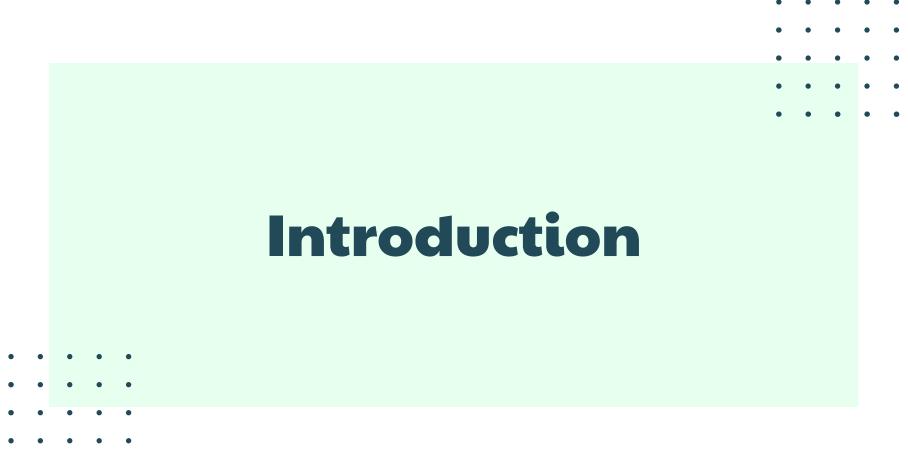


Graph neural networks for hourly precipitation projections at the convection permitting scale

Valentina Blasone

III year PhD Student in ADSAI @ AI Lab, University of Trieste valentina.blasone@phd.units.it

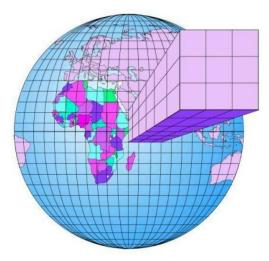
Supervisor: Luca Bortolussi Co-supervisors: Erika Coppola, Guido Sanguinetti Collaborators: Viplove Arora, Serafina Di Gioia



• • • • •

Climate Models

Solve the fluid-hydrodynamic equations in all these boxes and exchange information between them



Conservation of momentum, energy, mass and moisture:

$$\begin{split} \frac{\partial \vec{v}}{\partial t} &= -(\vec{v} \cdot \nabla)\vec{v} - \frac{1}{\rho}\nabla p - \vec{g} - 2\vec{\Omega} \times \vec{v} + \nabla \cdot \left(k_{\omega}\nabla\vec{v}\right) - \vec{F}_{d} \\ \rho c_{p} \frac{\partial T}{\partial t} &= -\rho c_{p}(\vec{v} \cdot \nabla)T - \nabla \cdot \vec{R} + \nabla \cdot \left(k_{\tau}\nabla T\right) + C + S \\ \frac{\partial \rho}{\partial t} &= -(\vec{v} \cdot \nabla)\rho - \rho(\nabla \cdot \vec{v}) \\ \frac{\partial q}{\partial t} &= -(\vec{v} \cdot \nabla)q + \nabla \cdot \left(k_{q}\nabla q\right) + S_{q} + E \end{split}$$

Equation of state:

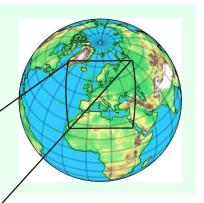
 $p = \rho R_d T$

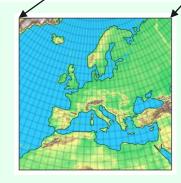
V = velocitvT = temperaturep = pressure $\rho = density$ q = specific humidityg = gravity $\Omega = rotation of Earth$ $F_d = drag \ force \ of \ Earth$ R = radiation vectorC = conductive heating $c_n = heat \ capacity, \ constant \ p$ E = evaporationS = latent heating $S_{q} = phase \ change \ source$ $k = diffusion \ coefficients$ $R_d = dry air gas constant$

GCMs and RCMs

Global Climate Models (GCMs)

Low resolution 50-250 km Global to sub-continental scale, too coarse for local impacts of global climate change





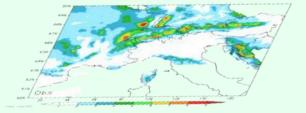
Regional Climate Models (RCMs)

High resolution 50-1km Regional scale, driven by a GCM simulation at the domain borders

- • • •
- • • •
-
 - • • •
- • • •

Convection Permitting Models (CPMs)

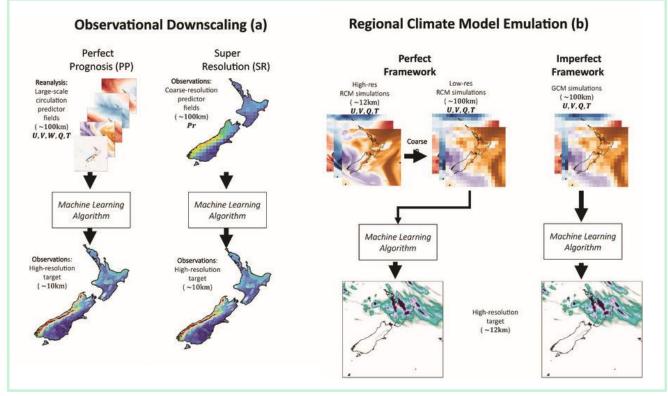
Very high resolution ≤ 3 km



Often **long climate projections** are needed, or **many simulations** are required to estimate the climate projections uncertainty

Deep learning exploits the available data and can be used for <u>observational downscaling</u> and <u>regional climate model emulation</u> in a **computationally efficient** way

Downscaling and emulation



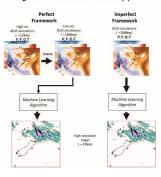
Rampal et al., 2024

Emulation: existing approaches

All emulators are <u>trained using data from climate models</u>:

- **Predictors**: upscaled large-scale variables from the same <u>RCM</u>, or driving <u>GCM</u> large-scale fields
- **Target**: <u>RCM</u> variables (temperature, precipitation, ...)

Disadvantages: learn the emulator of a specific climate model, incorporates bias of the climate model



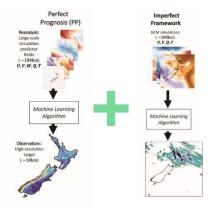
onal Climate Model Emulation (h

Emulation: our approach

Train the emulator for <u>observational downscaling</u> <u>with perfect prognosis (PP)</u>:

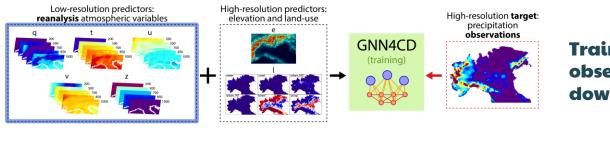
- **Predictors**: driving <u>reanalysis</u> large-scale
- Target: high-res observed variable

Then, use <u>RCM input data only during inference</u>

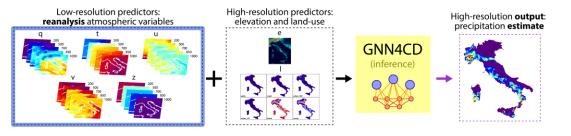


Advantages: avoid model-specificity and bias in training

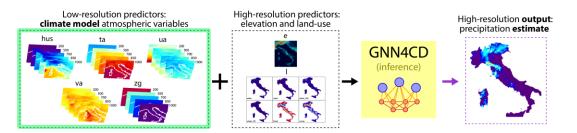
Disadvantages: more difficult problem, different type of data in learning and inference



Training: observational downscaling



Inference: observational downscaling



Inference: emulation

* GNN4CD: Graph Neural Networks for Climate Downscaling

Precipitation observational downscaling

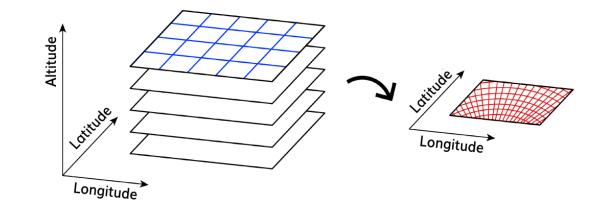
Precipitation is challenging

Severe precipitation is a <u>complex</u> phenomenon, related to convective systems with complex and non-linear airflow motion

High resolution is crucial to capture convection phenomena and correctly quantify severe precipitation and <u>extreme events</u>

Real world observational datasets are rare and often need careful preprocessing (missing data, ...)

The main task



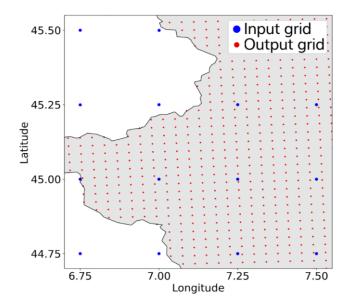
LOW-RESOLUTION ATMOSPHERIC DATA

HIGH-RESOLUTION PRECIPITATION 3 km

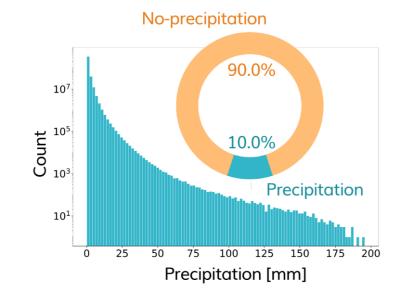
1 hour

Main research questions

How to deal with the different resolutions?



How to deal with imbalanced and skewed data?



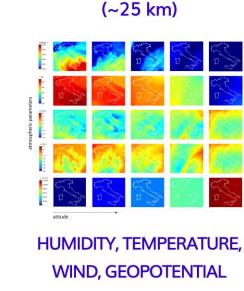
Main research questions

Transferability to other domains?

Which data

	Variable	Symbol	Unit	Pressure Levels [hPa]	Space	Time
Р	Specific humidity	q, hus	[kg kg-1]	1000; 850; 700; 500; 200	0.25°	1hr
	Temperature	t, ta	[K]	1000; 850; 700; 500; 200	0.25°	1hr
	Eastward wind	и, иа	[m/s]	1000; 850; 700; 500; 200	0.25°	1hr
	Northward wind	v, va	[m/s]	1000; 850; 700; 500; 200	0.25°	1hr
	Geopotential	z, zg	$[m^2/s^2]$	1000; 850; 700; 500; 200	0.25°	1hr
	Elevation	е	[m]	Surface	3km	-
	Land-use	l	[%]	Surface	3km	-
Т	Precipitation	pr	[mm]	Surface	3km	1hr

Which data



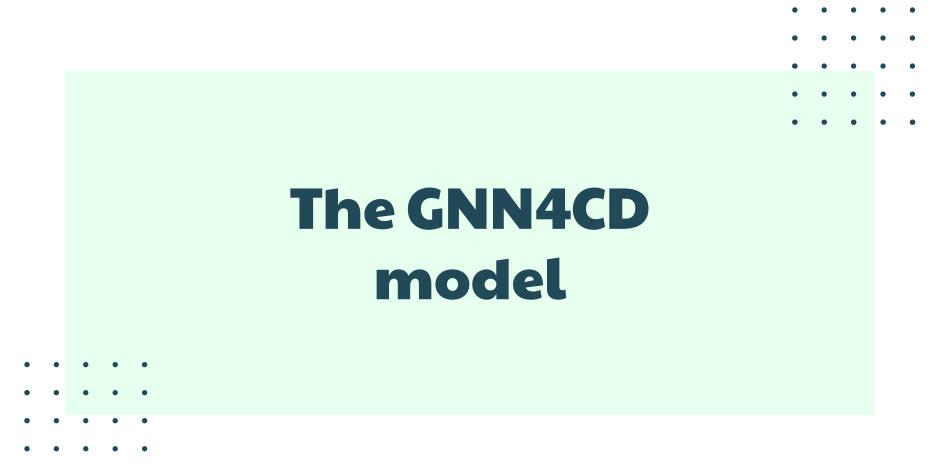
ERA5 REANALYSIS

4D: Ion, lat, altitude, time (hourly)

TOPOGRAPHIC ELEVATION GRIPHO OBSERVATIONS (3 km) (3 km) 0.6 0.2 0.4 0.8 1.0 1.2 14 1000 500 1500 2000 PRECIPITATION + LAND USE

2D: Ion, lat

3D: lon, lat, time (hourly)

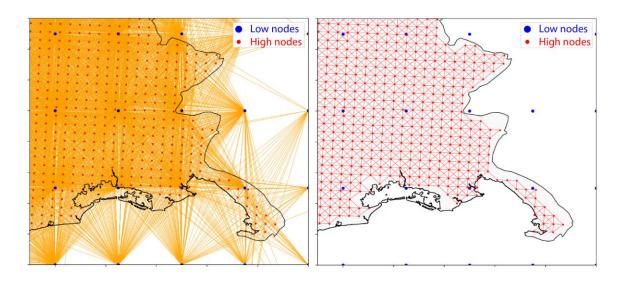


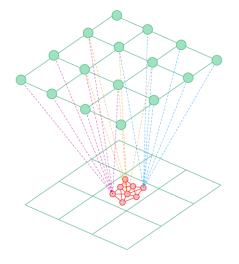
• • • • •

Graph conceptualization

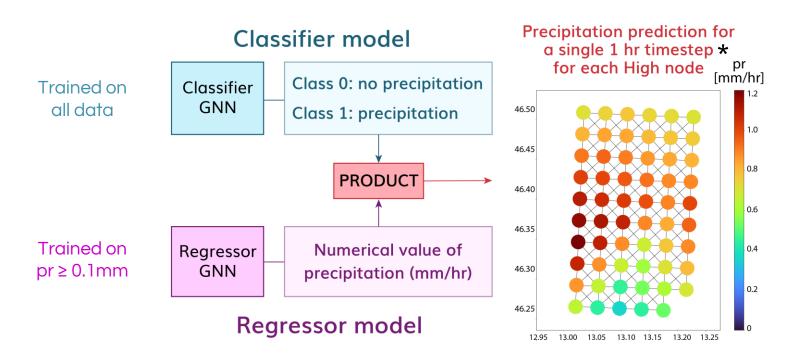
- High nodes (3 km)

Low-to-High edges
 High-within-High edges



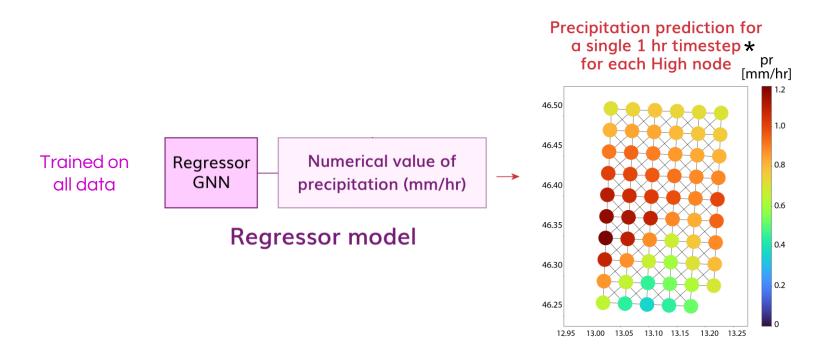


GNN4CD-RC



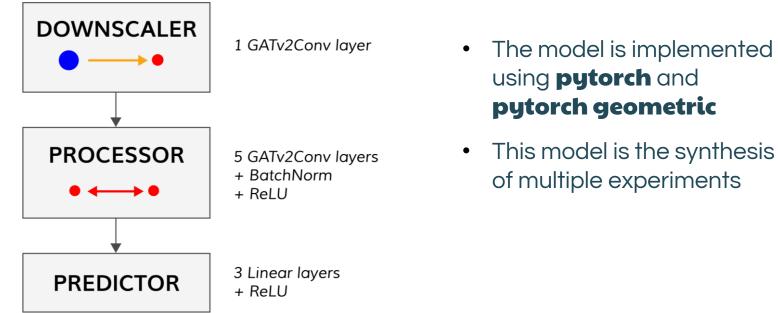
* Predictors at time $[t_{i-24}, ..., t_i]$ are used to derive the estimate at time t_i

GNN4CD-R-all

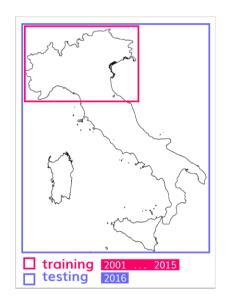


* Predictors at time $[t_{i-24}, ..., t_i]$ are used to derive the estimate at time t_i

Architecture



Training/testing



~400 Low nodes ~14000 High nodes ~1000 Low nodes

~33000 High nodes

- **MSE +** α **QMSE loss** (regressor)
- Focal loss (classifier)
- Moderately long training: 50 epochs ~24h using 4GPUs on Leonardo
- **Fast inference**: precipitation estimates for one year takes just a few minutes

Losses formulation

Quantised MSE Loss

Focal

Loss

$$QMSE = \sum_{j}^{B} \frac{1}{|\Omega_{j}|} \sum_{i \in \Omega_{j}} (y_{i} - \widehat{y_{i}})^{2}$$

B: number of bins (bins are defined over the training data domain); *j*: bin index, from 1 to *B* Ω_j : set of target indices whose values fall within bin *j* (defined dynamically over the batches) y_i : predicted value; \hat{y}_i : ground-truth target value

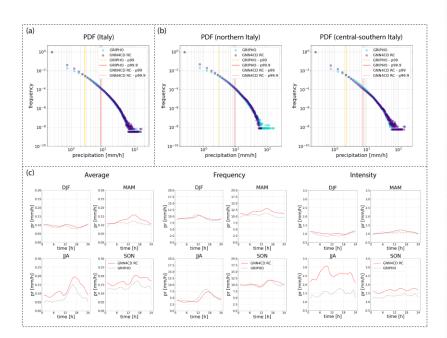
$$FL(p_t) = -\alpha_t (1 - p_t)^{\gamma} \cdot \log(p_t)$$
$$p_t = \begin{cases} p & \text{if } y = 1\\ 1 - p & \text{otherwise} \end{cases}$$

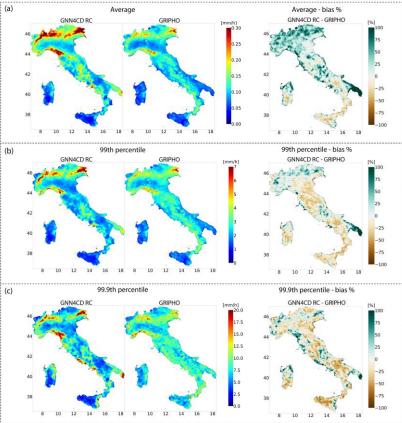
 $y \in \{0,1\}$: the ground-truth class; $p \in [0,1]$: the model estimated probability for the class with label y = 1

GNN4CD for observational downscaling

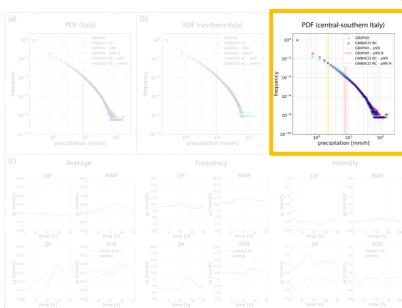
- • •
- • •
- • • •
- • • •
- • • •

Observational downscaling: RC

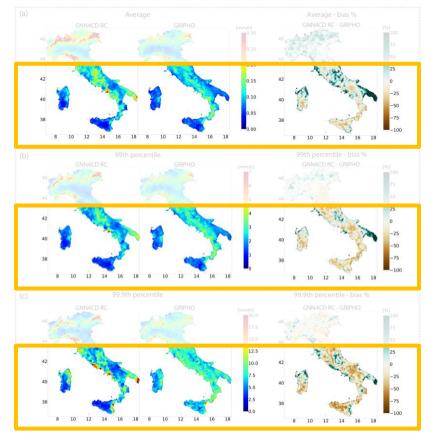




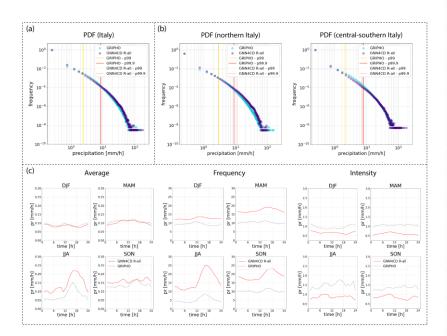
Observational downscaling: RC

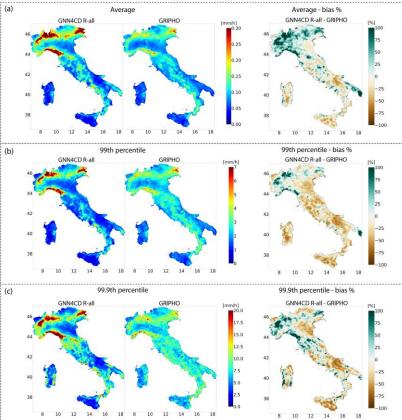


Spatial transferability

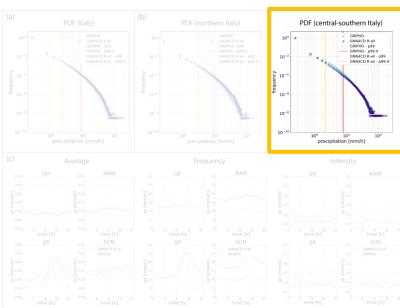


Observational downscaling: R-all

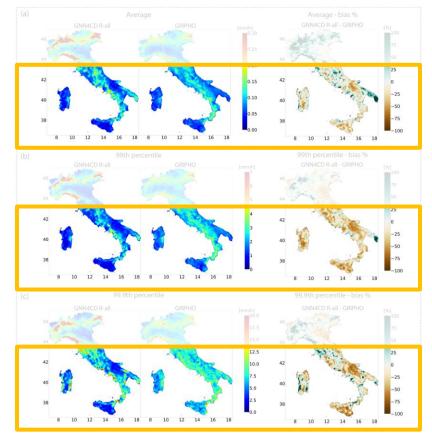




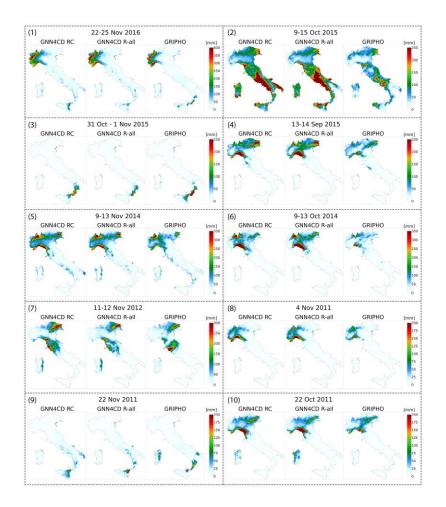
Observational downscaling: R-all



Spatial transferability



Floods: RC and R-all



Floods: RC and R-all

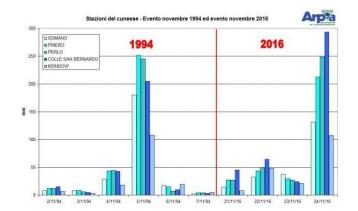


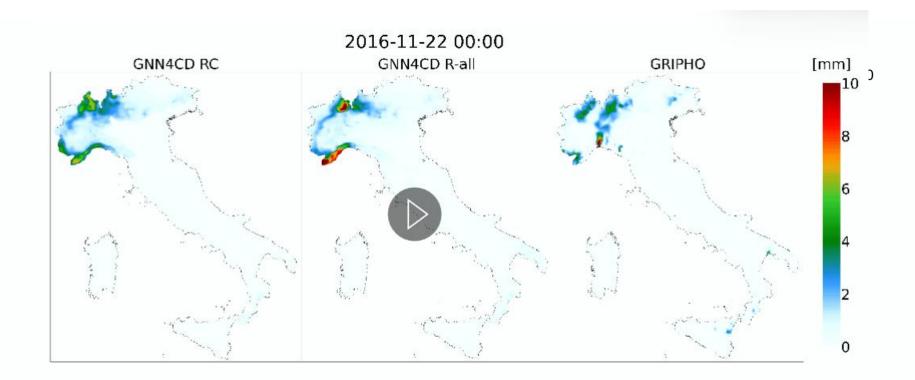
22-25 Nov 2016

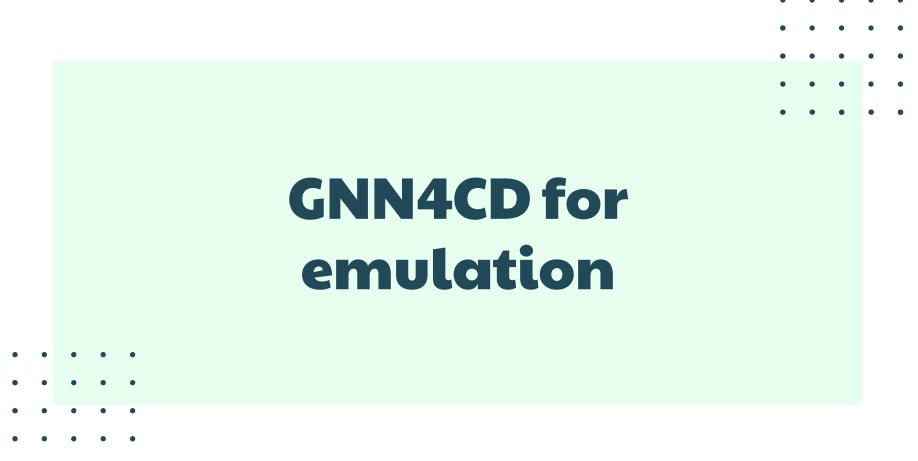
Northern Italy experienced **severe flooding** due to prolonged and intense rainfall, particularly affecting the regions of **Piedmont** and **Liguria**.

On 25 November 2016 the **Po** and **Tanaro** rivers **flooded** the surrounding areas, forcing 400 people to be evacuated.

In Liguria both **floods** and **landslides** were reported.







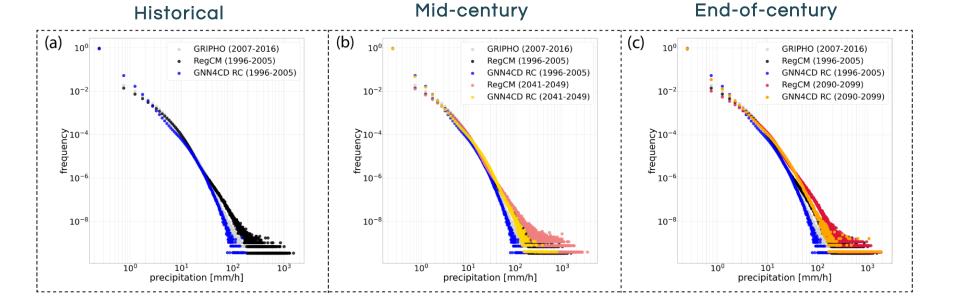
• • • • •

Emulation

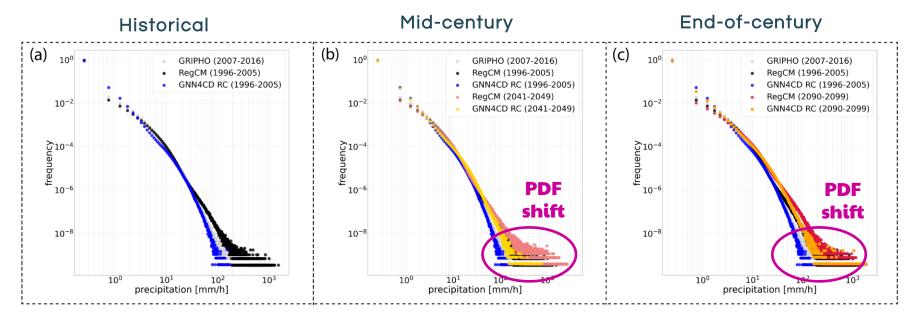
Predictors are climate model data

RegCM historical	GRIPHO 10 years		RegCM mid-century	RegCM end-of-century					
1996-2005	2007-2016		2041-2049	2090-2099					
	GRIPHO								
	2016								
present									

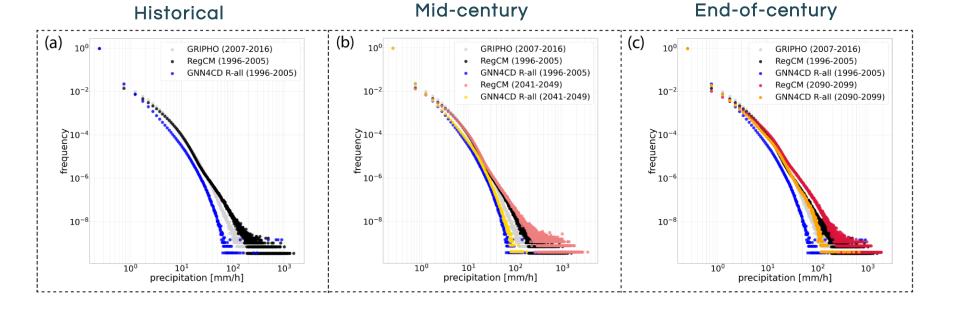
Emulation: RC



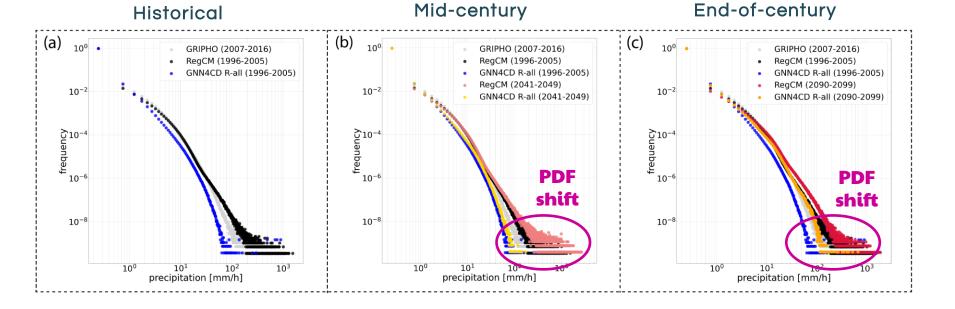
Emulation: RC



Emulation: R-all



Emulation: R-all

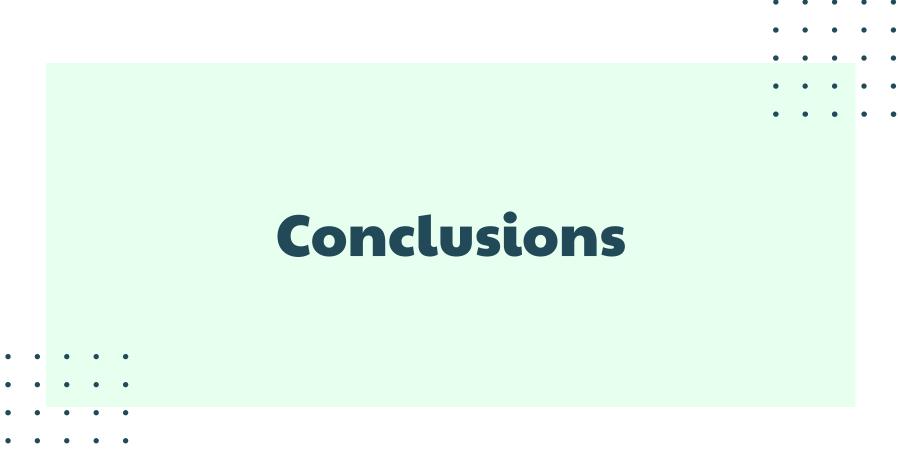


Emulation: RC and R-all

Historical Average Change (end-of-century - historical) Average (historical) Average Change (mid-century - historical) GNN4CD R-all GNN4CD R-all GNN4CD RC GNN4CD RC GNN4CD R-all GNN4CD RC RegCM RegCM ReaCM change[%] change[%] pr[mm/h] p99 Change (end-of-century - historical) p99 (historical) p99 Change (mid-century - historical) GNN4CD R-all GNN4CD R-all GNN4CD R-all GNN4CD RC GNN4CD RC RegCM **GNN4CD RC** ReaCM RegCM primm/h] change[96] change[%] p99.9 (historical) p99.9 Change (end-of-century - historical) p99.9 Change (mid-century - historical) GNN4CD R-all GNN4CD R-all **GNN4CD RC** GNN4CD RC **GNN4CD R-all** RegCM **GNN4CD RC** ReaCM pr[mm/h] change[% change[%]

Mid-century change

End-of-century change



•	•	•	•	•

Next steps – GNN4CD model

- Improve the **R-all** model one model is better than two!
- Improve the **spatial downscaling** (architecture) and the **distribution** estimation (loss/data)
- Estimate uncertainty
- Further investigate the **transferability** potential
- Use additional variables
- Explicitly address **climate change** impact on projections

Next steps - climate applications

- Retrain the emulator with 3h/6h time resolution and apply it to a broader collection of climate models simulations

 compare the spread of the emulator ensemble set of predictions with the spread intrinsic in the output of the climate numerical models
- Use the emulator in **other geographical areas** within the FPS-CORDEX domain (France Germany and Switzerland) without/with retraining
- Retrain the emulator to downscale GCMs simulations directly from ~100 km to ~12 km

Thanks!

-
- • • •