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ICTP25: Hybrid Al-Climate Modeling
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ICTP25: Hybrid Al-Climate Modeling

explicitly programmed for task
Neural Network = Non-linear regression tool
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Processes that are not explicitly resolved by Earth
System models must be parameterized

Parameterization

Non-orographic
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Schematic source: ECMWF

References: Humphrey et al. (2008), Mass et al. (2002), Zelinka et al. (2020), Boucher et al. (2014), Sherwood et al. (2014), Gentine et al. (2020)




We can machine learn a parameterization from data
— emulation of observations and/or models

Target Traditional parameterizations
process

Grid-scale
information

parameterization

References: Gentine et al. (2020), Bretherton (schematic), Arakawa & Schubert (1974), Emanuel (1999)
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Video source: Global Storm-Resolving and Large-Domain Large-Eddy Simulations with ICON LEM. Deutsches Klimarechenzentrum

Image source: Pierre Gentine (LEAP)




Coarse graining enables learning the aggregate effects of subgrid clouds
and turbulence, too costly to simulate in routine climate projections

Video source:
P. Gentine (LEAP)
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Neural Networks can emulate subgrid tendencies with
high accuracy in realistic geography configurations

Cloud- Resolvmg Model Cloud- Resolvmg Model
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Video source:
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Data-Driven Parameterizations are flourishing...

Forcings F,
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Learned physics

Repeat n times




Data-Driven Parameterizations are flourishing and
Hybrid Al-climate modeling is within grasp...
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Terrestrial carbon
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Land-atmosphere
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Land
model
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Earth system feedbacks and processes enhanced with machine learning :

Stratus
clouds

Precipitation
evaporation

Soil

— moisture NN

Hydrological
processes

Permafrost carbon-
climate feedback

Outgoing
heat energy

Incoming
solar energy

Transition from Evaporative and

solid to vapor heat energy ®o
I exchanges ”00
. Aerosols
Snow cover ?
Land surface
(topography

and reflectivity)

N Py

Vegetation

Human influences
and land uses

Lakes
and rivers

Ocean
(currents,
temperature
and salinity)

Marine
biology

v

Realistic
geography

Sea ice
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®

Ocean bottom
topography

Evaporation

Cirrus clouds

A Atmospheric model

Clouds,
convection and

Cumulus clouds

Atmosphere
(temperature, winds
and precipitation)

Stratus
clouds

microphysics

| ——1 Gravity waves

Turbulence

Phias\y

N

Salinity - heat
and momentum

Wind and
waves

/’/I Vertical

overturning

exchange

. Ocean model

Ocean dynamics
and cryosphere

Question:

Why are hybrid
Al-climate models
not routine
by now?

See: Eyring et al. (2024)
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Resource for Python-FORTRAN coupling:
https://github.com/TRACCS-COMPACT/hybrid physics Al awesome list/

3% hybrid_physics_Al_awesome_list Public ®© Unwatch 2 ~
¥ main ~ ¥ 2 Branches > 0 Tags Q Gotofile t Add file ~
& lesommer Update README.md bdddd9e - 3 weeks ago %) 29 Commits
[ CONTRIBUTING.md Update CONTRIBUTING.md last month
Y README.md Update README.md 3 weeks ago
[ bibtex.bib Update bibtex.bib 2 months ago
(00 README 7 =

Awesome list of software solutions for hybrid ESMs


https://github.com/TRACCS-COMPACT/hybrid_physics_AI_awesome_list/

Review on ML for regional climate downscaling
https://journals.ametsoc.org/view/journals/aies/3/2/AIES-D-23-0066.1.xml|
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State of the art in Al weather prediction
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GraphCastruxi 5

NOGE
Pangu T Fangi
t -

MeuralGOM
Keisler

Rasp & FourCasthNet
Thuerey  Weyn &t al WindBome

GraphCast Swiny?
S ki Sthrmdr g FUXI-ENS
. » .

Weyn et al Clare et al
Weyn et al * SFNO  GenCast Aurora
b Rirs

|
ArchesWeather

Z500 RMSE skill vs. ECMWF HRES

WeatherBench
Dueben & L]
Bauer

2023-01 2024-01

2019 2020 2021 2022 choyer@gangle.com

Date of release srasp@google.com
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Data-Driven Discovery

State of the art in Al weather prediction
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Source: Bordoni et al. (2025), Bony et al. (2013);
See: Jeevanjee et al. (2017), Balaji (2022), ORNL (C. Jones, 2018)

...but often challenging to explain



Data-Driven Discovery

' Model Simplicity
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Data-Driven Discovery

Model Simplicity . . .
1. Pareto-optimal model hierarchies
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.
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»
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. 3. Challenges
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Source: Bony et al. (2013); See: Jeevanjee et al. (2017),
Balaji (2022), ORNL (C. Jones, 2018)



Q ldea: Work in a well-defined error-complexity plane Q
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Other Undesirable Properties: Physical Inconsistency, etc.
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Pareto Front:

“When selecting a model from
the Pareto front, switching to a
different model means
sacrificing the quality of at
least one evaluation metric.”

PFe = | Moy | 20 .. {11 C1 (M) = Ei (Mop)
3jEj (M) <&; (Mop)

See: Censor (1977), Mietinnen (1999)
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Error + 4 4

Other Undesirable Properties: Physical Inconsistency, etc.

éomplexity

Pareto Front:

“When selecting a model from
the Pareto front, switching to a
different model means
sacrificing the quality of at
least one evaluation metric.”

PFg = { Moy | BM s.t. Vi& (M) < & (Mop)
3.] 8j (M) < 8] (Mopt)

See: Censor (1977), Mietinnen (1999)
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Error + 4 4

4+ | Algorithmic
i Improvements
+ (e.g., Deep

} Learning)

éomplexity

Other Undesirable Properties: Physical Inconsistency, etc.

Pareto Front:

“When selecting a model from
the Pareto front, switching to a
different model means
sacrificing the quality of at
least one evaluation metric.”

PFg = { Moy | BM s.t. Vi& (M) < & (Mop)
3.] 8]' (M) < 8] (Mopt)

See: Censor (1977), Mietinnen (1999)

—_——



Data-Driven Discovery .



Distillable value:

1) Functional
® representation

Data
Linear Baseline
Added value: Nonlinearity

Added value: Uncertainty Quantification

Feature X



Distillable value:

P 1) Functional
) Data-Driven Discovery . re p resentat | on

X 2) Feature assimilation

Added Value:

New Feature Set

Baseline Vs
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Data-Driven Discovery

J

Added Value:
Improved

Leveraging of
Spatial Information

Distillable value:

1) Functional
representation

2) Feature assimilation

3) Spatial connectivity



Distillable value:
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2) Feature assimilation
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4) Temporal
connectivity




Target ¥

Error | N + o4 N . ++ N s Distillable value:
L + +++ -+ 4 iyt ++ 1) Functional Representation
T T ;b
+ + oA T i teni vs5
+ -+ =+ —|__|_ —+ + -+ Added value: Uncertainty Quantification <1k
S S R T U -
+ + 1 -+ + 4+ ++ -+ + + o _ o
+ Ty + T4 e A AR
_|_ —|— _|__|_ _|_ _|_ _|__|_ —|— _|_ —|— . / Feature X
+ o+ ST
T+ ++ 4T T +
+ A 2) F Assimilati
e 4+ +, o+ + ) Feature Assimilation 7
Baseline |4 | Added Value:
+ —|‘_|:|_ N _|__|‘i_ _|__|_ + 4 4 -+ }Set of 18 . };[mpm‘\:glal\{ode]
_|__|_ _|_ _|_ _|_ _|__|_—|__|_ _|_ @Wew Feature Set
™ "‘_!_ N 3) Spatial Connectivity
4+ | Algorithmic %% . — =+ :Tlr:]p:llf
. Improvements ” o Spatial nformation
_+ (e.g., Deep |
} Learning) = 4) Temporal Connectivity
v | — Training‘ — A.dd — ir?dic;tionT.

Target Y

éomplexity

Other Undesirable Properties: Physical Inconsistency, etc.




Error

Target ¥

Lt L 1 ++ L it Distillable value:
ot ++ ++++++ LT ++ 1) Functional Representation
_|_ _|_ _|__|_—|— _|__|_ _|__|_ _|__|_—|__|__|_ _|_ ° Daa ‘ ooo
+ s LB i |
_|_ _|_ _|__|_ —|— _|_ _|_ Added value: I\‘onllne‘arlty o S;.f_"/o
+ —|—_|_ ++ o + 4 -+ L _|__|_ _|:|— 1 4 _|__|_ 4 4 Added value: Uncertainty Quantification =3
g Tt R P
_|_ _|__|_ _|_ _|_ _|_ _|_ _|_ _|_ VO Feature X
I e LT |
LA S e = T S S S S
4 -+ L + T NI ++ ++ i 2) Feature Assimilation —
+ + + 4+ T g+ ++ + i Bascline " a//——[lif;ﬁ{fld\ﬂ'ﬁ,?{d
LI T [ S R e s e e
_|_ _?'j —|— l I—|_ —|— _|_ _|__|_—|— _|_ @Wew Feature Set
++
+4__|_ 4+ L + T + 3) Spatial Connectivity
++ + 4+ + == i 0
-+ 4 —+ -+ . . . i/ |/ Added Value:
+ o T + | Algorithmic # G
+ °+ =+ 1 Improvements Spatial Tnformation
+ + 4 + )
+ ++ _+ (e.g., Deep
Lt 4 ij Learning) = 4) Temporal Connectivity
+ +— e
“Distillation (e.g., Equation Discovery) | e T
éomplexity o
Other Undesirable Properties: Physical Inconsistency, etc.




Distillable value:

1) Functional Representation

o  Data

e . Linear Baseline

Added value: Nonlinearity
— . Added value: Uncertainty Quantification
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Data-Driven Discovery .
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Cloud cover parameterization maps the grid-scale
environment to the fraction occupied by clouds

Motivation: Reducing cloud-related biases via storm-resolving simulations
Data: 2.5km-res, 59-layer, global storm-resolving ICON runs (DYAMOND)

Original Cloud Cover 80km-res “High-fidelity” Cl. o »

201

Coarse
Graining

E———

05 1.0

Source: Grundner, Beucler et al. (2022), Giorgetta et al. (2022), Stevens et al. (2019)



Cloud cover parameterization maps the grid-scale
environment to the fraction occupied by clouds

80km-res Coarse Environment 80km-res “High-fidelity” Cl. Cov.

e — d
00 02 04 06 08 1.0 0O.O 0.5 1.0




Movie from: Monsoon IV (Olbinski, 2017)
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Neural Nets achieve root-mean squared errors < 7%

Neural Network
Estimate

Reference
(Coarse-Grained
High-resolution _ =
simulation)

Source: Grundner, Beucler et al. (2022)



+  Neural Network (NN) Baseline
+ NN with Sequentially Selected Features
+  Non-Local NN
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And guide the discovery of new equations for cloud cover
Example of transparent machine learning...

dRH
@ pr5R= I (RH,T) +I2(d_z)+f3(‘?€"?i)
PySR Humidity/Temperature > Condensates

Inversion

1

Source: Grundner, Beucler et al. (2024); Video source: PySR (2025)




Log-scaled Density

Unexpected discovery: The faster the subgrid distribution tends - O,
the more sensitive cloud cover is to cloud water concentration

def —1
I5(qc.qi) =

102
— 12exp(-12q))

—— 5exp(-5qc)

10°

1072

1074

0.0 0.5 1.0 1.5 2.0 0.0 0.2 0.4 0.6 0.8
Cloud Water [g/kg] Cloud Ice [g/kg]

Source: Grundner et al. (2024), 2013 Pearson Ed.



+ Discovered PySR equation
+  Discovered GP-GOMEA equation
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Example of transparent ML that reduces biases of the resulting
atmospheric simulation (below: outgoing TOA LW fluxes)

dRH
Cpysk = 71 (RH,T) +I2(d—z)+f3(qw,qf)
Humidity /Temperature ~ ” Cond;matcs
[nversion
ICON-ML - OBS (RMSE = 8.37 W/m?) ICON-A (mt.) - OBS (RMSE = 10.03 W/m?)

q%%\a e =]

: \%‘/f e ar

v/ s
m—_——

f’é@g "~

N
¥
5
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i lr/ — LN

7
o —— MMW—\Z
180°W 120°W 60°W 0° 60°E 120°E 180°E

| ,
—-51.0 -30.6 —-10.2 10.2 30.6 51.0

Source: Grundner, Beucler, ... & Eyring (Submitted, Preprint coming soon)
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Group activity:

1) Form groups of approximately 5 people.

2) For 15 minutes, discuss and propose equations or conceptual solutions to:

- How can we make hybrid climate—Al models more reliable for climate change
projections? Think of the key outcomes we ultimately care about?

- How can Al help advance our understanding of the climate system?

Next 15 min: Each group presents a 1-minute summary of their ideas on the board.
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Improving the representation of
subgrid-scale thermodynamics in CAM

Once trained,

X7 (SR neural networks

AU 7
g;;fb“\‘}‘f{h(
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76N . .
simulation 20x

Setup: Super-Parameterized Community Atmosphere Model v3.0

Image source: e3sm.org, Model source: Khairoutdinov et al. (2004)
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Problem: Neural Nets often fail to generalize out-of-distribution

L Daily-mean Tropical prediction in reference climate
() -
— th

200 | | I constralned
= e | 058-conSETALINCC
ol . .
= 400 1 m— A reitecture-constrained
7 600-
-

SO0

1000

~10 5 0 5 10 15
Convective moistening (W m) See: Beucler et al. (2020)



Problem: Neural Nets often fail to generalize out-of-distribution

IS ML
,,jo%{,ﬁ,s? Daily-mean Tropical prediction in (+4K) warming experiment
- | 1constrained
200) s | s-constrained
E A rehiitecture-constrained
= 400 m— 11D
7 600
-
=00
10010) -
—A0) —20) () 2() 40) Gl ()

Convective moistening (W m) See: Beucler et al. (2020)



ldea: Break the model even more!

Image source: IT Biz Advisor



Generalization Experiment: +8K surface warming

Training and Validation on
cold simulations

Test on warm simulations

Images: Rashevskyi Viacheslav, Sebastien Decoret



IS ML

=2 Problem: NNs fail to generalize to unseen climates

CCCCCCC

PROJEC

Daily-mean Tropical prediction in cold climate

Truth

N
-
<

Pressure (hPa)

-10 0 10 0 2 4
Moistening (W m™2) Heating (W m™2)



IS ML

Problem: NNs fail to generalize to unseen climates

Daily-mean Tropical prediction in cold climate

Brute Force
Truth

400 @

Pressure (hPa)

—-10 0 10 0 5
Moistening (W m™2) Heating (W m™2)



Pressure (hPa)

N
)
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Daily-mean Tropical prediction in warm climate

—

Truth
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Moistening (W m™2) Heating (W m™2)



Pressure (hPa)

N
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©

Daily-mean Tropical prediction in warm climate

- Brute Force
Truth

4 o x
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Specific humidity (z)

Extrapolation Interpolation

Lﬂog. Histogram log10 (Histogram)
— (Cold
6- — Warm | 0]
4 2
N 4| = Cold
— Warm
0 10 20 30 0 25 50 75 100

Specific humidity (g/kg) Relative humidity (%)



Specific humidity (z) — Relative humidity (z)

Generalization improves dramatically!

0_
- Brute Force
©
=
~ 400
=
% 000 /é
—
800
1000 | | | | | |
—200 -100 0 0 100 200 300

Moistening (W m™2) Heating (W m™2)



Physically transform the data

to convert extrapolation into interpolation

LHF

260

dTldt

—-400  —200 0 200

dqidi

wvl'

—200 =100

100

0

5 10 15

Raw Data: Not Climate-Invariant




Q Physically transform the data
to convert extrapolation into interpolation

Idea: Uncover climate-invariant mapping from climate to convection

1931V

NN

|l
-04 -0 1 500 0 200l =150 _-100 _—-50 0 ___ 50 _|=
0.0 0.5 1.0

Physically-transformed data: Climate-Invariant

dTTdr
dgldr

RH




Climate-Invariant NNs generalization error close to
NN trained in warm climate

Pressure [hPal]
o)
O
O

800

4
s
1000, — |
0 10 20
Mean Sq Err Moistening [10° W? m~]




L Problem: Physically Transforming Inputs allows

FOR

CLIMATE

e NNs-to generalize from cold to warm climate

Pressure [hPal]

0
200 i‘\ — Eﬁ] / ?{’}
N~ +8K %

AN
600
800
Jr
-t
1000 | —— | |
0 10 20

Mean Sq Err Moistening [10° W? m=] See: Beucler et al. (2024)



Physically-Informed Neural Networks Generalize Better
Across Climates in Earth-like configurations

— 1.00

Without Rescaling With Physical Rescaling

-0.75

0.50

0.25

0.00

| |

= &

I
i

=

efficient of determination R?

-0.75 8

Near-Surface Subgrid Heating ~1.00

See: Beucler et al. (2024)



Physically-Informed Neural Networks Generalize Better
Across Climates in Earth-like configurations

Without Rescaling With Physical Rescaling

| |
=R
I
i

o
f
o
=
Coefficient of determination R?

|
=
~J
i

Mid-Tropospheric Subgrid Heating -1.00

See: Beucler et al. (2024)



Unexpected discovery: Climate-invariant NNs more local than Brute-Force NNs

____________________________________________________

____________________________________________________

A

Buoyancy

Relative
Humidity

Subgrid

Moistening]

Subgrid
Heating

HAVE we
LEARNED
ANYTHING NEW

USING ML ?

A

b

=

Temperature

Specific
Humidity

|
[
SHAP Feature Importance Matrix [W m—]

-1



1) Data-driven parameterizations may not only accelerate,
but also improve Earth System Models

2) They may lead to unexpected discoveries
3) They benefit from domain knowledge

4) Many challenges remain unsolved...



4) Many challenges remain unsolved:
1. Stability, extrapolation behavior, and recalibration of the host model



o Journal of the Editorial Type: Article
Article Type: Research Article

=% Atmospheric
Interpreting and Stabilizing Machine-Learning

Sciences
Parametrizations of Convection

=: Volume 77: Issue 12 v
Noah D. Brenowitz, Tom Beucler, Michael Pritchard, and

Christopher S. Bretherton

v Sections

4) Many challenges remain unsolved:
1. Stability, extrapolation behavior, and recalibration of the host model




0°AWN i
onta-orven ML for Earth & Env Sci (Week 8, FA2024)

Why bother with XAl?

JdyNamics

Article: Super Bowl 50

Paragraph: “Peython Manning became the first quarterback
ever to lead two different teams to multiple Super Bowls. He
is also the oldest quarterback ever to play in a Super Bowl
at age 39. The past record was held by John Elway, who
led the Broncos to victory in Super Bowl XXXlIl at age 38
and is currently Denver’s Executive Vice President of Foot-
ball Operations and General Manager. Q back Jeff
Dean had a jersey number 37 in Champ v.”
Question: “What is the name of the quarterback who was
38 in Super Bowl XXXIII?"

Original Prediction: J

Prediction under adversary: Jeff Dean

Task for DNN Caption image Recognise object Recognise pneumonia Answer question

Problem Describes green Hallucinates teapot if cer-  Fails on scans from Changes answer if irrelevant
hillside as grazing sheep tain patterns are present new hospitals information is added

Source: Geirhos et al. (2020) arXiv:2004.07780.



0° AWN i
ML for Earth & Env Sci (Week 8, FA2024)

Atmospheric & Water
dyNamics

Why bother with XAl? Because NNs take shortcuts!

Article: Super Bowl 50

Paragraph: “Peython Manning became the first quarterback
ever to lead two different teams to multiple Super Bowls. He
is also the oldest quarterback ever to play in a Super Bowl
at age 39. The past record was held by John Elway, who
led the Broncos to victory in Super Bowl XXXlIl at age 38
and is currently Denver’s Executive Vice President of Foot-
ball Operations and General Manager. Quarterback Jeff
Dean had a jersey number 37 in Champ Bowl XXXIV."

Question: “What is the name of the quarterback who was
38 in Super Bowl XXXIII?"

Original Prediction: John Elway

Prediction under adversary: Jeff Dean

Task for DNN Caption image Recognise object Recognise pneumonia Answer question

Problem Describes green Hallucinates teapot if cer- Fails on scans from Changes answer if irrelevant
hillside as grazing sheep tain patterns are present new hospitals information is added

Shortcut Uses background to Uses features irrecogni- Looks at hospital token, Only looks at last sentence and
recognise primary object sable to humans not lung ignores context

Source: Geirhos et al. (2020) arXiv:2004.07780.



Should you blindly trust hybrid Al-climate models?

Time to Crash: 1.2day

(a) Near-surface Convective Moistening (b) Near-surface Convective Heating
-30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30
g/kg/day K/day

See: Brenowitz, Beucler et al. (2020)



| | Tailor NN interpretability techniques

to parametrization task /\

Saliency Map
Squared Jacobian of the emulated mapping

Deep learning libraries efficiently calculate Jacobian via automatic differentiation

def (30utput)
JdInput Inputo

Input image Gradients across RGB channels Max gradients Overlay

Image source: flashtorch (Github) See: Paszke et al. (2017), Springenbert et al. (2015)




Jacobian reveals linear response of convection

dOutput 0 (Convective Moistening) 1/day]
— , da
Olnput d (Moisture) y
101
‘© 200
j'.-C-'zloo 107 >
Q (|
> 600 ‘ =
O —100
& 8007 -
750 500 250 —-10?

Pressure (hPa)

See: Kuang (2018, 2007), Herman and Kuang (2013), Beucler et al. (2018)



Jacobian reveals linear response of convection

dOutput d (Convective Moistening)
= — 1/day]
JInput d (Moisture)
101

© 200 Local anomalies
= are removed 10°
‘5)’400 %
= 600 @ J And redistributed 0 o
2 in lower 0
w —
5 800 @ W atmosphere 10

750 500 250 —-101

Pressure (hPa)

See: Kuang (2018, 2007), Herman and Kuang (2013), Beucler et al. (2018)



Pressure (hPa)

S B N
o O O
o o O

800

Tuned NN Standard NN

101
C
[ 100 %
6
F —llC}‘*'J'l_I
750 500 250 750 500 250 —10?

Pressure (hPa) Pressure (hPa)

See: Kuang (2018, 2007), Herman and Kuang (2013), Beucler et al. (2018)



Challenge: Offline & online objectives often misaligned in hybrid ESMs

Time to Crash: 1.2day

(a) Near-surface Convective Moistening (b) Near-surface Convective Heating
-30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30
g/kg/day K/day

See: Brenowitz, Beucler et al. (2020)



Derivations in Brenowitz et al. (2020, JAS)

the authors upon request.

APPENDIX

Derivation of 2D Anelastic Wave Dynamics
a. Continuous equations

The linearized hydrostatic anelastic equations in the hori-
zontal direction x and height z are given by

q,tqw=0Q;,

. r _ ! ‘

s, +5,w=0;, and
u,+¢ = —du.

The prognostic variables are humidity g, dry static energy s =
T + (g/cp)z, horizontal velocity u, and vertical velocity w.
These are assumed to be perturbations from a large-scale state
denoted by an overbar. The anelastic geopotential term is
given by ¢ = p'/py, where pp(z) is a reference density profile
specified for the full nonlinear model.

These prognostic equations are completed by assuming hy-
drostatic balance and mass conservation. Hydrostatic balance
is given by

(Aw), =aw,_ +bw +cw, ,, where
4 = Pr-1
k _ _ ;|
(Ze = 24 1) @1 ~ Zuc12) P12
p
b, = - k
(Zgr12 — Zre1p2)
1 1
X + . and
(Zee1 ~ ZPri1r (T — 24 DPr1pn
P
C

(Zer1 — 2 Zhs12 ~ Za12)Prr12

The index k ranges from 1 to N, the number of vertical grid
cells, and z 1s the height.

The rigid-lid boundary conditions are satisfied by: wy = —wy
and w, 11 = —w,. It 1s not simply wq because the vertical ve-
locity should be located at the cell center. These boundary
conditions can be implemented by modifying the matrix rep-
resentation of A to satisfy

(Aw), = —aw, +bw, +cw

(AH))” = ﬂ"'l"lr'”_.l + bnl’i)" B (‘ln'wn

E

at the lower and upper boundaries.



Growth Rate (1/day)

Coupling Linear Response Function to
Gravity Waves reveals the unstable NN offline

Skabés] NN - iatadbd ed\N\N

100

Spurious unstable
propagating modes

200

300

500

1000
10000

2
0

-20 0 20 =20
Phase Speed (m/s)

20

See: Kuang (2018), Brenowitz, Beucler et al. (2020)



Stability diagram helped stabilize NNs offline

Super
Para metrized

Global
Cloud-
Resolvmg,

-20 0 20
Phase speed (m/s)

“Regularize” Inputs
by adding
Gaussian noise

Remove

upper-atmospheric |

Inputs

100

>

-20 0 20
Phase speed (m/s)

=100 100



Both stabilized NN ran without crashing for Imonth+
when coupled to climate models

“Regularize” Inputs
by adding
Gaussian noise

Super
Parametrized

-20 0 20 -20 0 20
Phase speed (m/s) Phase speed (m/s)
Remove
Global . heric -
° ° U er-atimos eric
Cloud- PP P
. 1 ) . Inputs
Resolving | "'t : 4‘.«-. 2 .
LA ~100 0 100




statistical Methodology, 2024, 00, 1-25 SOCIETY Series B

ournal of the Royal Statistical Society Series B: 'ROYAL Journal of the Statistics Society e Progression: an extrapo ation principie 1or regression
STATISTICAL
ttps://doi.org/10.1093/jrsssh/qkae108 oara | evience [oecsons Otatistical Methodology

Gloria Buritica

Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA Paris-Saclay, 22 place de I'’Agronc
91123 Palaiseau, France

Sebastian Engelke

Jriginal Article

ngression: extrapolation through the lens
of distributional regression

Research Institute for Statistics and Information Science, University of Geneva, Boulevard du
d’Arve 40, 1205 Geneva, Switzerland.

Journal of Advances in Modeling Earth Systems / Volume 14, Issue 9/ e2022MS003219
Xinwei Shen and Nicolai Meinshausen Research Article ~ @0pen Access @ @

seminar flir Statistik, Department of Mathematics, ETH Ziirich, Ziirich, Switzerland Correcting a 200 km Resolution Climate Model in Multiple Climates by Mac
\ddress for correspondence: Xinwei Shen, Seminar fiir Statistik, Department of Mathematics, ETH Ziirich, Rdmistrasse

01, 8092 Ziirich, Switzerland. Email: xinwei.shen@stat.math.ethz.ch Learning From 25 km Resolution Simulations

Spencer K. Clark B4, Noah D. Brenowitz, Brian Henn, Anna Kwa, Jeremy McGibbon, W. Andre Perkin
Oliver Watt-Meyer, Christopher S. Bretherton, Lucas M. Harris

First published: 02 September 2022
https://doi.org/10.1029/2022MS003219

4) Many challenges remain unsolved:
1. Stability, extrapolation behavior, and recalibration of the host model




4) Many challenges remain unsolved:
1. Stability, extrapolation behavior, and recalibration of the host model



Offline Learning = Best fit given the collected data
Online Learning = Integrating dynamical model during training

y(t) fly(t)) —— y(t+ At) -+ y(t+ NAtL) fy(t+NAt)) > y(t+ (N + 1)At)
T (y(t))/> g(¥ (1)) f:plm_.,t . flplmt / g(¥(t + NAt)) f:plm
y(t) + > y(t+At) - y(t+ NAt) + > y(t+ (N + 1)At)

\ M(F(2)]6) \ M(3(t + NAL)|6)

Figure source: Frézat et al. (2022)




Challenge: Offline & online objectives often misaligned in hybrid ESMs

a) Heating accuracy
0+

100
200
300
400
500

600

Pressure (mb)

700~

800 -
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1,000 —

T T
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R*2

b) Heating Bia

07 {H model
: — NN
100 RE
200- b) Global Average PW
307 model
300-
— Baseline

3 400- —— e NN
< 281 — RF
(1] h—-\ . .
E 500 £ , Verification
@ 600 E 26-
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700 -

24 -
800 -
900 T T T T ]
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1 0g 4Ug 0> Ue 09 hy 7 Sat 13 Mon Is
1,000 .
0201 00 01 02 03 0405 time
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Source: Brenowitz et al. (2020)



Challenge: Offline & online objectives often misaligned in hybrid ESMs

Steps (log)

0.005 0.010 0.015 0.020 0.025
Validation MSE

Sources: Ott et al. (2020)



Challenge: Offline & online objectives often misaligned in hybrid ESMs

a3p . b 39 . C3p . d 39 v
standard (141) standard (141) standard (141) standard (141)
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Source: Lin et al. (2024)



ystems / Volume 16

Research Article @ OpenAccess () @)

Online Learning of Entrainment Closures in a Hybrid Machine Learning

Parameterization
Costa Christopoulos B, Ignacio Lopez-Gomez, Tom Beucler, Yair Cohen, Charles Kawczynski
Oliver R. A. Dunbar, Tapio Schneider

First published: 14 November 2024
https://doi.org/10.1029/2024MS004485

4) Many challenges remain unsolved:
1. Stability, extrapolation behavior, and recalibration of the host model



0°AWN ”

U, ICTP25: Hyb rid Al-Climate Modelin g
Strategy: Machine Learn Parameters of Physical Models
Observations . . . .
- Parameter estimation/calibration problem

Subfield of data assimilation = Optimal
state estimation given real-time data
See ECMWEF resources on 4D-Var

p (Parameters|Obs)

o

hysical
P

.
RO
L >c" Lot

ML helps maximize the likelihood

Numerical

Models

See: Brajard et al. (2021), ECMWEF Fact sheets; Image Source: CliMA




0°AWN *

ICTP25: Hybrid Al-Climate Modeling

Atmospheric & Water
dyNamics

Learn Parameters of Physical Models
ML-based frameworks: CES & ESEm

Calibrate Emulate Sample 6
‘ =G(9) J”?T—‘ G () mg(ﬂj—‘ y =G40 (0) +n(0) \

B5
3
EKI/EKS GP MCMC =4
<>
Validation data 0.041 -%; 3
2
Model data Collocatlon rainin ] Fo¥] 2
Model data’ — ) -
¢ ® . . . 2 o° Emulatlon Valldatlon O 0.00 1
.Observed data
® e
°s. ~0.02] 060 065 070 075 0.80
Relative humidity 6, (%)
|||. ~0.044 i
Inference/ Calibration 0 1000 2000 3000 4000 0
\ J\ | Cumulative CO; (GtCO,)

cis ESEm See: Cleary et al. (2021), Howland et al. (2022), Watson-Parris et al. (2021)



Ensemble Kalman Inversion = Gradient-free, data-assimilation technique
Inverse problem framing: Direct learning from climate statistics

mesmmsmmsnnan . Tlme -mean
. ; Hybrld EDMF I Statistics I

2 il _ _
lllllllllllll - d(f)allpt;‘]u]}) _ d(-”ﬂupwu]}{ﬁup) +pa [Fqb qu} ] +. -lllllllI= I < I
------------- — upl="Feny up =
finitial § . v v Time- } |
sConditionss : Functional Learning Targets Ug?lt"gi_’l <
dle 3

— ' T TR N P N
£ Forcings D = y;F(11,0,,,) . I
EsssEmsmmnmms F = {L{”r€g= "\,l"\."} I .

— — il

GCM
I_mE"mEﬂn

Large Eddy Simulation Statistics

I
I
I
I
I
wd

See: Christopoulos et al. (2024); Lopez-Gomez et al. (2022)



Advantages: Guaranteed stability once trained, +4K generalization
Challenges: Cost, instability and host model issues during training

AMIP Training AMIP4K Validation - 5 cases

b 15.0
- EDMF-Linreg
12.5 1
- EDMF-NN
10.0 - ---- Cohen et al., 2020

7.5+

5.0 + =

2.5

0.0 . . . . 0.0

d 1.0

0.8 1

0.6 Pommmm e e e e e e e e e e e
0.4

0.2 1

le—4

0.0

See: Christopoulos et al. (2024)



JGR Atmospheres

Research Article (3 Open Access @ ®®

Causally-Informed Deep Learning to Improve Climate

Models and Projections

Fernando Iglesias-Suarez B, Pierre Gentine, Breixo Solino-Fernandez, Tom Beucler
Michael Pritchard, Jakob Runge, Veronika Eyring

First published: 19 February 2024 | https://doi.org/10.1029/2023JD039202 | Citations: 10

4) Many challenges remain unsolved:

1. Stability, extrapolation behavior, and recalibration of the host model
2. Best way to incorporate causality?



Can Causal Discovery Improve Parameterizations?

strong auto
correlation

spurious
associations

Source: Runge et al. (2019), See: Kretschmer et al. (2016), Runge et al. (2019), Spirtes & Glymour (1991)



Causal feature selection = Eliminating non-causal predictors

strong auto
correlation

spurious
associations

See: Geiger et al. (1990), Pena et al. (2007), Gao and Ji (2017); Image source: Res




Causal feature selection improves the
robustness & stability of hybrid climate-Al simulations

. a) b) Non-causal c) |
SPCAM: Super-Parameterized (SP) | I ' Non-causalNNCAM
. neural net (NN) I
Community Atmosphere Model (CAM) I I P
| 2 2 3 '
1 & - S i3
I s & @ b !
I . @’ '@ .
I Qdedep@ l I
I I x‘t layers (9) Y‘t: NY
| (dimension N,) (scalar) | |
| ' ' :
. | . | |
ICausal Discovery, Causally-informed CausalNNCAM
CAM: Climate model SP: Storm-resolving model | PC1(PCMCI framework) neural net (NN) ' ]
(state fields: inputs) (parameterizations; outputs) s [ @ o I [
Nx=94 (number of inputs) Ny=65 (number of outputs) I & E g g
o o | e 4 2
o ..l ) @ & 9 I
| 4 '“"1 ® - ® @ °
1§ @ o '
I \r L I @Hujden@ I
. _ N causal' (y) @V Y, Ny
I causal’ (V) = {X'c4} ;2 I (varying dimentsion) (scalar) | I

See: Iglesias-Suarez et al. (2024)



4) Many challenges remain unsolved:

1. Stability, extrapolation behavior, and recalibration of the host model
2. Best way to incorporate causality?
3. Best way to incorporate and evaluate stochasticity?



0° AWN )
ot rven ICTP25: Hybrid Al-Climate Modeling

Atmospheric & Water
dyNamics

When given an input, generative models predict
distributions of outputs rather than a single output vector

A generative model is a statistical model of the joint probability distribution P(_X, Y) on given observable variable X and target variable Y:[]

Uncertainty Quantification Stochastic Modeling

Aleatoric

Abdar et
al. (2021)
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ICTP25: Hybrid Al-Climate Modeling

In practice, there are many ways of adding UQ!

Ensemble Prediction (EP) Multi-Model (MM)

Custom Loss Function

N
/

Architecture with custom output
layer adding k ensemble X
members

Haynes et al. (2023)

Y1

Y2

e
Different Initializations

b

Yn




0° AWN .
ICTP25: Hybrid Al-Climate Modeling

Atmospheric & Water

dyNamics
In practice, there are many ways of adding UQ!
Parametric Distributional Prediction (PDP) Non-Parametric Distributional Prediction (NPDP)

Architecture S Custom Loss Function m
with custom mu w 5 (e.g. Quantile Loss) d; o 2
output layer o o \ 43 E
: i = ©
SIigMma TR —» (0, © 3
_______ 2 o X 2T
X T c > > O

' c = A -
\:::::::. o O @
Custor Loss Function ' tau a 3 Architecture that avoids am E y
________ o) -
maximizing likelihood or a crossov'er (bEtVf’ee” 5}’ @)
minimizing distributional differences quantiles or bins) 9

Sinh-Arcsinh Normal Distributions

Haynes et al. (2023).
Kujawska et al. (2021)
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ICTP25: Hybrid Al-Climate Modeling

Atmospheric & Water

dyNamics

MC-Dropout randomly drops neural connections
(Training) Regularization & (Test time) UQ

4 Keras e -

Monte Carlo (MC) Dropout

Dropout layer

PyTorch
Probabilistic Loss Function
i DROPOUT
l . TensorFlow
Stochastic o -
X sample of

predictions
[probabilistic predictions]
|

Ensemble of deterministic

T weights
Dro pout Vk ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ tf.keras.layers.Dropout O -
La ers = OLI0Q
v rf§\\ Dropout
> e e o et
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e ICTP25: Hybrid Al-Climate Modeling
Spread-Skill Plot Spread-Skill Plot and CRPS*

dyNamics

4.01 ', Spread Freq apoue 1.1 pine: 7@l cvaluate the generated distribution
et Under-dispersi 2y .
3.5 el 4l  *(Continuous Ranked Prob. Score)
3.0- < CRPS for
. \ deterministic
ICIIJ) > 5 \ 1.0 model
s Below 1:1 Line: CRPS for
o 20 Over-dispersive 0.8 probabilistic
— ' (Underconfident) ~ model
% 1.5 z 06
S 0.4
1.0 / E ' == Truth (Observations)
—»~ PDP_NORM (RAT=0.77, REL=0.08) 5 i Model
0% - 7 PDP_SINH (RAT=0.76, REL=0.11) 0.2 eterministic Mode
' J/ —= EP_CRPS (RAT=0.79, REL=0.11) Probabilistic Model
) ~»~ MC_DROPS (RAT=0.36, REL=0.99) 00 ™d- —= L0 ________
0.0 ' - 1 - ‘
0 1 2 3 4 I I I I I ]
Spread (Uncertainty) Y
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ICTP25: Hybrid Al-Climate Modeling

1) Generatlve Adversarial Nets pit a generator (fed noise)

against a discriminator (fed the fake or real images)
Fake/Real

.
. ~—
B , e = SN
&5 v AR
- y Zg/,/ '\ RN
p iy o NIRRT
A Y
f R BT
\ L) b/ Ry
3 Y, ; W

[ Discriminator ]}Goal=tell fake from real

P
Fake n Real

f

Generator } Goal = trick the discriminator

Geron textbook Wlklpedla (GAN)
Bodla et al. (2018)




0° AWN
ICTP25: Hybrid Al-Climate Modeling

Atmospheric & Water
dyNamics

2) Diffusion Probabilistic Models smoothly perturb data by adding noise,
then reverse this process to generate new data from noise.

Probability of perturbed data |

» Code examples / Generative Deep Learning / Denoising Diffusion Implicit Models . ‘
C)star 57,559 ’
About Keras Denoising Diffusion Implicit Models ‘ u s e ' S
Getting started Author: Andras Béres /
Developer guides Date created: 2022/06/24
PEE Last modified: 2022/06/24

Keras API reference Description: Generating images of flowers with denoising diffusion implicit models. '
Viewin Colab + O GitHub source license Apache-2.0 | release v0.14.0 | Contributor Covenant | 2.0 | Yan g eta / ( 2022 )
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Latent manifolds can be Ly .-
used for e. g., L.n‘ft'b. =Y Decoder [HY |
semi-supervised learning
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Research Article  @Open Access () @)

Simulating Atmospheric Processes in Earth System Models and Quantifying
Uncertainties With Deep Learning Multi-Member and Stochastic

Parameterizations

Gunnar Behrens ¥ Tom Beucler, Fernando Iglesias-Suarez, Sungduk Yu, Pierre Gentine, Michael Pritchard
Mierk Schwabe, Veronika Eyring

First published: 13 April 2025
https://doi.org/10.1029/2024MS004272

4) Many challenges remain unsolved:

1. Stability, extrapolation behavior, and recalibration of the host model
2. Best way to incorporate causality?
3. Best way to incorporate and evaluate stochasticity?
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Stoch. / Determ.  Postprocessing step
Parameterization  for online coupling
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Fig. source: Behrens et al. (2025), See also: Guillaumin & Zanna (2021), Mansfield & Sheshadri (2024), Schneider et al. (2021)
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4) Many challenges remain unsolved:

1.

2.
3.
4

Stability, extrapolation behavior, and recalibration of the host model
Best way to incorporate causality?

Best way to incorporate and evaluate stochasticity?
Grid-independence? Scale awareness? Transferability?



At hourly timescales, convection is non-local!
How can we keep our equation simple?

—_

OhPa

10
200hPa I
- D
103hPa I 0

I—5 d4d
—-10

Image source: Gentine, Eyring & Beucler (2020); Figure source: Beucler et al. (2024)




ldea: 1. Learn a vertical integration kernel from data
2. Parameterize this integration kernel analytically

6.+ RH
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R
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0.373 R?=10.375

50000
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60000

70000
60000
90000

y=FIX @) ~F |02 k) Xm)|
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See: Beucler et al. (2024, AMS Tropical Meteorology)



Learning kernels shares analogy with neural operators

/\[euraJVOperator Install User Guide APl Examples Developer's Guide

Limitation of Fixed Discretization

_ Go PDEs are, unfortunately, hard. Instead of learning the operator, people usually discretize the physical domain

and cast the problem in finite-dimensional Euclidean space. Indeed, hundred years of effort has been made
to develop numerical solvers such as the finite element method and finite difference method.

Installing NeuralOperator

User Guide

API reference

Examples

NeuralOperator Developer’s Guide

Source: https://neuraloperator.github.io/



ACE2 is a SOA climate model emulator based on
Spherical Fourier Neural Operators

ACE2-SOM: Coupling an ML atmospheric emulator to
a slab ocean and learning the sensitivity of climate to

changed CO,

Spencer K. Clark!?, Oliver Watt-Meyer!, Anna Kwa!, Jeremy McGibbon!,
Brian Henn!, W. Andre Perkins!, Elynn Wu!, Lucas M. Harris?, and
Christopher S. Bretherton!

LI Allen Institute for Artificial Intelligence, Seattle, WA, USA
2NOAA /Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA

Key Points:

¢ The Ai2 Climate Emulator coupled to a slab ocean accurately emulates temper-
ature and precipitation CO,y sensitivity in a physics-based model

+ Inference in an out-of-sample scenario with gradually increasing CO» is also ac-
curate except for regime shifts in its stratosphere

« Abrupt 4xCOs inference reaches the correct equilibrium climate but the atmosphere
warms too fast due to energy non-conservation



Group activity

4) Many challenges remain unsolved:

Stability, extrapolation behavior, and recalibration of the host model
Best way to incorporate causality?

Best way to incorporate and evaluate stochasticity?
Grid-independence? Scale awareness? Transferability?

Questioning the entire climate model formulation &

Al N



A~ Activity
¥¢ 20 stars

(] README &8 MIT license g =

& 1watching

¢ Towards Hybrid Earth System Modeling: A Living Review ¥ 1fork

This page reviews and organizes emerging hybrid Earth System Models (ESMs), which combine Machine Learning
(ML) and physics-based components, alphabetically. Hybrid ESMs retain essential components for physical

Releases

consistency (e.g., the dynamical core) while using ML to enhance parameterizations for small-scale processes (e.g., No releases published
Create a new release

clouds). These models hold promise for improving long-term projections of Earth's physical climate and

biogeochemical cycles.

Packages
If you notice any errors, omissions, or outdated information, please feel free to submit a pull request.
Mo packages published

Author: Tom Beucler (UNIL); written in the context of AI4PEX. Publish your first package

Table of Contents

. ACE
e CAMulator
e CBRAIN

e ClimSim . .

+ Corectie https://github.com/tbeucler/HybridESM
. ﬂybriizﬂ\RP—GEM

e Hybrid CAM

e Hybrid LSM

e Hybrid SAM



https://github.com/tbeucler/HybridESM

If you want to learn more: Lit. reviews are listed at
https://github.com/tbeucler/ML for Environmental Science

O0J README 38 MIT license 7 =

Literature Reviews on Machine Learning for Environmental Science

e Stephan Rasp (Living Review): State-of-the-art in Al-based weather forecasting.

e Tom Beucler (Living Review): State-of-the-art in hybrid Earth system modeling.

e Eyring et al. (2024): Pushing the frontiers in climate modeling and analysis with machine learning.

e Beucler et al. (2021): Machine Learning for Clouds and Climate.

e Ullrich et al. (2025): Recommendations for comprehensive and independent evaluation of machine learning-based

Earth system models.

* Reichstein et al. (2019): Deep Learning and Process Understanding for Data-Driven Earth System Science.

e Lai et al. (2025): Machine Learning for Climate Physics and Simulations.

e Zhu et al. (2023): Machine Learning in Environmental Research: Common Pitfalls and Best Practices.

e Reichstein et al. (2025): Early warning of complex climate risk with integrated artificial intelligence.

e Bergen et al. (2019): Machine Learning for Data-Driven Discovery in Solid Earth Geoscience.

e Rampal et al. (2024): Enhancing Regional Climate Downscaling through Advances in Machine Learning.

e Beucler et al. (2024): Next-Generation Earth System Models: Towards Reliable Hybrid Models for Weather and
Climate Applications.

e Camps-Valls et al. (2025): Artificial intelligence for modeling and understanding extreme weather and climate

events.

e Bracco et al. (2024): Machine learning for the physics of climate.

e Eyring et al. (2024): Al-empowered next-generation multiscale climate modelling for mitigation and adaptation.

e Rolnick et al. (2019): Tackling Climate Change with Machine Learning.

e Willard et al. (2020): Integrating Physics-Based Modeling with Machine Learning: A Survey.

e Sonnewald et al. (2021): Bridging observations, theory and numerical simulation of the ocean using machine
P


https://github.com/tbeucler/ML_for_Environmental_Science
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Hands-on exercises:
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See: Beucler et al. (2021)
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