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Where i1is DL in the picture?

Artificial
Intelligence

. Machine
Deep learning: Learning
a type of machine learning based Neural Nets
on artificial neural networks in Dozens of
. . different ML Deep
which multiple layers of msbess Learning

processing are used to extract
progressively higher level features
from data.
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From LISP to the DL revolution..

ARTIFICIAL
INTELLI_GENCE

MACHINE
LEARNING

DEER
LEARNING

1950’s 1960’s 1970’s 1980’s 1990’s 2000’s 2010’s

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence - first machine learning, then
deep learning, a subset of machine learning - have created ever larger disruptions.
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Main 1ngredients for DL breakthrough

e large datasets available (e.g IMAGENET)
e GPUs development (in particular, CUDA introduction)
e increased involvement of developers from CV and scientific communities

The DL era starts few years after that CUDA came to light

First case of sclentific
computing with GPU
(matrix-matrix multiplication) CUDA
OpenCL;
“GPGPU”
OpenGL DirectX term DirectCompute
. ' e T 1 | | | 1 1 )
1980s 1992 1995 1999 2001 2002 2006 2007 2009 2012 2014
Video card First GPU AT| Radeon ATUAMD NVIDIA NVIDIA NVIDIA
(NVIDIA GeForce256) 9700 FireStream GPU; FermiGPU Kepler Maxwell
NVIDIA Tesla GPU 6N G
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MI, scenarios

Supervised learning Unsupervised learning Reinforcement learning
00000 o
X ypre d Agent nvironment
L(y pred;y true) . .
ML algorithm learns by comparing ML algorithm learns without labeled Agent (ML algorithm) learns by
predicted and actual values data (e.g. clustering, embedding) interacting with an environment
Learning type Model building Examples
Supervised Algorithms or models learn from labeled data (task-driven approach) Classification, regression
Unsupervised Algorithms or models learn from unlabeled data (Data-Driven Approach) Clustering, associa-
tions, dimensionality
reduction
Semi-supervised Models are built using combined data (labeled + unlabeled) Classification, clustering
Reinforcement Models are based on reward or penalty (environment-driven approach) Classification, control
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Typical sizes of DL data sets

D task complexity . labeled data mixed labeled/unlabeled
P> volume of data available I labeled simulated data [l unlabeled data

Protein UniProtB/TreMBL ] [Reshiel, Tianstommars The increasing

P?g;;]lzt:gs : protein data bank (PDB) com pleXIty Of th e new

. datasets, typical of big

SO U iPotKB/ TreMBL )

Pf:;z:;g: > T 'CNN RNN ResNet GNN data epoch motivates

the need for GPU-based
Genome gRNA sites on human genome | | b ra ri es
Engineering > [ profiles - -
Systems Biology
& Data Integration ; - - -
Phyl ti : g
ylz?eerzzclg ;> simulated phylogenetic trees - -
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Building blocks of ML algorithms

ML algorithms have three main components

1. decision process: based on some input data, which can be labeled or unlabeled, your algorithm will produce
an estimate about a pattern in the data. This estimate can be used to solve a prediction or classification task

2. error function: it evaluates the prediction of the model. If there are known examples, an error function can
make a comparison to assess the accuracy of the model.

3. Model Optimization Process: If the model can fit better to the data points in the training set, then weights are
adjusted to reduce the discrepancy between the known example and the model estimate. The algorithm will
repeat this “evaluate and optimize” process, updating weights autonomously until a threshold of accuracy has

been met.

@ update
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Analyzing the computational workload of DL models

Data Loading & Preparation Model Init and Training

. Ri? - RM Rin R4 ROt

[ W
in ) T L.

b dl ||H training
. , Iy
¢ $ |||
= H

Wa,,

' - || data encoding

Multivariate Normalize, G s s waee

Time Series Windowing Output

. e . . testing/inference
RimP R R RO“

SMR 4067- Al and Climate Modeling



Training a DL model (in a supervised setting)

- ﬁ
forward
B o

Labeled Data

"Bicycle" — @‘%
|

A 4

Error

Backwards
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Back-propagation

The workhorse of DL is the Backpropagation algorithm (Rumelhart et al., 1986).

It allows for efficient gradient computation by recursively applying the chain rule of calculus.
It owes his name to the presence of a ‘backward pass’ of an error signal through the neural

network.

Error is sent back to
each neuron in backward

Gradient of error is @ direction
calculated with respect to

each weight

< Outputs Error - difference

(¥ | ———  Error— between predicted

4 Predicted output and actual
output output

InputLayer Hidden Layer Output Layer



Forward pass

We predict a label
s N\ 'a
p ST 4
" - P | Y
»} L} v R;} {45’* v

@Thom_Wolf &
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Gradient Descent variants

Batch Gradient Descent Mini-Batch Gradient Descent

Stochastic Gradient Descent (SGD)
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Alternative Optimizers
Other optimizers have been proposed to enhance the speed and convergence of
the training process:

« SGD with Momentum (Polyak, 1964): Speeds up gradient descent by adding a
fraction of the previous update to the current one.

 RMSprop (Hinton, 2012): Adapts the learning rate for each parameter based on
recent gradient magnitudes.

« Adam (Kingma and Ba, 2015): Combines momentum and adaptive learning
rates for more efficient optimization.
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Hyperparameters importance

Hyperparameters are an overlooked but crucial factor in DL practise. They include:

e |earning rate

e training steps/epochs

e batch size

e Optimizer choice-setting

How to choose them?
« Experience

* Trial and error
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Universal approximation theorem

Universal approximation theorem (Hornik, 1991):

A feedforward neural network with at least one hidden layer can approximate any
continuous function to any desired accuracy, given enough neurons and the right
activation function.
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Linear Neural Network (INN)

Input Layer Hidden Layer Output Layer
h1
x1
h2 y1
x2
h3 y2
x3

W11 W12 W13 Wig

— ! ! i !

(21 @y @s]* (w1 wap waz waa | =[hy hy Ry b
W31 W32 W33 W34

Alias of nn.linear() in Pytorch: torch.mm(inputs, linear.weight.T).add(linear.bias)
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Artificial neuron

A neuron has two main components:

* The weights (w;) (the bias b is sometime included in the
weights)

* The activation function (the f

T— Linear Activation Outout
P Combination Function P
I1 \  —
z> —zuE—/ f(Z)\—’@
\i,/ \\ //

Tn

@x
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Which portion of a neural network model is responsible for the type of problem
that can be solved?

Two main components are responsible for the type of problem that can be solved:
* The output activation function

* The loss function

The optimiser is not related in any way to the type of problem solved (it does not
depend on the type of the response variable).
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Types of activation functions

Exponential Linear Unit (ELU) Gaussian Error Linear Unit (GELU) Leaky RelU

|
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model, not an invention for pattern
recognition. As a brain model, its utility is in
enabling us to determine the physical conditions
for the emergence of various psychological
properties. It is by no means a "complete" model,
and we are fully aware of the simplifications
which have been made from biological systems;
but it is, at least, an analyzable model."

Perceptron @\ =
Rosenblatt said: @\ i — [ |—~
"A perceptron is first and foremost a brain @_} w3

3

the perceptron can be described by:

e alinear function that aggregates the
7 input signals
e athreshold-activation function that
determines if the response neuron fires
or not
e alearning procedure to adjust
connection weights
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Learning procedure for the Perceptron

Aggregation
function

Threshold
function

error = 1

| Wr+1 = Wi + Awk Aw= n(error)z;
Input units  Weight update Error computation

Wit1 = Wi + Awy, Awg =n(y — 9 ) vk



Adaline vs Perceptron

Perceptron training loop

Aggregation
function Threshold
function

Output

z=b+Zu',~.L'i§f(z) =€ —1,1
i=1

error =y — 4

o4

W1 = WE + Awi Aw= I/(ZI'I‘I'()I‘).[';‘.

Input units  Weight update Error computation

ADALINE training loop

Aggregation
function Threshold
function

Wi

Output

i =€ —1,1

'

Wty = Wi — (2 % errory )y error = (§ — y)*

Input units Weight update Error computation

it introduces SGD in the training
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Multi-layer Perceptron

—h+E TnWmn

1
wyp wie wis| | = 0(2) = T o= [’wl wo 'w3] ay
“m
W21 W22 W23| |[T9 te a2
az
21 fay = o(z1)
///
y
+] ifa>0.5
— §=fla

—1, otherwise
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Back-propagation in multi-layer perceptron

OE; B BE, é)a(r_h) 0:.5_[.)

= T T
(?u"%} f)a_(jLJ ('3:_(11‘) ()wz';f’

Formula for the weights update in the
L-layer:

L L OFE
Wi = Wi, — N X

L
awjk

Formula for the bias update in the L-layer:

OF
ob(L)

b = p) _px

o (L L _ _
oE aE 0(1;) 6:; ! &)n;." 1 B:,[tl' %
o Lo Z.[LIX.(L)X.(LI) ol vy B )
dwy 7 da; 0z; day. Dz du

i
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Convolutional Neural Networks (CNN)

Fully
Connected

" ~ "-’-O‘:\\\
Poollng",__--"’ O-‘:::‘\‘ Output

Convolution

Input
E]“ -

- - -

Feature Extraction Classification
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LOII L1:51 LQZCl L3ZSQ L4ZCQ L51F1 LGIFQ L7ZO

| | |

sizteen sizteen
, 10x 10 5x5
siz 28 x 28 e
; 3 subsampled
32:x 32 feature maps sizxl1ldx 14 feature maps feature III)laps

subsampled
feature maps

input layer

(NEEEE N =:
I T
T
T

10 units
RBD
output

convolutions (feature detection) f \
(feature detection) . 120 84
pooling pooling fully fully
(subsampling) (subsampling) connected connected
units units

E(W) = 75 3 (00 (X7, W) +log(e 7 + 3 e 70°))



The Convolution step

mn — S(l .]) — (P * I‘ ZZ PL m,j—n ¥ Kmn

Actually, several deep learning libraries like MXNet and Pytorch DO NOT implement convolutions but a
closely related operation called cross-correlation

an_S(Z ])_(P*K Zzpz+m,]+n*Kmn
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https://beta.mxnet.io/api/ndarray/_autogen/mxnet.ndarray.Convolution.html
https://pytorch.org/docs/stable/nn.html#convolution-layers

The convolution operation is simply a matrix multiplication

Let’s take a look at basic element of CNN: convolution layer

a B applied to A |B |C yields

Consider the case where we are
applying (2,2) kernel

alp y |3 D |E [F

y | G |H |J

to a (3,3) matrix: a |p A [B]C
5 D [E |F

m OO el O

A B [c A
_M LN s a [p A [B |c
G |H |J y |8 D |[EF

G [H |J
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The convolution can be rewritten as

a |p|Oly|d8| Ol Of Of O b aA+BB+0C+yD+3E+0OF+0G+0H+0J+b aA+3B+yD+3E+b
Ola [B | Ofy (& [ Of Of O|* + |b |= A+aB+BC+0D+yE+8F+0G+0H+0J+b |= |aB+BC+yE+dF+b |=
O O Ofa |B | O|y 0 b DA+0B+0C+aD+BE+0F+yG+3H+0J+b aD+BE+yG+3H+b
O O) O Ofja |[B | Ol|y |® b \+0B+0C+0D+aE+BF+0G+yH+3J+b aE+pF+yH+3J+b

“IT|IO@IMMIO|O|m|>»
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AlexNet

(Russakovsky et al., 2013).

| FC (1000) |

t

| FC (4096) |
t

| FC (4096) I

| FC (10) | | 3 x 3 Conv (256), pad 1 |
{ t

| FC (84) | | 3x3conv(384) pad1 |
t t

FC (120)

[ 3x3Conv(384) pad1 |

5x 5 Conv (16)

t

| 2x2AvgPool

| stride 2|

| 5x 5 Conv (6), pad 2 |

| 11 x 11 Conv (96), stride 4 |

t

t

Image (28 x 28)

I Image (3 x 224 x 224) |

The training procedure of AlexNet
used for the first time data
augmentation:

Rotation Blur
o)

Original
image

2

Grayscale

g

Exposure Contrast

&

f
&
g
S ‘@ We=

A
W o

A
/

Augmented images
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https://d2l.ai/chapter_references/zreferences.html#id243

Hierarchical representation learning

!

Hand-crafted Learning

Input image —— > feature ™ algorithm

representation

Traditional pattern recognition
e.g., SIFT, HOG

hieararchical representation
. low mid- high- Learning
Input image —>  level — level — level —>

algorithm
features features features

Deep learning
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Limitations of CNNs

e they are sensible to ADVERSARIAL ATTACKS:

+.007 x —
. T +
i en(ValO: 24 aign(vaJ(6,2,1)
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

e contain unrealistic features
e require heavy computation for the training
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GoogleNet (and the rise of inception blocks)

In 2014, GoogLeNet won the ImageNet

Challenge (Szegedy et al., 2015) 2% 5 x 2x
. w Ty w w w 6_2
~ % - w x x X o
B4R K- 2 . g
g % g g % % % | "50 °
= E] ] FE g g ]J 3

Il Concatenation I

inception [Sxacompean)| [BRecovead] [ 1xrcom |
11 Conv f f
block

I 1x 1 Conv | | 1x 1 Conv | |3x 3MaxPool.pad1|

I Input I
| e S |
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https://d2l.ai/chapter_references/zreferences.html#id275

ResNet

[He et al., 2015]

AUOD L X [
100doNY 189010
)

o4

)
uwuou yojeg

residual
block

! |
! 1
! 1
! |
! 1
! 1
! |
! 1
! 1
! | RelLU | | I 1x 1 Conv
! 1
! 1
! |
! 1
! 1
! |
! 1
! 1
! |

3 x 3 Conv
e
X X
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CIFAR experiments

CIFAR-10 plain nets

20— T Vv T T Y —
‘ 56-layer
44-layer
g 32-layer
= 10 e = = -
E ST T 20-layer
. = plain-2(} =
plain-32 .
— plain-44 solid: test
— lilln°56 A A " " A .
% 1 2 3 4 s 6 dashed: train
iter. (led)

N

error (%)
S

CIFAR-10 ResNets

“~ResNet-20

ResNet-32
“““ResNet-44

“ResNet-56

=—ResNet-110y

3
iter. (led)

_» 20-layer

32-layer
44-layer
56-layer
110-layer
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UNet

64 64
128 64 64 2
input
. output
image |»|» .
J i Byl segmentation
tile Sl & 2 2
Sl A S S map
N | Off ©© x| xJ ] p
S S ERE
x x x
NS B
w|wnwgw
'128 128
256 128
ol ol o
B QUM el o
N NE N t
512 256
“gﬂ > =»conv 3x3, RelLU
= g 9
' S = copy and crop
512
> ¥ max pool 2x2
i 4 up-conv 2x2
=» conv 1x1
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UNet applications in Climate studies

RCM emulator/downscaling

3]

semantic segmentation in
satellite data (e.g. clouds)

- w

t = 1st August 2000 5 »

Doury et al. (2022-2024)

resol: 150 km -> 12.5 km

mmmmm

De Souza 2023
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Al 4 climate

SMR 4067- Al and Climate Modeling

Observation

« Reconstruction
o Classification
e Super-resolution

Theory

* Sub-grid
parameterizations
« Reduced-order models

Key outcome: * Model Key outcome:
optimally extended validation innovative
observational o Training approaches to
datasets (time, space datasets capture sub-grid-
and observable) scale phenomena
* Hybrid
models
o Initial value * Boundary value
problems problems
e Data o Climate
assimilation simulations
Computation

o Short-term weather
forecasting

e Long-term climate
prediction

» Model bias correction

Key outcome:
breaking predictability
barriers (such as
weather and climate)



Python most used libraries/frameworks for DL

A

cono + eager execution ‘ Z%gg;h 2.0

' Tensorflow 2.0
PyTorch 1.0

2015 + TorchScript

2018

PYTHRCH

2017

Good for production

>
Good for development




What's behind Pytorch/Tensorflow?

Framework TensorFlow, PyTorch, Caffe, MxNet

DL Stack

BLAS, FFT NCCL SPARSE MIOpen [ BLAS, FFT RCCL SPARSE |
|

CUDA Platform ROCm Platform :

|

I
I
I
: f ) 1 1 ( )

« NVLink V100 V100 V100 MI100 \IEKeJoR _ Infinity Fabric I
| VY-V 16GE HEM ki 16GB HBM taad 16GB HBM I NIC 32GB HEM2 Randl 3268 HEM 2 [JIREECPXC:IA |
| o PCle 4 900 GB/s 900 GB/s 900 GB/s . 1.2 TB/s 1.2 TB/s pCle 4 ;

= 16GB/s x I = 32GB/s -
| V100 V100 V100 I MI100 MI100 [
PN o0 Y T: B 16GB HBM yad 16GB HBM Nad 16GB HBM i\ 32GB HBM2Aundl 32GB HBM?2 “Slmgshot-lo |
‘\ 25 GB/s 200GB/s 900 GB/s 200 GB/s 12 B/s 5 GB/s i

~ Summit ) Spock



Diving

into the
world of
DL models

Convolutional Recurent
Transformer Autoencoder (AE

NN (CNN) NN (RNN) Gil2
E Perform inference on Perform inference on Perform inference on Embed high-dimensional
V) data with local features temporal data sequential data data
©
g Learn shift-invariant Learn temporal correlations Lt cc;ntt.ext ba}ed Learn low-dimensional
= filters via recurrent structure cor're ations V'a, embedding of data
g attention mechanism

Graph Generative Adversarial Denoising autoencoders (DAE) are autoencoder models that
NN (GNN) Network (GAN) learn low dimensional embeddings of noisy high dimensional
data, i.e. inputs that differ by a small amount of noise give rise
’_c“ Capture graph based Generate samples from toasimilar embedding vector.
O dependencies in the data data distribution Attention mechanism mimics cognitive attention by learning
importance weights for the inputs based on the whole input
© context (e.g. in a task of translating codons to amino acids
2 !’erform WSEREL]S Simultanoeusly train attention mechanism will learn to give higher weight to the
% passing between nodes in generator and discriminator first two nucleid acids). Attention is the key part of transformer
X alayer models, but can also be applied in conjunction with other

layer types.
G

~

Convolutional layers have dimension which indicates the
dimension of learned filters. Thus, we can have a 1-dimensional
convolutional layer for sequences, 2-dimensional layer for
matrices, and so on.

Graph convolutional network (GCN) is a graph neural network
with convolutional layers defined by the topology of the graph.
Thus instead of passing neighboring sequence or matrix entries
through a filter, graph defined neighborhoods are used.

-

[




Why GPUs for DL?

1) Neural networks are embarrassingly parallel algorithm

2) most of the operations performed in DL models can be rewritten as matrix multiplications

3) big datasets require to perform big matrix computation (extremely slow on CPU with respect to GPU)
4) well established libraries, with specific classes for ML objects (e.g. cuDNN, more recently tensorRT)

and we know that GPUs are very good in solving specific parallel tasks (e.g matrix multiplication) , thanks to

+1000 cores (>100K threads)

SIMD / SIMT

high memory bandwidth

newer GPUs have also tensor cores (particularly suited to tensor ops typical of NNs), and mixed precision

However, also GPUs have limitations:

o  GPUs might not be as efficient for extreme sparse networks, due to the overhead of managing sparse data structures.
o Some specialized sparse operations might not be as optimized as dense operations on GPUs.
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Different strategies for Multi-GPUs training

we can identify 5 different categories of parallelism

[ model parallelism }

[ tensor parallelism }

[ data parallelism }

[ sequence parallelism }

[ pipeline parallelism }
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Data Parallelism

S0
oo o————=0 Model copy
. . O =0
In this framework we split o= on GPU 1
batches to train DL model of
into different GPUs Qe
e O
oe=wa——=0  Model copy
OEHSEIO———C on GPU 2
B, = xXr
'® 7
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Model parallelism

In this parallelism
framework we choose to
put different layers of the
NN on different GPUs

to work around GPU
memory limits

'/ ) Q
[WAY7 280702 VESNVNNVAN

[ 7 /AT /AT TAN AN LN\

GPU 1 GPU 2 GPU 3
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Tensor parallelism

GPU 1
GPU 2

\
Zil

y

NN\
N2
Q@.éﬁxé“
\ADION
\?s. “.zz,/

777

A

=
%AA\A
%
/

o

@

Vi
v .vwgf.

K

In this framework we split the tensor
operation done at each layer among

different GPUs

GPU 1

similarly to what we would have done

for matmul
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More complex strategies for DL training

Sequence parallelism and pipeline parallelism frameworks
are obtained combining the previous approaches,
and are typically applied to DL models dealing with

spatio-temporal data.
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Do we need GPUs also for other ML tasks?

Building Training Sets

data scientists spent 80% of
time in data preparation !!!
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GPU-based libraries outside of Pytorch

Pandas-like 5

FRAMEWORKS
il NetworkX-like

| cuor || ML || CUGRAPH I CUDNN

CUDA

APACHE ARROW

ScikitLearn-like
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Performance on 100,000 samples and 256 features

30
GPU for N
classical ML i
% 20
L:g)_) 15
=
< 10

5 -
, - o
00® N\ea“‘5

()BS v\e\g
neat®

* Benchmark on AMD EPYC 7642 (using 1x 2.3GHz CPU core) w/
512GB and NVIDIA A100 80GB (1x GPU) w/ scikit-learn v1.2 and
cuML v23.02



GPUs for data preprocessing

Performance on 300,000,000 row x 2 col dataframe
80

70
60
50
40
30
20
g _
0

e
me(\c Wor er® aue Cou“‘ \)QB\J

X Times Faster

s\(\(\g

* Benchmark on AMD EPYC 7642 (using 1x 2.3GHz CPU core) w/
512GB and NVIDIA A100 80GB (1x GPU) w/ pandas v1.5 and cuDF
v23.02



References

Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford university
press.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review, 65(6), 386.

Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research
Directions

Junqi Yin et. al, 2021, Comparative evaluation of deep learning workloads for leadership-class
systems

NVIDIA Booklet on GPU development, 2021



