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Abstract

This
investigation

exam
ines

synchronization
phase

transitions
in

m
ultiplex

adaptive
networks,

where
nodes

interact
through

diverse
com

m
unication

path-
ways.

M
ultiplex

networks
provide

enhanced
insights

into
the

structure
and

dynam
ics

of
com

plex
real-

world
system

s.
Previous

research
has

dem
onstrated

that
degree-frequency

correlations
and

adaptive
cou-

pling
strength

can
lead

to
explosive

(discontinuous)
phasetransitions,whilesingle-layerandm

ultilayersyn-
chronous

phase
transitions

m
ay

exhibit
either

conti-
nuity

or
discontinuity

depending
on

network
dynam

-
ics.

In
this

research,we
revealthat

globalsynchro-
nization

producesa
broaderhysteresisloop

com
pared

to
local

synchronization,
with

additional
layers

fur-
ther

widening
the

loop.
W

e
also

find
that

adapting
theorderparam

eterreducesnetwork
defectsin

sm
all-

world
networks.In

directed
Erdős–Rényirandom

net-
works,explosivesynchronization

persistsbutresultsin
a

narrower
hysteresis

loop
relative

to
undirected

net-
works.

These
findings

are
analytically

substantiated
using

a
m

ean-field
approxim

ation
forsingle-layernet-

works.
Lastly,we

show
that

the
frustration

param
e-

tercan
m

odulatethesynchronization
phasetransition

from
discontinuous

to
continuous,providing

new
av-

enuesforcontrolling
phasetransitionsin

com
plex

net-
work

system
s.

Introduction

Dynam
icphasetransitionsincom

plexnetworks,suchasex-
plosivesynchronization,arecriticalforunderstanding

phe-
nom

ena
like

epileptic
seizures.

This
study

exam
ines

syn-
chronization

transitionsin
adaptive

m
ultiplex,direct,and

Sm
all-W

orld
networks,analyzing

theeffectsofedgeweight
alignm

ent,
layer

num
ber,

and
frustration

param
eters

on
phasetransition

and
hysteresisloop

width.

M
odel

Them
odelextendstheKuram

otom
odeltotwo-layeradap-

tivenetworks,whereeach
layer’sdynam

icsaredefined
with

coupling
strengthsadapted

locally
and

globally.
Synchro-

nization
iscalculated

forboth
localand

globallevels.Sim
u-

lationsusethefourth-orderRunge-Kuttam
ethodonErdős-

Rényinetworkswith
N

=
100andaveragedegree〈k〉

=
12.

Results

Figure1:Com
parison

ofexplosivephasetransition
in

single-layerrandom
networks

with
globaladaptive

param
eter(a)and

localadaptive
param

eter(b).
In

thiscase,
f
=
1,

N
=
100,and

〈k〉
=
12

areconsidered.

Figure2:Thenum
ericalsolution

of
R

asafunction
of

λ
forErdős–Rényisingle-layer

random
networkswith

size
N

=
100

and
f
=

1
isshown.

In
thiscase,stable

and
unstablepointsareindicated

in
green

and
red,respectively.

Figure3:Synchronousphasetransition
forone-layer,three-layer,and

five-layernet-
works

considering
the

adaptive
param

eters
ofglobal(leftcolum

n)and
local(right

colum
n)

Figure4:Synchronousphasetransition
changesfrom

adiscontinuoustoacontinuous
state

in
a

two-layernetwork
with

increasing
frustration

param
eters.

Here,the
local

adaptiveparam
eterisconsidered.

Figure
5:

Correlation
m

atrix
forcoupling

coeffi
cientλ

=
0.16

(right)and
frequency

correlation
diagram

with
adaptive

coupling
coeffi

cient(λ
α
i ).

Here,single-layernet-
work

and
partialadaptiveparam

etersareconsidered.

Figure6:DensityPhasetransition
functionswith

varyingcouplingstrengths(λ)fora
random

two-layernetwork
(N

=
100,〈k〉

=
12,uniform

frequenciesin
[−

1,1]).The
firstrow

showstheasynchronousstate,and
thesecond

row
thesynchronousstate.

Figure7:Phasetransition
in

directed
and

undirected
m

ultilayernetworkswith
global

param
eteradaptation

(α
i
=

R
),for

N
=

100,averagedegree
〈k〉

=
12,uniform

fre-
quency

distribution
in

[−
1,1],and

f
=

1.
The

left(right)colum
n

showsdirected
and

undirected
one-layerand

two-layernetworks.

Figure8:Com
parison

ofthecorrelation
m

atrix
fora

sm
all-world

network
with

non-
adaptive(left)and

adaptive(right)states(N
=

1000,
p
=

0.03,
λ
=

0.1,〈k〉
=

10,
f
=
1),averaged

over20,000-tim
esteps.

Conclusions

This
study

finds
that

explosive
synchronization

occurs
in

both
single-layerand

m
ultiplex

networks,with
a

stronger
im

pactfrom
globaladaptiveparam

eters.M
orelayerswiden

the
hysteresis

loop,while
the

frustration
param

eter
nar-

rows
it.

The
explosive

phase
transition

is
attributed

to
dynam

ic
cluster

form
ations

rather
than

frequency-degree
correlations,and

adaptingtheorderparam
eterreducesde-

fects
in

sm
all-world

networks,enhancing
synchronization

dynam
ics.
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An intelligent complex system: Drones for monitoring in 

smart cities  
 

Fatima Azzahraa Amarcha1 , Rachid Saadane2 , Rachid Ahl Laamara 1 
                                                                  

1LPHE-MS University of Mohammed V Morocco 
2 Electrical Engineering Dep Hassania School 

of Public Works Casablanca, Morocco 

 

Multi-Unmanned Aerial Vehicle (UAV) systems exemplify a complex system characterized 

by numerous interacting agents [1], whose collective behavior can be utilized to address 

critical challenges in smart cities, including traffic management and public safety. 

 In this study [2], we examine the dynamics of swarm-based UAVs as an emergent system 

and propose a mathematical framework—the swarm-drone set covering problem—to 

optimize their deployment for large-scale traffic monitoring. The research specifically aims to 

minimize the number of UAVs required to surveil extensive road networks, achieving a 

balance between cost-efficiency and operational effectiveness. 

Our computational experiments uncover a key emergent property of the system: increasing 

the coverage radius of individual UAVs reduces the overall number of UAVs required, 

illustrating how local interactions influence global outcomes. By situating multi-UAV 

systems within the framework of complex systems, this study underscores the importance of 

theoretical and computational tools in analyzing and optimizing the collective behavior of 

multi-agent systems. 

 

[1] S. Agha et al., " Unmanned aerial vehicles (UAVs): practical aspects, applications, open 

challenges, security issues, and future trends", Intell. Serv. Robot., vol. 16, no. 1, pp. 109–137 (2023) 

[2] F. A. Amarcha, A. Chehri, A. Jakimi, M. Bouya, R. Ahl Laamara and R. Saadane, "Drones 

Optimization for Public Transportation Safety: Enhancing Surveillance and Efficiency in Smart 

Cities," 2024 IEEE World Forum on Public Safety Technology (WFPST), USA, (2024) 
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Fractional tumour-immune model with chemotherapy treatment
Ana P. S. Koltun1, José Trobia2, Fernando S. Borges1,3, Kelly C. Iarosz1,4, Enrique C.

Gabrick1, Antonio M. Batista1,2

1Graduate Program in Science, State University of Ponta Grossa, 84030-900, Ponta Grossa,
PR, Brazil,

2 Department of Mathematics and Statistics, State University of Ponta Grossa, 84030-900,
Ponta Grossa, PR, Brazil.

3 Department of Physiology and Pharmacology, State University of New York Downstate
Health Sciences University, Brooklyn, New York, USA,

4 Exact and Natural Sciences and Engineering, UNIFATEB University Center, Telêmaco
Borba, PR, Brazil.

Cancer is a group of diseases which cells grow uncontrollably and can spread into other tis-
sues. Studies explore the complex interactions between cancer cells, host cells, and the immune
system, while also considering various treatment approaches. To deepen understanding, math-
ematical models have been employed to analyze these interactions and the growth dynamics
of cancerous cells [1]. We propose a fractional order model that describes some aspects of
the interactions among host, effector immune, and cancer cells and chemotherapy treatment..
Due to the chemotherapy, sensitive cancer cells can suffer mutation and transform into resistant
ones. We extend the tumour-immune model, splitting the equation of the cancerous cells into
two equations: an equation for the sensitive cells and another for the resistant ones. We anal-
yse a mathematical model governed by differential equations of fractional order to analyse the
proliferation of cancerous cells [2]. Firstly, we analyse the model without chemotherapy. The
normalised population of cells exhibits periodic behaviour after a transient time. In continuous
drug delivery, the maximum values of cancerous cells depend on the chemotherapy dose and
the mutation rate. We compute the maximum number of cancerous cells (sensitive cells + resis-
tant cells) in a time interval. We verify that the size of the parameter space region in which the
cancer is suppressed depends on the order value of the differential equation. The efficiency of
the treatment changes according to chemotherapy and mutation rate. We show that not only the
chemotherapy but also the drug resistance and the order value of the differential equation play
an important role in the growth rate of cancer cells.

[1] C. Letellier, F. Denis, L.A. Aguirre, J. Theor. Biol. 322, 7 (2013).
[2] A.P. Koltun, J. Trobia, A.M. Batista, E.K. Lenzi, M.S. Santos, F.S. Borges, K.C. Iarosz, I.L. Caldas,

E.C. Gabrick, Braz. J. Phys. 54, 41 (2024).
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Dynamics of  spiral waves with variation of gel concentration 

in a chemical reaction-diffusion system 

Komal,Tejaswini Kalita, Parvej Khan, Sumana Dutta* 

Indian Institute of Technology Guwahati, Assam, India  

 

 

 

Abstract 

Spiral find its presence in various biological systems such as in cardiac tissue, neural 

tissues, in a growing colony of slime mould etc. In cardiac system, a normal electrical 

impulse might break due to the presence of some obstacle giving rise to spirals. These 

spiral causes irregular heart rhythm or arrhythmia. If this persists there is a potential of 

forming multiple spirals out of the existing ones, resulting in a total chaos which might be 

fatal. Thus it is necessary to study the dynamics of spiral waves. One of the best 

laboratory model for this is Belousov-Zhabotinsky (BZ) reaction-diffusion system. 

Researchers are trying to control the dynamics of spirals from last three decades in 

context of the cardiac wave dynamics. In this work we varied gel concentration to study 

its effect on the spiral rotation and we found gel concentration plays a role in governing 

wave properties of the spirals. 

 

Keywords 

Spiral waves; Excitable system; Cardiac arrhythmia; BZ reaction; Nonlinear dynamics 
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Dynamic behavior of an active particle embedded in a smectic liquid
crystal

Yhony M. Arce1; William Oropesa2; André P. Vieira3; Hartmut Löwen4; Danilo B.
Liarte.1,2

1 Institute of Theoretical Physics, São Paulo State University, São Paulo, Brazil
2 ICTP South American Institute for Fundamental Research, São Paulo, Brazil

3 Institute of Physics, University of São Paulo, São Paulo, Brazil
4 Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany

Self-propelled (active) swimmers exhibit fascinating dynamic behavior with relevance to a
wide range of disparate systems found in biology, chemistry, and physics [1]. When embedded
in a smectic liquid crystal, swimmer trajectories are affected by layer fluctuations that ultimately
lead to anomalous logarithmic tails for the transverse mean-square displacement at long times
[2]. This anomalous behavior is different from what is observed for isotropic or nematic fluids,
thus motivating us to extend the analysis of Ref. [2] to include the effects of complex smectic
microstructures that are produced in diverse protocols. Here we discuss preliminary results,
where we extend the simulations of Ref. [3, 4] to incorporate the dynamic behavior of active
particles embedded in a smectic liquid crystal, with focus on the interplay between activity, flow
instabilities and focal conic domains.

[1] C. Bechinger, R. di Leonardo, H. Löwen, C. Reichhardt, G. Volpe and G. Volpe, Rev. of Mod. Phys.
88, 045006 (2016).

[2] C. Ferreiro-Córdova, J. Toner, H. Löwen and H. H. Wensink, Phys. Rev. E 97, 062606 (2018).
[3] D. B. Liarte, M. Bierbaum, M. Zhang, B. D. Leahy, I. Cohen and J. P. Sethna, Phys. Rev. E 92,

062511 (2015).
[4] D. B. Liarte, M. Bierbaum, R. A. Mosna, R. D. Kamien and J. P. Sethna, Phys. Rev. Lett. 116,

147802 (2016).
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Turbulent and financial time series 
analysis

Abstract: Some of the characteristics of turbulence are its randomness, nonlinearity, diffusivity,
and dissipation, just to name few. But couldn’t we characterize financial data in the same way? The
answer is no, not exactly. Some of the extra descriptions for financial data, which makes it
different than the steady experimental turbulence, are its Markovity and non-stationarity.

Turbulent signals:
Fig.(1) shows a non-trended noncompressible stationary turbulent velocity signal,
measured in an airtank experiment in Oldenburg university. The spectrum of turbulent
signals was shown by Kolmogorov to be equal to :

Amjed Mohammed  (amjed.a.mohammed@uni-oldenburg.de)

Financial signals:
Financial time series are non-stationary, i.e. the moments are a function of time. This is
evident from fig.(12a), which is for the DAX index for the period from 16.2 till
31.12.2001. In (b) the autocorrelation

Fig. 1 Fig. 2
where E(k) is the spectrum as a fuction of the wavenumber, C is Kolmogorov‘s
constant, ε is the dissipation rate, and K is the wavenumber. We see clearly that the
slope of the spectrum represented by the blue color in fig. (2) is equal to -5/3, while the
green color represents the dissipation spectrum and its slope equals 1/3, which
confirms the theory. In addition to that, the energy spectrum shows three distinct
regions, namely, the large scales, the inertial range, the dissipation range and the
random region. Taking a look at figs (3) and (4) we see that the same same three
regions are more or less represented. First comes the Taylor microscale (λ) which is the
curvature of the autocorrelation which is approximately equal for both data sets. Fig(3)
data set is the same as in fig.(1) above and in fig.(4) we show another data set with a
higher Reynolds number (Re=UL/ν) . We notice that in both cases the autocorrelation
is finite and the zero crossing is the beginning of the random region. Fig.(3) shows the
phase diagram or the bivariate probability density function of the high Reynolds
number data and we notice the Gaussian mexican hat upon reaching the zero crossing
point.

Fig.3 Fig.4 Fig.5

Auseful tool in studying turbulence is the structure function or the increment and is
equal to δu=|u(x+r)- u(x)|, where u is the velocity at position x, and r is the lag. The
higher order structure functions which equals:

describes the cascading of the energy from large scales to small scales. This
cascading follows a power law as is shown in the following figures.

Fig.6 Fig.7 Fig.8
In fig.(6) the structure functions till the exponent p=15 were calculated and in
fig.(7) we see the scaling of these structure functions according to

In fig.(7) we have used the extended self-similarity to show the power law scaling of
the structure functions. We see also that the best fit is Kolmogorov‘s lognormal scaling
model which is

In fig.(8) the dissipation was fitted with the lognormal and by tunning the parameter µ
one could find the best fit which is 0.24.
The question now i whether the above tools are suitable for non-stationary time series
like the global warming temperatures. In figs. (9), (10), and (11) we show the
temperature time seriese, the detrended temperature and the incremented temperature.

Fig.9 Fig.10 Fig.11

function which shows a long memory.
In (c) we see the spectrum which
scales as -2 and not -5/3 as in the
turbulent, while the probability
density functions (PDFs) show
anomalous scaling first and by
increasing the lag they reach probably,
one could say, a uniform distribution
form upon reaching the zero crossing
point.
Non-stationary time series are
modelled by aWiener process:

where x is a stochastic variable, µ is
the mean (trend) of the process,σ is the
variance (volatility), η is random noise,
and t is the time. In fig.(13a) we show
such a time series, in (b) its
autocorrelation, in (c) the spectrum
with two slopes -2 and -5/3 and in (d)
the PDFs.
An important result from the above is
that the tools that were used to analyze
stationary turbulence are not helpful in
analyzing non-stationary data, were
this is evident from the plunge of the
DAX data on 11.9.2001 and the
spectra of both processes still show a
(-2) slope.
An important tool to see the content of
the spectrum of a signal in time and
Fourier space is the spectrogram. In

Fig.12

Fig.13

fig. (14) we see the spectrum of a sinusoid signal with two frequencies entrupted by a
random band in two places, but the spectrum shows only the two frequencies. In fig.
(15) we used a spectrogram to show the frequencies on the y-axis and the x-axis shows
the interuption bands. Another tool is theWigner–Ville spectrum

Fig.15Fig.14

Fig.18

Fig.16

which again shows both domains the frequency on the y-axis
and time on the x-axis. Here we have used a noisy sinusoid
interupted by two bands of noise. The need for other tools
arises because the structure functions (the return) gives simply
a random process.

Fig.17
At last we show in figs.(17) and (18) a wavelet analysis for the signals that appeared in
figs. (9) and (12a) respectively.
References:
A.N. Kolmogorov, "The local structure of turbulence in incompressible
viscous fluid for very large Reynolds numbers", Dokl. Akad. Nauk. SSSR
30, 301, (1941).
J.C.R. Hunt, J.C. Vassilicos, "Kolmogorov's contributions to the physical
and geometrical undertanding of small-scale turbulence and recent
developments", Proceedings: Mathematical and Physical Sciences, 434,
No. 1890, (Turbulence and Stochastic Process: Kolmogorov's Ideas 50
Years On), 183, (1991).
Alfred Mertins, Signal Analysis, (Wiley, 1999).
Jürgen Franke, Wolfgang Härdle, Christian Hafner, Einführung in die
Statistik der Finanzmärkte, (Springer 2004).
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Re-entrant transitions in inertial dynamics of active Brownian particles
M. Patel1,2, and D. Chaudhuri1,2

1 Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India
2Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India

This study investigates the inertial effect on the dynamics of active Brownian particles
(ABP) and their long-time behavior. While numerous studies have explored the over damped
dynamics of ABP, presuming that the late-time behaviors would be independent of inertia, this
study of inertial ABP challenges that view. Our theoretical approach allows us to write the pre-
cise time evolution of any dynamics variable in arbitrary d-dimensions. The moment’s calcula-
tion allows one to write the observables such as diffusivity, kinetic temperature, and pressure.
While diffusivity was found to be independent of inertia, the kinetic temperature and pressure
highly depend on inertia, even in the asymptotic limit. The steady-state velocity distribution
shows a re- entrant crossover from ‘passive’ Gaussian to ‘active’ non-Gaussian as a function of
inertia and activity.

[1] M. Patel, D. Chaudhuri, New J. Phys. 25, 123048 (2023).
[2] M. Patel, D. Chaudhuri, New J. Phys. 26, 073048 (2024).
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Non-Markovian model of chemical kinetics with stochastic resetting

Debasish Saha 1, Rati Sharma 1

1 Indian Institute of Science Education and Research (IISER) Bhopal, India, 462066

Studying reaction mechanisms has significant applications in biochemical processes that 
happen in very short lengths and a wide range of time scales. Modeling the dynamics of such 
processes involves a system containing colloidal particles diffusing in a potential well and it 
crosses a potential barrier under the influence of thermal fluctuations to form products [1]. 
The generalized Langevin equation has been a proven tool to give an accurate description of 
the non-Markovian dynamics associated with the power-law friction kernel [2]. A particle, 
starting from the potential minimum, escapes the well in a finite amount of time which is 
represented as the mean first-passage time (MFPT). In this study, we have employed the 
stochastic resetting [3] technique to investigate whether it is possible to change the escape 
process that leads to the change in MFPT. Our study suggests the particle escapes the well at 
a faster rate under suitable choices of reset rate and reset position. Additionally, we found the 
system loses its long-term memory, a well-studied phenomenon of such non-Markovian 
processes [3, 4], due to repeated reset at Poissonian rates. There is an optimal reset rate for 
which MFPT is minimum, beyond which it diverges which is a well-known feature of 
stochastic resetting. However, there is a very strict dependence on the reset position. 
Resetting the particle at the potential minimum eventually delays the escape mechanism since 
the system tends to stay at the stable equilibrium position for a very long duration. Therefore, 
the particle must be reset away from the minimum so that it can escape the well at a faster 
rate. In terms of energetics, reactants must be given an initial amount of kinetic energy so that 
they cross the barrier at a faster rate which enhances the product formation rate.

References:
1. P. W. Atkins, J. De Paula, J. Keeler, Atkins’ Physical Chemistry. Oxford University 

Press, (2023).
2. W. Min, G. Luo, B. J. Cherayil, S. C. Kou, X. S. Xie, Phys. Rev. Lett. 94, 198302 

(2005)
3. M. R. Evans, S. N. Majumdar, Phys. Rev. Lett. 106, 160601 (2011).
4. M. R. Evans, S. N. Majumdar, J. Phys. A: Math. Theor. 44, 435001 (2011).
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RNA polymerase-inspired spatially truncated stochastic resetting 

Adriana Marie T. Salvador 1  and Jose Perico H. Esguerra 1 

1National Institute of Physics, University of the Philippines Diliman 

 

Nature provides multiple avenues for stochastic resetting models – from animal search 

processes to population crashes caused by natural disasters. Most of the current models, 

however, do not account for the fact that resetting in real-life systems is constrained by 

energetic, spatial, or temporal factors. In this study, we introduce a refined model of RNA 

polymerase (RNAP) backtrack recovery that accounts for experimentally observed bias and 

truncation in the stochastic motion of RNAPs during transcriptional proofreading. Our model 

features spatially truncated stochastic resetting to an absorbing state interspersed by biased 

diffusion and biased random walk. Using analytical continuous space and time and Monte 

Carlo-based discrete space and time approaches, we compute the occupation probabilities of a 

particle right before it performs a stochastic reset. This statistical feature corresponds to the 

distribution of lengths of cleaved RNA transcripts during RNAP backtrack recovery. Bias and 

spatial truncation both alter the statistical features and should model the process of RNAP 

backtrack recovery with greater fidelity when accounted for. 

 

 

[1] E. Roldan, A. Lisica, D. Sanchez-Taltavull, and S.W. Grill. Stochastic resetting in backtrack 

recovery by RNA polymerases. Phys. Rev. E, 93(6):062411, 2016. 

 

[2] A. Lisica, C. Engel, M. Jahnel, E. Roldan, E.A. Galburt, P. Cramer, and S.W. Grill. Mechanisms 

of backtrack recovery by RNA polymerases I and II. Proc Natl Acad Sci U S A, 113(11):2946–2951, 

2016. 

 

[3] Gennaro Tucci, Andrea Gambassi, Shamik Gupta, and Edgar Roldan. Controlling particle currents 
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The epithelial-mesenchymal transition (EMT) is a process where epithelial cells, known for
their apical-basal polarity and stable connections with each other and the basal matrix, acquire
mesenchymal traits. These transformed cells exhibit a fibroblast-like morphology and have in-
creased mobility. EMT plays a crucial role in embryonic development and wound healing, as
well as in diseases like cancer. In cancer, clusters of circulating tumor cells that express both
epithelial and mesenchymal markers show reduced cell-cell adhesion and effective collective
movement, enabling them to exit the bloodstream and invade other tissues. The transitions
between epithelial, hybrid epithelial/mesenchymal, and mesenchymal states are controlled by
various signaling pathways and are regulated by specific transcription factors and microRNAs.
In recent years, a synergistic approach involving experiments and mathematical modeling has
proposed the existence of a core regulatory network for EMT, which is present in many carci-
nomas. This network comprises two highly interconnected mutually inhibitory feedback loops:
miR-34/SNAIL and miR-200/ZEB. We present a mathematical model of this gene regulatory
network, which considers both transcriptional and translational regulation.

Stemness and cancer stem cells are pivotal in cancer progression and metastasis, contribut-
ing to tumor heterogeneity and therapy resistance. The transcription factors OCT4, SOX2, and
NANOG constitute a core regulatory circuit essential for maintaining stemness. These factors
not only sustain self-renewal and pluripotency but also influence EMT, enabling cancer cells
to adapt and survive under diverse conditions. Based on previous models of this circuit, we
developed a mathematical model that captures its key regulatory mechanisms.

In this study, we present an integrated mathematical model that combines the EMT and
stemness modules into a single regulatory circuit. Using Ordinary Differential Equations, the
model captures the dynamics of the OCT4, SOX2, and NANOG pluripotency circuit along-
side the miR-34/SNAIL and miR-200/ZEB EMT modules. We investigate how coupling the
pluripotency and EMT gene regulatory networks influences the system’s stable states. Notably,
the hysteresis observed in the standalone EMT module, where the mesenchymal state becomes
irreversible, is altered when the circuits are coupled. This aligns with experimental evidence
showing that mesenchymal cells in metastasis can disseminate to distant tissues and later revert
to an epithelial phenotype to form metastatic lesions.

Our integrated model offers a framework to explore the interplay between stemness and
EMT in driving cancer progression. Additionally, we highlight the role of mathematical model-
ing in uncovering the mechanisms underlying these processes, testing hypotheses, and guiding
experimental design.
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Interaction between glycose-insulin is very important to understand the mechanisms linked to 

glucose dynamics in the body. Its dysfunction is not without consequences and can lead to 

many diseases such as anxiety, coma, vision impairments, retina microvascular connection, 

neuronal connections and above all diabetes [1]. The need to detect diabetic risk factors and 

treat diabetes-related disorders and complications has led to an increase in the number of 

glycoregulation models and simulation platforms designed primarily to analyze the various 

pathologies [2]. In this work, we study the dynamics of a glucose-insulin regulatory system at 

both integer and fractional order. We highlight certain differences linked to their dynamics 

characteristics. The numerical simulation methods used for these various analyses are those of 

Runge Kutta of order 4 and Grünwald-Letnikov. The study of the dynamics is mainly carried 

out by plotting bifurcation diagrams and Lyapunov maximum exponents. The resulting 

analysis shows chaotic behavior (presence of a disease) and periodic behavior (absence of 

disease). The mathematical models and algorithms used in this study reveal the harmful 

consequences of excess glucose on health. As part of an interdisciplinary approach combining 

biology, physics and mathematics, this work will contribute to a better understanding of 

complex systems in biology. The results obtained will make it possible not only to identify the 

risk factors associated with diabetes, but also to develop predictive tools and effective 

therapeutic strategies that will have a significant impact on public health, particularly in the 

following areas [3]. 
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therapeutic intervention. Diabetes Care. (2008). 

P11



The Influence of External Periodic Perturbations on Cultural Behavior: A 
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This study, modified Axelrod model [1] in order to introduce periodic external fields to 
replicate oscillatory patterns observed in Google Trends data. By adjusting the probability B 
and periodicity of two fixed external fields, we approximate the temporal dynamics of search 
interest for specific terms, such as ”Google”, ”Excel”, ”Bundesliga” and more [2]. Curiously, 
our results demonstrate that the model can capture cultural patterns influenced by recurring 
societal cycles, such as workweek and weekend. Notably, we see that other non-periodical 
patterns intrinsic in other countries can be reached by randomness in the time presence of the 
fixed external fields. The best is the open question, why do external periodic fields, despite 
their simplicity, manage to reflect the complexity of collective human behavior? 
 
[1] R. Axelrod, Journal of Conflict Resolution 41, 203 (1997).  
[2] “Google trends,” https://trends.google.com (2024), https://trends.google.com. 
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