10-6

10-12 10-1010-11 10-8 10-7 10-6 10-12 10-1010-11 10-9 10-8 10-7 10-610-9

Boscolo, Krämer, Fuss, Durante & Scifoni, Chem Phys Lett 
2018

Exp: Shirashi 1988, Omar et al.2011
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Dissolved oxygen in the target

• Probability of interact with oxygen in a time 

• Dissolved oxygen implemented as a continuum

• Probability of not interacting with oxygen

oxygen concentration 

[molecule/ liter]

Boscolo et al. IJMS 2020;
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O2 impact on the nanoscale
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TRAX-CHEM predicted oxygen depletion in water
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B
os

co
lo

 e
t 

al
. 2

02
0

low-LET electrons

O2 

consumption

+

3.28 mol./ 

100eV =

0.33 µM/Gy

Boscolo et alIJMS 2020; RO 2021 

=2.4%/100Gy
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Expected ROD effect on DMF
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Boscolo et al Radiother Oncol 2021 

=DMF(%)

18.02.2025 72



Experimental validation
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Jansen et al RO 2022
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Intertrack effects
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Castelli at al. 2025
(Int J Mol Sci)
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INTERTRACK: Quantities and their time evolution

5

G-value(t) =
N(t)

E(t)[100eV]

G-value =
N1 + N2

E1 + E2

Castelli et al. IJMS 2025 



INTERTRACK: Quantities and their time evolution

5

G-value(t) =
N(t)

E(t)[100eV]

G-value =
N1 + N2

E1 + E2

Castelli et al. IJMS 2025 



Spatiotemporal shifts
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H2O2OH.
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Overall yields for tracks at different  Δx and  Δt
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Proton ΔGs for given s/t separation

E. Scifoni - MAMBA School18.02.2025 79

Castelli at al. 2025
(Int J Mol Sci)
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Helium ΔGs for given s/t separation

Castelli at al. 2025
(Int J Mol Sci)
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Conclusions

• The  radiotherapy effectiveness depend on the different types of energy deposition at the 
molecular level

• FLASH radiotherapy exploits the dose rate effect in ultrahigh regime and its mechanism remain 
not understood, while  Is object of intense investigation

• Multiscale modeling allows to provide insights in the mechanism, 

•  The heterogeneous stage is accurately  described by TRAXCHEM, depicting the chemical 
evolution of tracks at different conditions allowing to explore impact of oxygenation and LET up 
to ms time scale. The mulltitrack feature evidences a clear range in time and space where 
intertrack may occur, which is extremely limited in typical FLASH experiments

E. Scifoni - MAMBA School18.02.2025 81
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Thanks for your attention! 
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Discussion Slides
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Hetero/Homogeneous stage  transition

18.02.2025 E. Scifoni - MAMBA School

• Higher LET 
homogeneizes later

• Track remains denser at
later stage 

• Diffusion may still play a 
relevant role

Camazzola et al. 2023

1 ns 1 μs
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Radical recombination hypothesis
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Labarbe et al.. Radiother. Oncol. 2020

Pure Homogeneous stage based study
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The MultiScale-Generalized Stochastic Microdosimetric 
Model
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𝒓
𝒂

𝒃

𝑫𝑹cell nucleus

Battestini et al., Front. Phys. (2023)Fast chemical reaction kinetics Spatial and temporal dose 
deposition

DNA damage yield 𝒌 Damage evolution and cell survival

MS-GSM2: a multi-stage tool

direct term indirect term

kd ki ROO. t

track dose distribution

domai
n

∅

cell
nucleu

s

single 
particle 

track 
hitting

+
energy 

depositio
n
+ 

elapsed 
time

𝑋: sub-lethal lesions
𝑌: lethal lesions

𝑋
𝑌

LET

system of ordinary differential equations

conventionally considered constant

Damage formation 

resolution in each domain

𝑌

𝑌

Mod. From Labarbe 2020

Battestini et al. Front. Phys.  2023 .
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Combining AI with particle beam radiobiology
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Biological-based treatment planning

• Bio-TPS for ion beams aims to include as much as possible biological 

effect information in the planning strategy.

• Relevant for plan recalculation but ideally needed for inverse planning.

• Substantial e.g., for assessing differential benefits of different 

irradiation modalities and selecting the most suitable choice for a given 

patient case.

• Additional physics data needed, since the different components (E,Z) 

of the mixed field in a beam should be properly accounted in order to 

get a proper  overall biological effect.
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TPS in the Radiation therapy workflow
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SeffectsamecnD

CLETD
CLETDEF =

• it is called properly a „dose modifying factor“
if independent on S (or D)

Depending on several parameters, in particular LET

• in general a „dose modifying factor“ (DMF) is defined as a ratio of doses compared
to normal conditions (n.c.) giving a Same biological effect

Dose modifying factors

• Can be a radiation quality related feature
like RBE, or a more target related property
(like e.g. OER)

Wenzl&Wilkens 2011

)(..)(..

])([
])([;

SeffectsamecnSeffectsamecn

conditionsspecial

D

CD
CDEF

D

D
DEF ==

E. Scifoni - MAMBA School

-more properly called `Dose effectiveness factor (DEF)-

18.02.2025 93



Aim: searching the minimum of 

𝝌𝟐 𝑵 for all fields simultaneously
(multiple field optimization). 

K
räm

e
r

e
t al. (20

00
)

TRiP98 cost function ⟶ formalizes the treatment goals: 

Rasterpoint

Optimal particle numbers 𝑵𝒐𝒑𝒕 for all rasterpoints in order to obtain a 3D dose distribution that

respects the constraints imposed.

The Optimization problem

Target (uniform dose)

OAR (maximum dose)

+ 𝒘𝑶𝑨𝑹
𝑫𝒎𝒂𝒙 𝟐


𝒊=𝟏

𝑵𝑶𝑨𝑹
𝑫𝒎𝒂𝒙

𝑫𝒎𝒂𝒙 − 𝑫𝒊 𝑵
𝟐

∆𝑫𝒎𝒂𝒙
𝟐 ∙ 𝜽 𝑫𝒊 𝑵 − 𝑫𝒎𝒂𝒙

𝝌𝟐 𝑵 = 𝒘𝒕
𝟐 

𝒊=𝟏

𝑵𝑻 𝑫𝒑𝒓𝒆 − 𝑫𝒊 𝑵
𝟐

∆𝑫𝒑𝒓𝒆
𝟐

K
räm

e
r

e
t al. (20

00
)

Raster scanning system

x

y

z

Where  in order to account for bio effects, 
the “bio” dose is obtained through scaling 
the physical dose by the specific DMF
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Physics

• Depth dose distributions
• Nuclear fragment 

spectra (including target)
• Stopping power data

Radiobiology
(= Biological effects + micro/nanoscale physics)

• RBE (eg.  LEMx, MKM)
• OER
• any  other DMF…

TPS

Beamline specifics Patient Imaging data
Including intratumor heterogeneityEffective Dose profile

Clinical Impact
Verification

TCP/NTCP 

advanced 
beam monitoring 

“Bio”-dosimetry

A Graphycal summary
oVe IT

Modeling and Verification for Ion 
beam Treatment planning
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