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But adaptation requires:

- Accurate information (projection) about the future using climate models

- Broadly and easily accessible climate projection information
(outreach, LEAP-Pangeoplatform not covered today)

3
Flood Fort Lauderdale 2023, Extreme heatwave in India and Spain (April 2023), Canadian wildfire smoke NYC (June 2023)

Current gap: Climate Adaptation is Needed 
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Even for (simple) global metrics such as surface temperature
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Global Surface Air Temperature - CMIP6 (New Generation)

Model Spread

Yet, current projections are still too uncertain

*note it takes 5 minutes to plot this with modern cloud data infrastructure (LEAP-Pangeo)
4
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Regional climate and carbon cycles are even more uncertain

o Regional precipitation is quite inaccurate, especially for extremes

o Future of carbon cycle

Collins et al., 2011 JAMES; Friedlingsteinet al., 2014 J Climate 

standard coarse atmospheric model
superparameterizedCAM  (kilometer-scale model resolving deep clouds)
observations
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Clouds Ocean Eddies Photosynthesis

Climate Model Grid ~100km ~100km 
Physical 

+ Biological 
Processes
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ǒ Model errors dominate (>50%) uncertainties <50 years

Gentine et al., 2018 Geo Res Lett, Newsom, Zanna et al., 2020 Geo Res Lett; Friedlingsteinet al. 2006 J Climate; Green, Seneviratne, Gentine, Nature 2019

Model 
Spread

Model 
Spread

Model 
Spread

Unresolved or Unknown ǇǊƻŎŜǎǎŜǎ wŜǉǳƛǊŜ άParameterizationsέ 
Causing Projection Uncertainties
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1. Unresolved processes:
Resolving more scales, fewer parameterizations.
We can now resolve many processes 

Strategies to improve climate modeling

Gentine et al. 2021; Zanna et al., 2021 (Deep Learning for the Earth Sciences Linking Physics and Deep Learning Models)

mm m

Direct Numerical Simulations

km 103km

Large Eddy Simulations

Climate Model
100 
years

s

Parameterizations

Parameterizations

Parameterizations

2. Unknown processes:
Many processes cannot be simulated: microphysics, biogeochemistry

ĄUse observations (in situ, remote sensing) to learn processes

(Global) Cloud Resolving Models



8

Harvesting the Data Revolution to improve parameterizations

Gentine et al. 2021; Zanna et al., 2021 (Deep Learning for the Earth Sciences Linking Physics and Deep Learning Models)

2. High-resolution 
simulations

3. Progress in machine learning1. Massive data from Earth 
observation
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ML-based parametrization

Improved climate 
projections

Dynamics

Pararameter-
ization

Trained ML-algorithm 
(data-driven parametrization)

Resolved 
Fields

ML-based subgrid scale parametrization
High-resolution 

simulations/Observations

Coarse -graining

Neural networks

Coarse -
grained state 

variables

Prediction
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Wildfire risk and impacts

Fire hazard

Burned area

Land-atmosphere exchange

Phenology
Radiation

Turbulence

Modeling the Climate System
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Snow water equivalent forecast

Clouds

¢ƻŘŀȅΩǎ ŦƻŎǳǎ

None of those processes 
(besides deep convection) 

are resolved in high-resolution cloud-resolving models! 

Zhao et al. 2019 GRL; El Ghawiet al 2023 ERL; Buch et al. 2023 GMD; Shamekhet a; JAMES in review; Lahlouet al. in prep 
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Learn subgrid convection parameterization with machine learning

ÅMain strategy: use high-resolution cloud-ǊŜǎƻƭǾƛƴƎ ƳƻŘŜƭ όŦŜǿ ƪƳǎύ Řŀǘŀ ŀǎ άǘǊŀƛƴƛƴƎέ  ŦƻǊ ŎƭƻǎǳǊŜ 
development (supervised learning) at coarse resolution

ÅMulti-institution, inter-disciplinary, international efforts: LEAP/USMILE ERC/M2LInES

Gentine et al 2018 GRL; Rasp et al 2018 PNAS; Gentine et al. 2021; Zanna et al., 2021 (Deep Learning for the Earth Sciences Linking Physics and Deep Learning Models)

Coarse graining
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Learn subgrid convection closures with machine learning

ÅMain strategy: use high-resolution cloud-ǊŜǎƻƭǾƛƴƎ ƳƻŘŜƭ όŦŜǿ ƪƳǎύ Řŀǘŀ ŀǎ άǘǊŀƛƴƛƴƎέ  ŦƻǊ ŎƭƻǎǳǊŜ 
development (supervised learning) at coarse resolution

Gentine et al 2018 GRL; Rasp et al 2018 PNAS; Gentine et al. 2021; Zanna et al., 2021 (Deep Learning for the Earth Sciences Linking Physics and Deep Learning Models)

Coarse 
model state

Coarse-scale 
tendencies/f

luxes

Online 
Aquaplanet
(NCAR CAM)

Temperature 
profiles
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{ǳŎŎŜǎǎŦǳƭ 9Ƴǳƭŀǘƛƻƴ ƻŦ /ƻƴǾŜŎǘƛƻƴ ƻƴ άreal geographyέ

Mooers et al. (2021) JAMES; Behrens et al JAMES 2022, 2023; Heuer et al. 2023 submitted 

Truth
Super-param. 

(SPCAM)
simulation

Prediction
NN

Real geography results in OfflineCommunity Atmosphere Model (CAM)
Onlinein ICON with Max Planck/DLR 

Skillful convection emulation with continents
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Inclusion of ML parameterizations leads to 
Step-changein climate model quality

Precipitation distribution (CAM)

Rasp, Pritchard, Gentine., 2018 PNAS; Behrens, Eyring, Gentine  submitted 

Regular CAM 
parameterization

Online global simulations 

Precipitation diurnal cycle (CAM+ICON)
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Main Challenge for ML: Generalization

ÅChallenge: out-of-distribution prediction: climate change
ÅSolution: HybridMultifidelity approach: merges physics with ML to extrapolate 

(online with MeteoFranceto improve subseasonal/seasonal forecast)
ĄBest of both worlds

Bhouri, Pritchard, Gent ine, in review @ Science Advances; BeuclerΣ tǊƛǘŎƘŀǊŘΣΧΣ DŜƴǘƛƴŜΦΣ нлно ƛƴ ǊŜǾƛǎƛƻƴ Ϫ {Ŏƛ !ŘǾŀƴŎŜǎΣ /ƻƴƴƻƭƭȅΣ ¸ǳΣ DŜƴǘƛƴŜΣ нлно ǎǳōƳƛǘǘŜŘΤ Iglesiaz-Suarez, Eyring and Gentine., submitted

Other strategies: 
- embedding physical invariances
- merging causality & ML

Standard (low fidelity) 
Parameterization

High Fidelity 
Correction
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Trust, interpretability, generalization
Challenge 1: Generalization

ÅChallenge: out-of-sample, out-of-distribution prediction/sampling bias
ÅSolution: embed physical invariances/equivariance along Lie groups in ML 

(e.g., dimensionless numbers or rotational equivariance to collapse distributions)

BeuclerΣ tǊƛǘŎƘŀǊŘΣΧΣ DŜƴǘƛƴŜΦΣ нлно ƛƴ ǊŜǾƛǎƛƻƴ Ϫ {Ŏƛ !ŘǾŀƴŎŜǎΣ /ƻƴƴƻƭƭȅΣ ¸ǳΣ DŜƴǘƛƴŜΣ нлно ǎǳōƳƛǘǘŜŘ
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Trust, interpretability, generalization
Challenge 1: Generalization

ÅChallenge: out-of-sample, out-of-distribution prediction/sampling bias
ÅSolution: embed physical invariances/equivariance along Lie groups in ML 

(e.g., dimensionless numbers or rotational equivariance to collapse distributions)

Connolly, Yu, Gentine, submitted
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Trust, interpretability, generalization
Challenge 2: Trust + interpretability

ÅChallenge: cross-correlations can fool ML
ÅSolution: merge causal discovery with ML
Ąmore interpretable, more trustworthy

Iglesiaz-Suarez, Eyring and Gentine., submitted

NN (Rasp et al., 2018)

ON=

65

IN=

94 Hidden layers
Number = 9
Χ

Causal-NNs

IN=cau

sal Hidden layers
Number = 9
Χ

Oj
(N=6

5)

Drop connections based on 
causality: a very sparse NN
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Causality: going beyond correlations

Iglesiaz-Suarez et al., submitted

Online global simulations
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Journey through the use of ML in climate science

WƻǳǊƴŜȅ ǘƘǊƻǳƎƘ a[ ǳǎŜΥ ŀ ǊƻƭƭŜǊ ŎƻŀǎǘŜǊ 

Lƴƛǘƛŀƭ ǿƻǊƪΥ

o/ƻǊǊŜŎǘ ŜƳǳƭŀǘƛƻƴ ƻŦ ŎƻƴǾŜŎǘƛƻƴ 

o.ǳǘ Ŏŀƴƴƻǘ ƎŜƴŜǊŀƭƛȊŜΣ Ƴŀȅ ƭŀŎƪ ǎǘŀōƛƭƛǘȅΣ 
ƳƛǎǎŜǎ ǇƘȅǎƛŎŀƭ ƛƴǾŀǊƛŀƴŎŜǎ 

wŜŎŜƴǘ ǿƻǊƪ ŦƻŎǳǎƛƴƎ ƻƴΥ 

o9ƳōŜŘŘƛƴƎ ǇƘȅǎƛŎŀƭ ƛƴǾŀǊƛŀƴŎŜǎ ƛƳǇǊƻǾŜǎ ƳƻŘŜƭ ǎǘŀōƛƭƛǘȅΣ ƛƴŎƭǳŘƛƴƎ Ŏŀǳǎŀƭƛǘȅ ŀƴŘ ƎŜƴŜǊŀƭƛȊŀǘƛƻƴ 

aƻǊŜ ŦǳƴŘŀƳŜƴǘŀƭƭȅΣ ǿƘŀǘ ŘƛŘ ǿŜ όǊŜŀƭƭȅύ ƭŜŀǊƴΚ 

o¦ǎƛƴƎ ƳŀŎƘƛƴŜ ƭŜŀǊƴƛƴƎ ŦƻǊ ƴŜǿ ŘƛǎŎƻǾŜǊƛŜǎ

Rasp, Pritchard, Gentine., 2018 PNAS
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From emulation to understanding

5ŀǘŀ ŀƴŀƭȅǎƛǎ ƛǎ ŜȄǘǊŜƳŜƭȅ ŎƘŀƭƭŜƴƎƛƴƎ ƛƴ ƘƛƎƘπǊŜǎ ǎƛƳǳƭŀǘƛƻƴǎ ŀƴŘ ǊŜƳƻǘŜ ǎŜƴǎƛƴƎ όǎƛȊŜύ
ML-based subgrid scale parametrization

High -resolution 
simulations/Observations

Coarse -graining

Different types of NNs

Coarse -
grained state 

variables

Prediction

Improved Earth system 
understanding/ discoveries

Improved trust, interpretability & 
generalization

Causal NN

Equation discovery

Latent space



New discoveries 1: Cloud organization

24

o Convection can aggregate

Self aggregation

wŀƴŘƻƳ ŎƻƴǾŜŎǘƛƻƴ

Muller and Held 2012, JAS

o Aggregation has a large impact on:

- Humidity

- Radiative cooling

Ą Enhances radiative cooling 

Ą Potentially impacts climate sensitivity

- Precipitation

Ą Increases accumulated precipitation



Can we learn the implicit role of subgrid (micro) scale on precipitation?

25

ÅScience questions:

ÅDoes P = F (X coarse-scale, subgrid scale stuff) improve prediction?

ÅCan we explain (some of) the stochasticity? Still unclear how to model it.

Shamekh, Lamb, Huang and Gentine, PNAS 2023

microscale



¦ǎƛƴƎ ƘƛƎƘπǊŜǎ ƳƻŘŜƭǎ ǘƻ ƭŜŀǊƴ ǘƘŜ ǊƻƭŜ ƻŦ ǎǳōƎǊƛŘƳƛŎǊƻǎŎŀƭŜ ƻƴ t

26

ÅData:
DYAMOND Storm-resolving model experiment 
Tropical band (20S-20N), ~2.5km resolution,
10 days of simulations 
108 data points

Ą Predicting precipitation

Coarse graining

Shamekh, Lamb, Huang and Gentine, PNAS 2023



Note: translation 
invariant+rotational
equivariance
Dim: 210 to 2

The inner gut: learning organization end-to-end

нт

ÅStrategy: Learning precipitation and organization (implicitly) in tandem

Organization is 2D only

+ can write an equation 
of state

High-res 
Precipitable Water (PW)

2D

Shamekh, Lamb, Huang and Gentine, PNAS 2023



Temporal R2>0.7

Learnt organization dramatically improves precipitation predictions

ну

ÅPrecipitation and its stochasticity are very well predicted with org

Shamekh, Lamb, Huang and Gentine, PNAS 2023

Temporal R2~0
What did we learn?

Organization regulates precipitation extremes and their prediction

Precipitation stochasticity is mainly due to convective aggregation
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New discoveries 2: Symbolic regression ςequation discovery

ÅExample for ICON (offline) cloud cover
ÅProjection on library of functions

More interpretable, more trustworthy. Improve upon high-res ICON model.

DǊǳƴŘƴŜǊΣ .ŜǳŎƭŜǊΣ DŜƴǘƛƴŜ Σ 9ȅǊƛƴƎΣ W!a9{нлно

Cloud cover [%]

Coarse 
ICON

High-Res 
ICON

άhōǎŜǊǾŀǘƛƻƴǎέ

Equation 
discovery 

ICON

ὅ ὖ ὙὌȟὝ ÃὙὌ ὧ ὙὌ
ρ

ὧή ὧή ‐



Machine learning improves climate model processes and understanding

aŀŎƘƛƴŜ ƭŜŀǊƴƛƴƎ Ŏŀƴ ƛƳǇǊƻǾŜ ǘƘŜ ǊŜǇǊŜǎŜƴǘŀǘƛƻƴ ƻŦ ǎǳōƎǊƛŘ ǇǊƻŎŜǎǎŜǎ ƛƴ ŎƭƛƳŀǘŜ ƳƻŘŜƭǎ ŀƴŘ
ƭŜŀǇ ŀŎǊƻǎǎ ǎŎŀƭŜǎ

a[ ŎƭƻǎǳǊŜǎ ŀǊŜ ǿƻǊƪƛƴƎ ƴƻǿƛƴ Ŧǳƭƭ ŎƭƛƳŀǘŜ ƳƻŘŜƭǎ ό/!aκL/hbύ ǿƛǘƘ ƭŜŀǇ ƛƴ ŀŎŎǳǊŀŎȅ ŀƴŘ 
ƳŀƧƻǊ ǊŜŘǳŎǘƛƻƴ ƛƴ ōƛŀǎŜǎ όƛƳǇƭŜƳŜƴǘŀǘƛƻƴ ŀǘ ŀ ǇŀŎŜ ŦŀǎǘŜǊ ǘƘŀƴ ŎƭƛƳŀǘŜ ŎƘŀƴƎŜύΦ
Ąbƻǘ ŀ ƘȅǇƻǘƘŜǎƛǎ ŀƴȅƳƻǊŜΦ

{ǘƛƭƭ ǎƻƳŜ ŎƘŀƭƭŜƴƎŜǎ ςǎŜǾŜǊŀƭ ƻŦ ǘƘŜƳ ŘƛǎŎǳǎǎŜŘ ƛƴ ǘƘƛǎ ǘŀƭƪΦ

aŀŎƘƛƴŜ ƭŜŀǊƴƛƴƎ Ŏŀƴ ōŜ ǳǎŜŘ ŦƻǊ ƴŜǿ ŘƛǎŎƻǾŜǊƛŜǎ ƻƴ ōƛƎ ŘŀǘŀΦ

30
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How can we improve climate projections?

Solution 1. Using AI to harvest the data 
revolution : high -resolution simulations or
MǍɶʌțẏɾ ɐǩɾǸɶʬǍʌȡɐɅɾ ʌɐ ǩǸʌʌǸɶ ǸɃʔȺǍʌǸ 
processes 

Gentine et al., 2018 GRL; Rasp et al., 2018 PNAS, Shamekh et al 2023, PNAS

Media32.mp4

1selected2.mp4 2coarse2.mp4

Coarse 
graining

Challenge : Climate models cannot easily 
integrate AI (old languages like Fortran) 
and assimilate data
Ą Difficult to harvest the data revolution

32

http://drive.google.com/file/d/18zgyg-b-eASBNvzx4f1g8XlXCX-Iu1ib/view
http://drive.google.com/file/d/18zrC-tvsi3J9A0bLZa1AucyYaWGFz5Qq/view
http://drive.google.com/file/d/19-DyLyFpXkgo987UyIvpMlpxDKvkMxBI/view


Solution 2. Increasing compute to better 
resolve processes : Exponential cost with 
resolution

How can we improve climate projections?

Challenge: Climate models do not leverage 
modern hardware GPUs or TPUs and are based 
on old hardware infrastructure (CPUs).
Legacy of low -level Fortran code, not agile to 
different hardware, plateauing performance

Schneider et al. 2019 Nat Climate Change
оо



Solution 3. Accelerate progress on climate 
model developments and theories

How can we improve climate projections?

Challenge: Climate models are based on 
old programming languages and are very 
ǱȡȒȒȡǪʔȺʌ ʌɐ ʔɾǸ ứ not inclusive: huge 
barrier to progress

34



Solution 4. Accurate quantification of 
internal variability (and extremes)

Lehner et al., 2020 ESD

>țǍȺȺǸɅȓǸṝ >ɐɃɳʔʌǍʌȡɐɅǍȺȺʳ ǸʲɳǸɅɾȡʬǸ Ṿ
ʌɶǍǱǸɐȒȒ ǩǸʌʭǸǸɅ ɶǸɾɐȺʔʌȡɐɅ ǍɅǱ 
ǸɅɾǸɃǩȺǸ ɃǸɃǩǸɶɾ

How can we improve climate projections?

35

Scenario

Model
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A vision for next-generation climate modeling

THREE PILLARS

1. Modern code & compute: 
Python-based: more inclusive 
+ JAX /GT4Py for fast compute (GPUs)

Better

Häfner et al 2021 JAMES; Ben-Nun et al. 2022



THREE PILLARS

1. Modern code & compute: 
Python-based: more inclusive 
+ JAX /GT4Py for fast compute (GPUs)

! Ǿƛǎƛƻƴ ŦƻǊ ƴŜȄǘπƎŜƴŜǊŀǘƛƻƴ ŎƭƛƳŀǘŜ ƳƻŘŜƭƛƴƎ

Better

Häfner et al 2021 JAMES; Ben-Nun et al. 2022; EXCLAIM



Generative AI with human-in-the-loop can help translate code faster: test on Community Land Model

How can we convert codes (faster)?

Zhou, Hawkins, Gentine, NeurIPS 2023
39



A vision for next-generation climate modeling

¢Iw99 tL[[!w{

мΦ aƻŘŜǊƴ ŎƻŘŜ ϧ ŎƻƳǇǳǘŜΥ 
tȅǘƘƻƴπōŀǎŜŘΥ ƳƻǊŜ ƛƴŎƭǳǎƛǾŜ 
Ҍ W!· κD¢пtȅ ŦƻǊ Ŧŀǎǘ ŎƻƳǇǳǘŜ όDt¦ǎύ

нΦ {ŜŀƳƭŜǎǎ !LπƛƴǘŜƎǊŀǘƛƻƴΥ
ƘȅōǊƛŘ 9ŀǊǘƘ ǎȅǎǘŜƳ ƳƻŘŜƭΥ ǳƴƛŦȅ ǇƘȅǎƛŎǎ ŀƴŘ !L

Häfner et al. JAMES 2022; Automatic differentiation: Chen, Appling, Gentine et al Nature Reviews Earth & Environment 2022
40

AI Physics



A vision for next-generation climate modeling

¢Iw99 tL[[!w{

мΦ aƻŘŜǊƴ ŎƻŘŜ ϧ ŎƻƳǇǳǘŜΥ 
tȅǘƘƻƴπōŀǎŜŘΥ ƳƻǊŜ ƛƴŎƭǳǎƛǾŜ 
Ҍ W!· κD¢пtȅ ŦƻǊ Ŧŀǎǘ ŎƻƳǇǳǘŜ όDt¦ǎύ

нΦ {ŜŀƳƭŜǎǎ !LπƛƴǘŜƎǊŀǘƛƻƴΥ
ƘȅōǊƛŘ 9ŀǊǘƘ ǎȅǎǘŜƳ ƳƻŘŜƭΥ ǳƴƛŦȅ ǇƘȅǎƛŎǎ ŀƴŘ !L

оΦ IŀǊƴŜǎǎƛƴƎ Ǝƭƻōŀƭ ƻōǎŜǊǾŀǘƛƻƴǎΥ
ǿƛǘƘ ƴŜǿ Řŀǘŀ ŀǎǎƛƳƛƭŀǘƛƻƴ
πǘŀǊƎŜǘƛƴƎ ǎǘŀǘƛǎǘƛŎǎ όŜΦƎΦ ǇǊŜŎƛǇƛǘŀǘƛƻƴ ŘƛǎǘǊƛōǳǘƛƻƴύ
πŜǾŜƴ ƘƛƎƘπǊŜǎ ƳƻŘŜƭǎ ŀǊŜ ƛƳǇŜǊŦŜŎǘ

AI Physics

41
Li, Gentine, Bhouri, Bocquet, Farchi, Zheng, 2024a and b  in preparation



Ensemble

With focus on land and atmosphere in my group

! Ǿƛǎƛƻƴ ŦƻǊ ƴŜȄǘπƎŜƴŜǊŀǘƛƻƴ ŎƭƛƳŀǘŜ ƳƻŘŜƭ

Eyring, Gentine, Camps-Valls, Lawrence, Nature Geo, in review; Schiro .. Gentine et al. 2022 Nature Communications
42

Ensemble

To answer important scientific questions within 5-10 years such as: 
- Can we narrow down climate sensitivity? Causal effect of coupled low-cloud 
versus deep convective ascent.
- Projecting trends in regional droughts. Which regions will be drying? 
- Impact of those droughts on the terrestrial carbon cycle?



Questions and Answers

43
Eyring, Gentine, Lawrence, Camps-Valls, Reichstein; Nature Geoscience. 2024 accepted



{ǳǇǇƭŜƳŜƴǘŀǊȅ ǎƭƛŘŜǎ



A vision for next generation climate model to address societal needs

Goal: build the first full climate model based on: 

- modern language (Python)

- scalable + flexible hardware (GPUs)

- seamless integration of AI to harvest global data

Media32.mp4

Summary

45

http://drive.google.com/file/d/18zgyg-b-eASBNvzx4f1g8XlXCX-Iu1ib/view


A vision for next-generation climate model to address societal needs

Goal: build the first full climate model (starting with atmosphere and land) based on: 

- modern language (Python)

- scalable + flexible hardware (GPUs)

- seamless integration of AI to harvest global data

to provide more accurate climate projections, support global climate adaptation and make new discoveries

Summary

46



A vision for next-generation climate modeling

/ŀƴ ǿŜ ǊŜǇƭƛŎŀǘŜ ǘƘŜ ƳŀŎƘƛƴŜ ƭŜŀǊƴƛƴƎ ǊŜǾƻƭǳǘƛƻƴ ƛƴ ǇƘȅǎƛŎŀƭκŎƭƛƳŀǘŜ ƳƻŘŜƭƛƴƎΚ

.ŀŎƪōƻƴŜǎ ƻŦ ǘƘŜ a[ ǊŜǾƻƭǳǘƛƻƴΥ

Å5ŀǘŀ 

Å9ŦŦƛŎƛŜƴǘ ƘŀǊŘǿŀǊŜ ǳǎŜ

Å!ƭƎƻǊƛǘƘƳǎ ŦƻǊ ƻǇǘƛƳƛȊŀǘƛƻƴ όōŀŎƪǇǊƻǇŀƎŀǘƛƻƴΣ ŀǳǘƻƳŀǘƛŎ ŘƛŦŦŜǊŜƴǘƛŀǘƛƻƴύ

Å¦ƴŘŜǊπŀǇǇǊŜŎƛŀǘŜŘΥ ƘƛƎƘπƭŜǾŜƭ ǇǊƻƎǊŀƳƳƛƴƎ ǿƛǘƘ ŜȄǇǊŜǎǎƛǾŜΣ ŦƭŜȄƛōƭŜ ŀƴŘ ƻǇǘƛƳƛȊŜŘ ƭƻǿπƭŜǾŜƭ ƻǇŜǊŀǘƛƻƴǎ 
όŦŜǿ ƭƛƴŜǎ ƻŦ ŎƻŘŜǎύ

Eyring, Gentine, Camps-Valls, Lawrence, Nature Geo, in review; Automatic differentiation: Chen, Appling, Gentine et al Nature Reviews Earth & Environment 2022
47
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Bringing observational data into climate model development core

.ŀǳŜǊ Ŝǘ ŀƭΦ {ŎƛŜƴŎŜ нлмр

ÅNo perfect model, even at high-resolution (e.ghigh-res ICON ~10W/m2 bias or cloud cover)

ÅData assimilation led to weather quiet revolution due to increasing data (~ like AI)

ÅTraditional data assimilation focuses on 
trajectory correction - initial conditions

ĄNot applicable to climate: need excellent future model

Traditional data assimilation

More data
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New data assimilation for climate

Li, Gentine, Bhouri, Bocquet, Farchi, Zheng, 2024a and b  in preparation

ÅKey differences with traditional techniques: 
1. Does not correct trajectories but corrects the model parameters/structure (predicting into the future)

2. Does not consider individual realizations but statistics

3. Merges Machine Learning with Data Assimilation techniques:
harvest data at scale + uncertainty quantification + indirect observations

Statistically steady state Parameter dependence of distribution
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Climate models use parameterizations of subgrid processes

tŀǊŀƳŜǘŜǊƛȊŀǘƛƻƴΥ ǊŜǇǊŜǎŜƴǘǎ όǇƘȅǎƛŎŀƭƭȅ ƻǊ ǎǘŀǘƛǎǘƛŎŀƭƭȅύ 
ŀ ǇƘȅǎƛŎŀƭ ǇǊƻŎŜǎǎ ǘƘŀǘ Ŏŀƴƴƻǘ ōŜ ǊŜǎƻƭǾŜŘ όŜΦƎΦ ŎƭƻǳŘǎύΦ

¢ȅǇƛŎŀƭƭȅ ǇƘȅǎƛŎŀƭƭȅ ōŀǎŜŘΦ

ǿƛǘƘ      ŎƻŀǊǎŜπǎŎŀƭŜ ŀǾŜǊŀƎŜ ƻŦ 

IƻǿŜǾŜǊΥ ƛǘ Ƙŀǎ ŦŀƛƭŜŘ ŦƻǊ Ϥпл ȅŜŀǊǎ 
¢Ƙƛǎ ƭŀǊƎŜƭȅ ŜȄǇƭŀƛƴǎ ƛƴǘŜǊπƳƻŘŜƭ ǎǇǊŜŀŘ ƛƴ ŎƭƛƳŀǘŜ ǇǊƻƧŜŎǘƛƻƴ

Schneider et al., 2019 GRL; Randall et al 2003, BAMES

~100km



Understanding: Cloud organization
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ÅClouds organize in observations

Stevens et al, 2021 Journal of the Meteorological Society of Japan



рн

effective climate actionis another problem altogether

Climate
Prediction Data

Effective
Climate 
Action

Knowledge Transfer 

+ 

Diversity, Equity, 
Inclusion

Modern cloud infrastructureto empower climate action with an 
ecosystem of local partners, especially in Global South (with 
Climatematch Academy)

Transparent, inclusive and ethical: 
same climate data accessible
by anyone across the globe

aƻǊŜ ǊŜƭƛŀōƭŜ ǇǊŜŘƛŎǘƛƻƴǎ ƛǎ ƻƴŜ ǇǊƻōƭŜƳ Χ
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Inclusion of ML closure leads to 
Step-changein climate model quality

Precipitation distribution (CAM)

Rasp, Pritchard, Gentine., 2018 PNAS; Behrens, Eyring, Gentine  submitted 

Regular CAM 
parameterization

Online global simulations 

Precipitation diurnal cycle (CAM+ICON)

/!a ǇŀǊŀƳŜǘŜǊƛȊŀǘƛƻƴHigh-res SPCAM model

Neural Network

Local time of day

Local time of day
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Issues: Convection ςDL instabilities & spurious correlations

SPCAM NNCAM

(online)

Artificial Neural Network (NN)
learning subgrid processes as 

represented by the SP component

Zonal -mean temperature
NN-parametrizations can capture 
many aspects of CRMs

Issues
üSpurious correlations between 
stratosphere and boundary layer
üInstabilities in the coupled runs 
(NNCAM) under a number of setups
üGeneralization: Limitations with 
out-of-sample temperatures
üDoes not conserve energy

Rasp et al. (2018) PNAS; Beucleret al. et al. (2022). Phys Rev Letters
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¢ǊǳǎǘΣ ƛƴǘŜǊǇǊŜǘŀōƛƭƛǘȅΣ ƎŜƴŜǊŀƭƛȊŀǘƛƻƴ
/ƘŀƭƭŜƴƎŜ мΥ DŜƴŜǊŀƭƛȊŀǘƛƻƴ

ÅChallenge: out-of-sample, out-of-distribution prediction/sampling bias
ÅSolution: embed physical invariances/equivariance along Lie groups in ML 

(e.g., dimensionless numbers or rotational equivariance to collapse distributions)

BeuclerΣ tǊƛǘŎƘŀǊŘΣΧΣ DŜƴǘƛƴŜΦΣ нлно ƛƴ ǊŜǾƛǎƛƻƴ Ϫ {Ŏƛ !ŘǾŀƴŎŜǎΣ /ƻƴƴƻƭƭȅΣ ¸ǳΣ DŜƴǘƛƴŜΣ нлно ǎǳōƳƛǘǘŜŘ



57

Trust, interpretability, generalization
Challenge 2: Trust + interpretability

ÅChallenge: cross-correlations can fool ML
ÅSolution: merge causal discovery with ML
Ąmore interpretable, more trustworthy

Iglesiaz-Suarez, Eyring and Gentine., submitted

NN (Rasp et al., 2018)

hbҐ
ср

IN=

94 Hidden layers
Number = 9
Χ

Causal-NNs

IN=cau

sal Hidden layers
Number = 9
Χ

Oj
(N=6

5)

Drop connections based on 
causality: a very sparse NN
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Causality: going beyond correlations

Iglesiaz-Suarez et al., submitted

Online global simulations



Why ETH

Å ICON ongoing work
ÅAligned vision on high-level code and high compute (MeteoSwiss-ETH)
ÅContinued collaboration on land (MPI)
ÅStrong climate group (including impact), who would be using new model outputs
ÅStrong CS group, plus interested in climate and climate modeling
ÅKey partnership with MeteoSwiss, pioneer in the use of GPUs

A realistic Earthôs Twin 
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aƻŘŜƭ ǘǳƴƛƴƎ 

Other strategy
Use physical insights to improve (phenomenological) subgrid models

+ systematic model tuning 
(with statistical emulation for speedup)

e.g., IPSL (France), NASA GISS (US), NCAR (US), Clima(US)

Couvreuxet al. 2020 JAMES; Cleary et al 2021 J Comp Phys

High-resolution 
Simulation as truth

Goal: Estimate 
parameterization 
parameters ɸ
e.g. clouds

Sample: Coarse-
resolution model MCMC 
on ɸ

Emulator on ɸ

Calibrate ɸ



CǊƻƳ ŎƭƛƳŀǘŜ ƳƻŘŜƭǎ ǘƻ 9ŀǊǘƘ ǎȅǎǘŜƳ ƳƻŘŜƭǎ

Simple climate models have evolved into complex Earth System models 
to answer many questions (not just climate projections)

+ resolution increase

See also 
¢ŀǇƛƻΩǎand 
wŀŦŦŀŜƭŜΩǎ ǘŀƭƪ
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Caveat: parameterizations can have large structural errors

Å Parameter tuning might be impossible

Å Structural errors dominate many processes
Ą traditional data assimilation may not be feasible for climate

Global Cloud Cover values 

for CERES >~ 67%

for ICON-aes-1.3 ~63.5%, 

for ICON-A <62 %

.ƻƴƴŜǘΣ 9ȅǊƛƴƎΣ DŜƴǘƛƴŜ Ŝǘ ŀƭΦΣ ǎǳōƳƛǘǘŜŘ

observations

model MCMC
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Caveat: parameterizations can have large structural errors

Å Example of dry turbulence with state-of-the-art model: 
Eddy-diffusion mass-flux model 

(ECMWF, IPSL, ClimaΧύ

Å Even the best set of parameters still has substantial deficiencies
Shamekhand  Gentine, submitted

Best fit 
coarsem
odel

IƛƎƘπ
ǊŜǎƻƭǳǘƛƻƴ 
ǘǊǳǘƘ

Vertical turbulent heat flux



Bias of averaged cloud cover (area fraction) of 3 -hourly data from 20160811 to 

20160820 

at an altitude of ~1500 m (multiplied by 100)

Cloud cover bias [%]



ὅ ὖ ὙὌȟὝ ÃὙὌ ὧ ὙὌ
ρ

ὧή ὧή ‐

The data -driven analytical PySR equation

Abbreviated form:



ÅFrom weather to climate

Bhouriet al., 2022 arxiv; Gelbrecht et al. 2022 arxiv; Shen, Gentine et al, 2023 Nat Comm

Unify Neural 
Networks and 

Physical models



But adaptation requires:

- Broadly and easily accessible climate projection information
(outreach, not covered today)

67
Flood Fort Lauderdale 2023, Extreme heatwave in India and Spain (April 2023), Canadian wildfire smoke NYC (June 2023)

Current gap: Climate Adaptation is Needed 
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Intermission 1: 
Advances in Machine Learning: backpropagation

Å Backpropagation
Å /ƘŀƛƴΩǎ ǊǳƭŜ

Å Efficient computation of gradients is key (analytical or automatic differentiation)

6.S191 Introduction to Deep Learning

introtodeeplearning.com
1/28/19

Computing Gradients: Backpropagation

Repeat this for every weight in the network using gradients from later layers
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Intermission 2: 
Advances in Machine Learning: automatic differentiation

Å What is automatic differentiation?

Å Propagate ʁ differential throughout code f(x+ ʁ)
ǿƛǘƘ ǇǊƻǇŜǊǘȅΥ ʶ2=0

Å Taylor series: 
f(x+ ʁ ) = f(x) + ʁŦΩόȄύ Ҍ ʶ2κн ŦΩΩόȄύ Ҍhόʶ2) 

Efficient computation of gradients ~ almost free

Å Used in many modern ML toolboxes: 
Pytorch, JAX or modern computing languages: Julia

0
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5ƛŦŦŜǊŜƴǘƛŀōƭŜ ŎƻŘŜǎ ǳƴƛŦȅ ǇƘȅǎƛŎŀƭ ŀƴŘ ƳŀŎƘƛƴŜ ƭŜŀǊƴƛƴƎ ƳƻŘŜƭǎ

Å Dependence of neural network weights, physical parameters or initial conditions is the 
same!

6.S191 Introduction to Deep Learning

introtodeeplearning.com
1/28/19

Computing Gradients: Backpropagation

Repeat this for every weight in the network using gradients from later layers

NN weight, 

initial 
condition 
(x0), 

physical 
parameter 

ɗ



Differentiable model

Google team, 2023 Arxic
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{ŎƛŜƴǘƛŦƛŎ ŘƛǎŎƻǾŜǊȅΥ ƭŀǘŜƴǘ ƳƻŘŜƭǎ

ÅExample to dry atmospheric turbulence using ML: 
latent representation of turbulence

Shamekhand Gentine 2023 submitted
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Latent model for dry atmospheric turbulence

ÅGreat at prediction

ÅCan be used for understanding(2D only)

Shamekhand Gentine 2023 submitted

Sheared

/ƻƴǾŜŎǘƛǾŜ

Shear:Diffusive Convective: Non-diffusive, not  a mass flux (downward motion is important)



Supplementary: ML-accelerated dynamical core

There are now methods to also accelerate PDE resolution (here JAX-based again)
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Introduction: similarities between data assimilation and ML

Talagrandand Courtier QJRMS1987

Å 5ŀǘŀ ŀǎǎƛƳƛƭŀǘƛƻƴ 

Å hōƧŜŎǘƛǾŜΥ ŦƛƴŘ ǎǘŀǘŜǘƘŀǘ ƳƛƴƛƳƛȊŜǎ ŀ Ŏƻǎǘ ŦǳƴŎǘƛƻƴ WόȄύ

Å о5 ±ŀǊ

п5 ±ŀǊ

2 2

2 2
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Introduction: similarities between data assimilation and ML

Evensenet al. IEEE 2009

Å 5ŀǘŀ ŀǎǎƛƳƛƭŀǘƛƻƴ 

Å 9ȄǘŜƴǎƛƻƴ ǘƻ ǳǇŘŀǘŜ ǇŀǊŀƳŜǘŜǊǎ

Å hōƧŜŎǘƛǾŜΥ ŦƛƴŘ ǎǘŀǘŜҌ ǇŀǊŀƳŜǘŜǊǎ ǘƘŀǘ ƳƛƴƛƳƛȊŜ ŀ Ŏƻǎǘ ŦǳƴŎǘƛƻƴ WόȄύ

Å /ŀǾŜŀǘΥ ǳƴŘŜǊƭȅƛƴƎ ŘȅƴŀƳƛŎǎ ƛǎ ƳƻŘŜƭŜŘΥ 

.ǳǘ ƻƴƭȅ ŀƴ ŀƴǎŀǘȊƻŦ ǘƘŜ ǿƻǊƭŘ

CƻǊ ǿŜŀǘƘŜǊΥ ŜǾŜƴ ŀ ŘŜŦƛŎƛŜƴǘ ƳƻŘŜƭ Ŏŀƴ ǿƻǊƪ ǿŜƭƭ ōŜŎŀǳǎŜ ƻŦ ŦǊŜǉǳŜƴǘ ŀǎǎƛƳƛƭŀǘƛƻƴ
CƻǊ ŎƭƛƳŀǘŜΥ Ŏŀƴƴƻǘ ƘŀǾŜ ŀ ŘŜŦƛŎƛŜƴǘ ƳƻŘŜƭҌ5!ČŘƛǾŜǊƎƛƴƎ

2 2 2
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Introduction: similarities between data assimilation and ML

Farchiet al., 2021 J Comp Sci; Cheng et al. 2023 IEE/CAA

Å Machine learning

Å Objective: find (neural network) parametersp that minimize a cost function J(p;x)

Å Parameters are estimated over a set {xi}

Å Clear similarities with Data Assimilation (DA)

Å Caveats: no observational errors + assumes directobservations

2



ÅDraw inspiration from ML
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