TROPA UCM

UNIVERSIDAD COMPLUTENSE MADRID

ENHANCING SEASONAL PREDICTIONS WITH MACHINE LEARNING: A GLOBAL PERSPECTIVE ON SST INFLUENCE IN EARLY WINTER

Víctor Galván Fraile, Marta Martín del Rey, Irene Polo, Belén Rodríguez Fonseca, Magdalena Alonso Balmaseda, Esteban Rodríguez Guisado, María Moreno García.

1. Introduction: Seasonal Forecast

- Sources of predictability:
 - ENSO (biggest single signal).
 - Other tropical and extratropical SST.
 - Local surface conditions.
 - Sea-ice and Stratospheric processes.

Source: Oskvig, K. et al (2020)

1. Introduction: Seasonal Forecast

Dynamical models

- Non-linear interactions from sources of predictability.
- Ensemble forecast map uncertainty
- in initial state to uncertainty in
 - outcome.
 - Model errors and biases.

Source: Johnson, S. et al (2019)

1. Introduction: Seasonal Forecast

Dynamical models

- Non-linear interactions from
- sources of predictability.
- Ensemble forecast map uncertainty
- in initial state to uncertainty in outcome.
- Model errors and biases.

Statistical models

- Works with reality instead of error-
- prone numerical models.
- Aims to extract predictable signals.
- Limited number of past cases.
- A non-stationary climate is a
- challenge.

SEAS5 (ECMWF) skill in SLP for Nov-Dec initialized in October.

Source: Johnson, S. et al (2019)

1. Introduction: El Niño-Southern Oscillation

What is ENSO?

- Air-sea coupled mode (Bjerknes feedback).
- Changes in Walker circulation.
- Atmospheric Gill response.
- Rossby waves.
- ENSO teleconnections:
 - Different pathways.
 - Non-linearities.
 - Non-stationarities.
 - Late Winter more robust.

Source: Jiménez, B. et al (2018)

1. Motivation: ENSO Europe-North Atlantic Early Winter (ND) Teleconnection

- Analyze the ND ENSO teleconnection with machine learning.
- Analyze models skill and error.
- Look for predictable signals through model attributions.

Source: Hou et al. (2023)

2. Methodology: Maximum Covariance Analysis

Finds patterns such that time expansion coefficients (which are the projections onto the patterns) have maximum covariance and the patterns are orthogonal to each other.

Finds a mapping function Φ from the predictor field onto the predictand field, which is adjusted in the training phase.

 $\widehat{Y} = \Phi * X$

Objective: Maximize the covariance during training.

2. Methodology: Deep Learning (NN4CAST)

- Types of Machine Learning:
 - Supervised learning.
 - Unsupervised learning.
 - Reinforcement learning.
- Artificial Neural Networks (NNs):
 - Linear combination of inputs.
 - Non-linear activation function.
 - Input, output and hidden layers.
 - Universal function approximator.

Objective: Minimize the mean squared error during training.

Source: Galván-Fraile, V. et al. (2024)

2. Methodology:

- NN: Finds a non-linear combination of the predictors (inputs) to make better predictions by minimizing a loss function.
- Objective: Minimize the mean squared error during training.

- MCA: Finds patterns such that time expansion coefficients (which are the projections onto the patterns) have maximum covariance and the patterns are orthogonal to each other.
- <u>Objective</u>: Maximize the covariance during training.

NN4CAST: An end-to-end deep learning application for seasonal climate forecasts

Víctor Galván Fraile¹, María Belén Rodríguez-Fonseca^{1,2}, Irene Polo¹, Marta Martín-Rey¹, and María N. Moreno-García³ ¹Group on Tropical Climate Variability and Atmospheric Teleconnections (TROPA), University Complutense of Madrid (UCM), Madrid, Spain ²Institute of Geosciences (CSIC), Madrid, Spain ³Data Mining Research Group, University of Salamanca (USAL), Salamanca, Spain **Correspondence:** Víctor Galván Fraile (vgalva01@ucm.es).

Spy4Cast v1.0: a Python Tool for statistical seasonal forecast based on Maximum Covariance Analysis

Pablo Duran-Fonseca¹ and Belén Rodríguez-Fonseca^{1,2}

¹Universidad Complutense de Madrid, Madrid, Spain ²Instituto de Geociencias IGEO, CSIC-UCM, Madrid, Spain

Correspondence: Pablo Duran-Fonseca (pdrm56@gmail.com). Belén Rodríguez-Fonseca (brfonsec@ucm.es).

2. Data:

- Predictor: Global SST anomalies in OCT. (also analyzed from previous months) [HadISST].
- Predictand: Global SLP anomalies in Nov-Dec [ERA5].
- **Time period**: 1940-2019.

Leave-one-out Cross Validation strategy.

***** Models:

- 1. MCA with 3 modes.
- 2. NN with 6 hidden layers following an encoderdecoder architecture.

3. Application: MCA prediction of ND SLP

- Highest skill in the tropics.
- Skill in the North-Atlantic.
- Higher errors due to model definition.

3. Application: **DNN** prediction of ND SLP

3. Application: Prediction of ND SLP

MCA

RMSE map

3. Application: **DNN** attributions of ND SLP

Analyze concrete predictions (1988, 1987).

- Study model attributions (Integrated Gradients).
- Discover predictable signals?

Initialization: Oct Period: 1981-2016

-0.4

North AtlanticIndex

-0.2

0.2

0.4

0.6

0.7

0.8 0.9

-0.8

-0.9

-0.7

-0.6

Initialization: Oct Period: 1981-2016

Initialization: Oct Period: 1981-2016

3. Application: MCA Model Attributions

Initialization: Oct Period: 1981-2016

- Coupled modes of covariability between
 SST and SLP anomalies.
- ENSO mode that impact in the North Atlantic region.

3. Application: NN Model Attributions

- Model attributions

 (discover predictable signals).
- Adnan et al. (2021),
 Joshi et al. (2021).

3. Application: NN Model Attributions

4. Conclusions:

- I. Statistical models' ability to capture nonstationary teleconnections.
- II. Statistically significant skill from previous winter for tropical regions
- III. Similar results compared with dynamical based model.
- IV. Model attributions point out regions of predictable signals in accordance with recent studies.

THANK YOU FOR YOUR ATTENTION!

TROPA UCM

Víctor Galván Fraile, Marta Martín del Rey, Irene Polo, Belén Rodríguez Fonseca, Magdalena Alonso Balmaseda, Esteban Rodríguez Guisado, María Moreno García.

Email direction: vgalva01@ucm.es

2. Methodology: Deep Learning (NN4CAST)

- Types of Machine Learning:
 - Supervised learning.
 - Unsupervised learning.
 - Reinforcement learning.
- Artificial Neural Networks (NNs):
 - Linear combination of inputs.
 - Non-linear activation function.
 - Input, output and hidden layers.
 - Universal function approximator.

Objective: Minimize the mean squared error during training.

Source: Galván-Fraile, V. et al. (2024)

3. Application: MCA prediction of ND SLP

- Model hyperparameters (default):
 - Number of modes = 3.

Leave-One-Out Cross-Validation method: period [1940-2019].

Initialization: Oct Period: 1981-2016

🛧 - ★ 20°N 20°S 180° 120°W 60°W 0° 60°E 120°E 180° 180° 120°W 60°W 0° 0.7 -0.2 0.4 0.9 -0.2 0.4 -1.0 -0.8 -0.6 -1.0 -0.8 -0.6

✤ NAO Index

180°

60°E

0.7

120°E

0.9

3. Application: Model Attributions

60°N

40°N'

60°E

-0.81

-1.21

Initialization: Oct Period: 1981-2016

1.21

- North Atlantic
 Index.
- Niño years composite (Niño 3.4 index).
- Model attributions

 (discover predictable signals).
- Adnan et al. (2021),
 Joshi et al. (2021).

-0.40

Composite Niños

120°W

0.00

[°C]

Composite Importances Niños EA

60°W

0.40

0.81

3. Application: Model Attributions

60°N

20°I

0°

60°E

120°E

-0.0115 -0.0077 -0.0038

Initialization: JUN Period: 1981-2016

 Niño years composite (Niño 3.4 index).

Adnan et al. (2021),
 Joshi et al. (2021).

13/05/2025

Composite Importances Niños EA

120°W

0.0038

60°W

0.0077 0.0115

0°

0.0000

[hPa]

180°

3. Application: Model Attributions

Initialization: JUN Period: 1981-2016

- North Atlantic
 Index.
- Niño years composite (Niño 3.4 index).
- Model attributions

 (discover predictable signals).
- Adnan et al. (2021),
 Joshi et al. (2021).

Composite Niñas