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Towards Reliable
Hybrid AI-Climate Modeling
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Image credits: Climate Modeling Alliance
Mooers et al. (2021); Eyring et al. (2024)
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Atmospheric Physics + AI

Image Sources: Adhithya Sandeep, John Lund, Cal. Dep. Wat. Res.

Environmental 
Data Science

Earth System Modeling
(Parameterization)

Extreme Weather Events
Forecasting, 

Post-Processing,
Downscaling

Physics-Guided ML

Data-Driven Discovery
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Machine Learning = Learning task from data without being 
explicitly programmed for task

Neural Network = Non-linear regression tool

High-dimensional 
Inputs x

High-dimensional 
Outputs y

Image source: Kathuria (Paperspace)
Lots of data



Largest uncertainties in long-term atmospheric 
projections linked to subgrid cloud processes



Processes that are not explicitly resolved by Earth 
System models must be parameterized

Schematic source: ECMWF
References: Humphrey et al. (2008), Mass et al. (2002), Zelinka et al. (2020), Boucher et al. (2014), Sherwood et al. (2014), Gentine et al. (2020)

RealityApprox

Parameterization



We can machine learn a parameterization from data 
→ emulation of observations and/or models

References: Gentine et al. (2020), Bretherton (schematic), Arakawa & Schubert (1974), Emanuel (1999) 

Grid-scale 
information

ML 
parameterization

Target 
process

Traditional parameterizations



Video source: Global Storm-Resolving and Large-Domain Large-Eddy Simulations with ICON LEM. Deutsches Klimarechenzentrum
Image source: Pierre Gentine (LEAP)

?



Coarse-Graining

Coarse graining enables learning the aggregate effects of subgrid clouds 
and turbulence, too costly to simulate in routine climate projections

Video source: 
P. Gentine (LEAP)



Neural Networks can emulate subgrid tendencies with 
high accuracy in realistic geography configurations 

Video source: 
Griffin Mooers (MIT)

Article: 
Mooers et al. (2021)



Data-Driven Parameterizations are flourishing…

See: Christopoulos et al. (2024), Kochkov et al. (2024), Yu et al. (2023, 2024)



Data-Driven Parameterizations are flourishing and 
Hybrid AI-climate modeling is within grasp…

See: Eyring et al. (2024)

Question:

Why are hybrid 
AI-climate models

not routine 
by now?





Resource for Python-FORTRAN coupling:
https://github.com/TRACCS-COMPACT/hybrid_physics_AI_awesome_list/ 

https://github.com/TRACCS-COMPACT/hybrid_physics_AI_awesome_list/


Review on ML for regional climate downscaling
https://journals.ametsoc.org/view/journals/aies/3/2/AIES-D-23-0066.1.xml 

https://journals.ametsoc.org/view/journals/aies/3/2/AIES-D-23-0066.1.xml


…but remain under-used in climate science

Subgrid-Scale Thermodynamics 
Parameterization

(Beucler et al., 2024)

Cloud Fraction 
Parameterization

(Grundner et al., 2024)



Data-Driven Discovery

Added value of ML measurable…

…but often challenging to explain



Data-Driven Discovery

Added value of ML measurable…

…but often challenging to explain Source: Bordoni et al. (2025), Bony et al. (2013); 
See: Jeevanjee et al. (2017), Balaji (2022), ORNL (C. Jones, 2018)



Data-Driven Discovery

Added value of ML measurable…

…but often challenging to explain Source: Bordoni et al. (2025), Bony et al. (2013); 
See: Jeevanjee et al. (2017), Balaji (2022), ORNL (C. Jones, 2018)

System 
Complexity

Model Simplicity



Data-Driven Discovery

1. Pareto-optimal model hierarchies

2. Knowledge distillation

3. Challenges

Source: Bony et al. (2013); See: Jeevanjee et al. (2017), 
Balaji (2022), ORNL (C. Jones, 2018)

System 
Complexity

Model Simplicity



Model Complexity

Model 
Error

Idea: Work in a well-defined error-complexity plane



See: Censor (1977), Mietinnen (1999)

Pareto Front:

“When selecting a model from 
the Pareto front, switching to a 
different model means 
sacrificing the quality of at 
least one evaluation metric.”
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Pareto Front:

“When selecting a model from 
the Pareto front, switching to a 
different model means 
sacrificing the quality of at 
least one evaluation metric.”



Data-Driven Discovery



Data-Driven Discovery

Distillable value:

1) Functional 
representation
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2) Feature assimilation



Data-Driven Discovery

Distillable value:

1) Functional 
representation

2) Feature assimilation

3) Spatial connectivity



Data-Driven Discovery

Distillable value:

1) Functional 
representation

2) Feature assimilation

3) Spatial connectivity

4) Temporal 
connectivity



See: Censor (1977), Mietinnen (1999)



See: Censor (1977), Mietinnen (1999)



Data-Driven Discovery

Cloud cover
Rad/Tropical precipitation

1. Pareto-optimal model hierarchies

2. Knowledge distillation

3. Challenges



Cloud cover parameterization maps the grid-scale 
environment to the fraction occupied by clouds

Source: Grundner, Beucler et al. (2022), Giorgetta et al. (2022), Stevens et al. (2019)

Motivation: Reducing cloud-related biases via storm-resolving simulations
Data: 2.5km-res, 59-layer, global storm-resolving ICON runs (DYAMOND) 

Original Cloud Cover 80km-res “High-fidelity” Cl. Cov.

Coarse 
Graining



80km-res Coarse Environment 80km-res “High-fidelity” Cl. Cov.

Goal

Cloud cover parameterization maps the grid-scale 
environment to the fraction occupied by clouds



Movie from: Monsoon IV (Olbinski, 2017)



Source: Beucler et al. (2024)



Neural Network 
Estimate

Neural Nets achieve root-mean squared errors < 7%

Reference
(Coarse-Grained 
High-resolution 
simulation)

Source: Grundner, Beucler et al. (2022)



Source: Beucler et al. (2024)



And guide the discovery of new equations for cloud cover
Example of transparent machine learning…

Source: Grundner, Beucler et al. (2024); Video source: PySR (2025)



Unexpected discovery: The faster the subgrid distribution tends → 0, 
the more sensitive cloud cover is to cloud water concentration

≠

Source: Grundner et al. (2024), 2013 Pearson Ed. 



Source: Beucler et al. (2024)



Example of transparent ML that reduces biases of the resulting 
atmospheric simulation (below: outgoing TOA LW fluxes)

Source: Grundner, Beucler, … & Eyring (Submitted, Preprint coming soon)



See: Censor (1977), Mietinnen (1999)



Group activity:
1) Form groups of approximately 5 people.
2) For 15 minutes, discuss and propose equations or conceptual solutions to:
- How can we make hybrid climate–AI models more reliable for climate change 
projections? Think of the key outcomes we ultimately care about?
- How can AI help advance our understanding of the climate system?
Next 15 min: Each group presents a 1-minute summary of their ideas on the board.





…but remain under-used in climate science

Subgrid-Scale Thermodynamics 
Parameterization

(Beucler et al., 2024)

Cloud Fraction 
Parameterization

(Grundner et al., 2024)



Improving the representation of 
subgrid-scale thermodynamics in CAM

Image source: e3sm.org, Model source: Khairoutdinov et al. (2004)

Setup: Super-Parameterized Community Atmosphere Model v3.0

Once trained, 
neural networks 
accelerate the 
simulation 20x



Insolation

Temperature

Specific
Humidity

Surface 
Enthalpy Fluxes

Subgrid
Moistening

Subgrid
Heating

Radiative 
Fluxes



See: Beucler et al. (2020)

Daily-mean Tropical prediction in reference climate 

Problem: Neural Nets often fail to generalize out-of-distribution

Convective moistening (W m-2)



See: Beucler et al. (2020)

Daily-mean Tropical prediction in (+4K) warming experiment 

Problem: Neural Nets often fail to generalize out-of-distribution

Convective moistening (W m-2)



Image source: IT Biz Advisor

Idea: Break the model even more!



Generalization Experiment: +8K surface warming

Images: Rashevskyi Viacheslav, Sebastien Decoret

+8K

Training and Validation on
 cold simulations

Test on warm simulations



Problem: NNs fail to generalize to unseen climates
Daily-mean Tropical prediction in cold climate 



Problem: NNs fail to generalize to unseen climates
Daily-mean Tropical prediction in cold climate 



Daily-mean Tropical prediction in warm climate 



Daily-mean Tropical prediction in warm climate 



Extrapolation Interpolation

Log. Histogram



Generalization improves dramatically!



Physically transform the data 
to convert extrapolation into interpolation

Raw Data: Not Climate-Invariant



Physically-transformed data: Climate-Invariant

Physically transform the data 
to convert extrapolation into interpolation

Idea: Uncover climate-invariant mapping from climate to convection



Climate-Invariant NNs generalization error close to
NN trained in warm climate



Problem: Physically Transforming Inputs allows 
NNs to generalize from cold to warm climate

+8K

+8K

?

See: Beucler et al. (2024)



Physically-Informed Neural Networks Generalize Better
Across Climates in Earth-like configurations

Without Rescaling With Physical Rescaling

Near-Surface Subgrid Heating

See: Beucler et al. (2024)



Physically-Informed Neural Networks Generalize Better
Across Climates in Earth-like configurations

Without Rescaling With Physical Rescaling

Mid-Tropospheric Subgrid Heating

See: Beucler et al. (2024)



Unexpected discovery: Climate-invariant NNs more local than Brute-Force NNs

Subgrid 
Moistening

Subgrid 
Heating

Buoyancy Relative
Humidity

Temperature Specific
Humidity



1) Data-driven parameterizations may not only accelerate, 
but also improve Earth System Models

2) They may lead to unexpected discoveries 

3) They benefit from domain knowledge

4) Many challenges remain unsolved…



4) Many challenges remain unsolved:
1. Stability, extrapolation behavior, and recalibration of the host model
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1. Stability, extrapolation behavior, and recalibration of the host model



ML for Earth & Env Sci (Week 8, FA2024)

68

Why bother with XAI?

68

Source: Geirhos et al. (2020) arXiv:2004.07780.



ML for Earth & Env Sci (Week 8, FA2024)
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Why bother with XAI? Because NNs take shortcuts!

69

Source: Geirhos et al. (2020) arXiv:2004.07780.



Should you blindly trust hybrid AI-climate models?

See: Brenowitz, Beucler et al. (2020)



Saliency Map
Squared Jacobian of the emulated mapping

Tailor NN interpretability techniques
 to parametrization task

Image source: flashtorch (Github) See: Paszke et al. (2017), Springenbert et al. (2015)

Deep learning libraries efficiently calculate Jacobian via automatic differentiation



Jacobian reveals linear response of convection

See: Kuang (2018, 2007), Herman and Kuang (2013), Beucler et al. (2018)
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See: Kuang (2018, 2007), Herman and Kuang (2013), Beucler et al. (2018)

Local anomalies 
are removed

And redistributed 
in lower 
atmosphere
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Jacobian reveals linear response of convection



See: Kuang (2018, 2007), Herman and Kuang (2013), Beucler et al. (2018)

Tuned NN Standard NN
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Challenge: Offline & online objectives often misaligned in hybrid ESMs

See: Brenowitz, Beucler et al. (2020)



Derivations in Brenowitz et al. (2020, JAS)



Coupling Linear Response Function to 
Gravity Waves reveals the unstable NN offline

See: Kuang (2018), Brenowitz, Beucler et al. (2020)

Spurious unstable 
propagating modes

Stable NN Unstable NN
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Stability diagram helped stabilize NNs offline

Super
Parametrized

Global
Cloud-

Resolving

“Regularize” Inputs
by adding 

Gaussian noise

Remove
upper-atmospheric

Inputs



Super
Parametrized

Global
Cloud-

Resolving

“Regularize” Inputs
by adding 

Gaussian noise

Remove
upper-atmospheric

Inputs

Both stabilized NN ran without crashing for 1month+ 
when coupled to climate models 



4) Many challenges remain unsolved:
1. Stability, extrapolation behavior, and recalibration of the host model
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1. Stability, extrapolation behavior, and recalibration of the host model



Offline Learning = Best fit given the collected data
Online Learning = Integrating dynamical model during training

Figure source: Frézat et al. (2022)



Challenge: Offline & online objectives often misaligned in hybrid ESMs

Source: Brenowitz et al. (2020)



Challenge: Offline & online objectives often misaligned in hybrid ESMs

Sources: Ott et al. (2020)



Challenge: Offline & online objectives often misaligned in hybrid ESMs

Source: Lin et al. (2024)



4) Many challenges remain unsolved:
1. Stability, extrapolation behavior, and recalibration of the host model
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Strategy: Machine Learn Parameters of Physical Models

87

See: Brajard et al. (2021), ECMWF Fact sheets; Image Source: CliMA

Parameter estimation/calibration problem

Subfield of data assimilation = Optimal 
state estimation given real-time data
See ECMWF resources on 4D-Var

ML helps maximize the likelihood

Likelihood
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Learn Parameters of Physical Models
ML-based frameworks: CES & ESEm

88

See: Cleary et al. (2021), Howland et al. (2022), Watson-Parris et al. (2021)



Ensemble Kalman Inversion = Gradient-free, data-assimilation technique
Inverse problem framing: Direct learning from climate statistics

See: Christopoulos et al. (2024); Lopez-Gomez et al. (2022)



Advantages: Guaranteed stability once trained, +4K generalization
Challenges: Cost, instability and host model issues during training 

See: Christopoulos et al. (2024)



4) Many challenges remain unsolved:
1. Stability, extrapolation behavior, and recalibration of the host model
2. Best way to incorporate causality? 



Can Causal Discovery Improve Parameterizations?

Source: Runge et al. (2019), See: Kretschmer et al. (2016), Runge et al. (2019), Spirtes & Glymour (1991)



Causal feature selection = Eliminating non-causal predictors

See: Geiger et al. (1990), Pena et al. (2007), Gao and Ji (2017); Image source: Res 



Causal feature selection improves the 
robustness & stability of hybrid climate-AI simulations

See: Iglesias-Suarez et al. (2024) 



4) Many challenges remain unsolved:
1. Stability, extrapolation behavior, and recalibration of the host model
2. Best way to incorporate causality?
3. Best way to incorporate and evaluate stochasticity?  
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When given an input, generative models predict 
distributions of outputs rather than a single output vector

96

Uncertainty Quantification Stochastic Modeling

Abdar et 
al. (2021)
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In practice, there are many ways of adding UQ!

97

Haynes et al. (2023)
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In practice, there are many ways of adding UQ!

98

Haynes et al. (2023).
Kujawska et al. (2021)



ICTP25: Hybrid AI-Climate Modeling
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MC-Dropout randomly drops neural connections
(Training) Regularization & (Test time) UQ
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Spread-Skill Plot and CRPS*
evaluate the generated distribution
*(Continuous Ranked Prob. Score)

100
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1) Generative Adversarial Nets pit a generator (fed noise) 
against a discriminator (fed the fake or real images)

101

Géron textbook, Wikipedia (GAN), 
Bodla et al. (2018)
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2) Diffusion Probabilistic Models smoothly perturb data by adding noise, 
then reverse this process to generate new data from noise.

102

Yang et al. (2022)
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3) Variational 
Autoencoders 

probabilistically 
encode/decode 
data from latent 
representations

103
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Géron textbook, Behrens et al. (2022)

Latent manifold or 
“Latent space”
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Latent manifolds can be 
used for e.g., 

scientific analysis and 
semi-supervised learning

105



4) Many challenges remain unsolved:
1. Stability, extrapolation behavior, and recalibration of the host model
2. Best way to incorporate causality?
3. Best way to incorporate and evaluate stochasticity?  
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Figure: Behrens 
et al. (2025)



Fig. source: Behrens et al. (2025), See also: Guillaumin & Zanna (2021), Mansfield & Sheshadri (2024), Schneider et al. (2021)

ANN ensembles and latent space 
perturbations lead to well-calibrated 
uncertainty offline



4) Many challenges remain unsolved:
1. Stability, extrapolation behavior, and recalibration of the host model
2. Best way to incorporate causality?
3. Best way to incorporate and evaluate stochasticity?
4. Grid-independence? Scale awareness? Transferability? 



At hourly timescales, convection is non-local!
How can we keep our equation simple?

Image source: Gentine, Eyring & Beucler (2020); Figure source: Beucler et al. (2024) 



Idea: 1. Learn a vertical integration kernel from data
2. Parameterize this integration kernel analytically 

See: Beucler et al. (2024, AMS Tropical Meteorology) 



Learning kernels shares analogy with neural operators

Source: https://neuraloperator.github.io/



ACE2 is a SOA climate model emulator based on 
Spherical Fourier Neural Operators



4) Many challenges remain unsolved:
1. Stability, extrapolation behavior, and recalibration of the host model
2. Best way to incorporate causality?
3. Best way to incorporate and evaluate stochasticity?
4. Grid-independence? Scale awareness? Transferability? 
5. Questioning the entire climate model formulation 

Group activity



https://github.com/tbeucler/HybridESM 

https://github.com/tbeucler/HybridESM


If you want to learn more: Lit. reviews are listed at
https://github.com/tbeucler/ML_for_Environmental_Science 

https://github.com/tbeucler/ML_for_Environmental_Science
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Hands-on exercises: 
https://wp.unil.ch/dawn/teaching/ 

117

See: Beucler et al. (2021)

Training Set

Data Generator

ML Model

Read

Feed
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Custom generator

+8K

Rescaling

https://wp.unil.ch/dawn/teaching/
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