FUSION FUEL CYCLE IAEA-ICTP Fusion School 2025

Dr. Tim Teichmann, Kyoto Fusioneering Europe GmbH

20th May 2025

Kyoto Fusioneering Company Overview and Mission

Members

150

as of April1st 2025

Company overview and mission

A pick-and-axe strategy for fusion development

With a **confinement concept-agnostic** approach to fusion plant technology development, KF is **complementary to the other private fusion programs** and is uniquely positioned to **generate revenue during each phase of development** while **avoiding the risks** of betting on a concept.

The global distribution of the customers is reflected by a global representation of KF

Company overview and mission

Company mission

Tim Teichmann – Fusion Fuel Cycle

Holistic Overview of the Fusion Fuel Cycle

The fusion fuel cycle

Holistic high-level view

https://en.wikipedia.org/wiki/National_Ignition_Facility#/media/File:Preamplifier_at_the_National_Ignition_Facility.jpg

Requirements and loads:

- Fueling with educts: D, T with D/T = 1
- Exhaust of products: He

Requirements and loads:

- Fueling with educts: D, T with D/T = 1
- Exhaust of products: He
- Limited fuelling efficiency (η_f) and burn-up fraction (f_b) of fuel (MCF: η_f × f_b~0.01→ ca. factor <u>100x</u> higher throughput than burn-up)

Requirements and loads:

- Fueling with educts: D, T with D/T = 1
- Exhaust of products: He
- Limited fuelling efficiency (η_f) and burn-up fraction (f_b) of fuel (MCF: η_f × f_b~0.01→ ca. factor <u>100x</u> higher throughput than burn-up)
- Decay of tritium ($\tau = 12.3 \text{ a}$)

He, D₂, DT, T₂, ³He Exhaust Systems

He, D₂, DT, T₂, ³He, Ar / Xe Exhaust Systems

Requirements and loads:

- Fueling with educts: D, T with D/T = 1
- Exhaust of products: He
- Limited fuelling efficiency (η_f) and burn-up fraction (f_b) of fuel (MCF: η_f × f_b~0.01→ ca. factor <u>100x</u> higher throughput than burn-up)
- Decay of tritium ($\tau = 12.3 \text{ a}$)
- Plasma stability by enhancement gas (either admixed or gas puffing)

Requirements and loads:

- Fueling with educts: D, T with D/T = 1
- Exhaust of products: He
- Limited fuelling efficiency (η_f) and burnup fraction (f_b) of fuel (MCF: η_f × f_b~0.01→ ca. factor <u>100x</u> higher throughput than burn-up)
- Decay of tritium ($\tau = 12.3$ a)
- Plasma stability by enhancement gas (either admixed or gas puffing)
- Plasma interaction with and outgassing from structural materials, X = Q₂O, CQ₄,

He, D₂, DT, T₂, ³He, Ar / Exhaust Systems Xe, H₂ + Q₂O + CQ₄ + ...

Common convention: Q = H, D, T

Requirements and loads:

- Fueling with educts: D, T with D/T = 1
- Exhaust of products: He
- Limited fuelling efficiency (η_f) and burnup fraction (f_b) of fuel (MCF: $\eta_f \times$ $f_{b} \sim 0.01 \rightarrow$ ca. factor <u>100x</u> higher throughput than burn-up)
- Decay of tritium ($\tau = 12.3$ a)
- Plasma stability by enhancement gas (either admixed or gas puffing)
- Plasma interaction with and outgassing from structural materials, $X = Q_2 O_1 C Q_4$,

© 2025 Kyoto Fusioneering Europe GmbH, ALL RIGHTS RESERVED.

Tim Teichmann – Fusion Fuel Cycle

Fusion Fuel Cycle – Fueling (1/2)

Magnetic Confinement (MCF)

- On high level comparable for Tokamak and Stellarator
- Main challenge: How to get the fuel nuclei to the plasma core
- Methods:
 - Neutral Beam Injection
 - 1. Ionization of DT gas
 - 2. Acceleration of positive ions (D+, T+)
 - 3. Neutralization with electrons, filtering of ions
 - 4. Injection of neutrals

Extremely inefficient, no solution for commercial reactor!

- Cryogenic Pellet Injection System
- 1. Freezing of DT gas to pellets
- 2. Acceleration of pellets to 500-1000 m/s (= 1800-3600 km/h) with a) gas gun (blower, pneumatic) or b) centrifuge
- **3.** Injection of pellets to plasma via guide tube (Ø mm range) Injection from inboard HFS side (pellet ablation, *E* x *B* drift)

David Rasmussen, US ITER Fusion Integration, "D-T Pellet Injection for ITER Plasma Fueling", TUG, Oak Ridge, TN, 2018 P. Lang et al., EUROfusion, "A flexible pellet injection system for the tokamak JT-60SA: The final conceptual design", 2017

Fusion Fuel Cycle – Fueling (2/2)

Inertial Confinement (ICF)

- Comparable for most inertial confinement concepts
- ..., but of course the devil lies in the details
- Main challenges:
 - High frequency (order of 10 Hz) for deployment of targets
 - ... which equals 1 million targets per day per power plant
 - Target properties (homogeneity, ...) to allow absorption of driver beams (direct/indirect drive)
 - Debris/vaporized material from targets (indirect drive, ablator), which the fuel cycle needs to keep at acceptable levels and process it

The Fusion Fuel Cycle as a Chemical Process

Tritium chemistry and materials compatibility

Isotope exchange, radio-catalysis

- Recalling the exhaust mixture anticipated out of most fusion reactors: He, D₂, DT, T₂, ³He, Ar / Xe, H₂ + Q₂O + CQ₄ + ...
- Tritium properties:
 - Isotope exchange:
 - $H_2 + D_2 + T_2 \rightarrow H_2 + HD + HT + D_2 + DT + T_2$
 - $T_2 + HX \rightleftharpoons HT + XT$
 - Oxidation (like "normal" hydrogen):
 - $2T_2 + 0_2 \rightarrow 2T_20$, $3T_2 + N_2 \rightarrow 2NT_3$
 - β-decay induced self-radiolysis:
 - $T_2 \rightarrow T_2^+ + e^-$, $T_2 + T_2^+ \rightarrow T_3^+ + T \cdot (radical)$
 - $T_20 \rightarrow T_20^+, T_30^+, T_20_2$ (corrosive)
 - Induced polymerisation
 - $T_2 + CH_4 \rightarrow CH_xT_y$
 - $2CQ_4 \rightarrow C_2Q_6 + Q_2, CQ_4 + C_2Q_6 \rightarrow C_3Q_8 + Q_2, ...$
 - → Very restricted use of polymers in tritium systems

Fig. 2. Evolution of CT4 from 3.0% CH4 in T2.

G. T. McConville and D. A. Menke, "Exchange of Dilute CH4 in Tritium Gas", Fusion Technology 23(3), 1993

Tim Teichmann – Fusion Fuel Cycle

© 2025 Kyoto Fusioneering Europe GmbH, ALL RIGHTS RESERVED.

The Fusion Fuel Cycle

© 2025 Kyoto Fusioneering Europe GmbH, ALL RIGHTS RESERVED.

Tim Teichmann – Fusion Fuel Cycle

The Fusion Fuel Cycle

Let's build a fuel cycle...

-Li-6(n,α) ----Li-7(n,na)

10⁵

10⁴

Neutron energy (eV)

100

1000

10⁶

107

Let's build a fuel cycle...

Magnetic confinement fusion:

- Burn phase:
 - Task: Remove He and impurities from plasma to keep it going
 - Throughput: >100 Pa m³s⁻¹ per GW fusion power (see above)
 - Vacuum: ~ 1 Pa
 - Dwell phase:
 - Task: Create conditions for next plasma ignition as fast as possible
 - Throughput: low
 - Vacuum: ~ 1 mPa

Let's build a fuel cycle...

 Q_2

A closer look into exhaust processing

- Main functions of the exhaust processing system:
 - 1. Separation of Q_2 by selective membrane permeation
 - 2. Chemical conversion of Q-containing species to ${\rm Q}_2$
 - Hydrocarbon cracking: $CQ_4 \leftrightarrow C + 2Q_2$
 - Steam Reforming: $CTH_3 + H_2O \leftrightarrow 2H_2 + HT + CO$
 - Water Gas Shift: $Q_2 0 + C0 \iff Q_2 + CO_2$
 - Isotope exchange: $XQ_y + H_2 \iff XH_y + Q_2$ (e.g. $Q_2O \rightarrow H_2O, CQ_4 \rightarrow CH_4$)
 - 3. Usually implemented as multi-stage process to recover as much as possible tritium

A closer look into exhaust processing

A closer look into exhaust processing

Unloaded Palladium Membrane Reactor

A closer look into the Detritiation System

- The detritiation system is the last barrier to environment
- Remove tritium down to trace, safe-to-release, levels
- Process steps:
 - 1. Condensation of Q₂O
 - 2. Conversion of tritiated species to Q_2O (controlled oxidation)
 - $2Q_2 + O_2 \rightarrow 2Q_2O$
 - $CQ_4 + 2O_2 \rightarrow CO_2 + 2Q_2O$
 - 3. Condensation of Q_2O
 - Wet Scrubbing of gas/vapor phase (VLE)

Condenser

He,Q₂, Imp. (Q₂O, CQ₄,

...)

A closer look into the Water Detritiation System

- The Water Detritiation System's (WDS) main function is to remove DT from tritiated water
- Process steps of Combined Electrolysis Catalytic Exchange (CECE) Process:
 - 1. Liquid Phase Catalytic Exchange (LPCE):
 - a) Catalytic (platinum) exchange between gas phase Q_2 and vapor phase Q_2O (vap): HT + H₂O(vap) \rightarrow H₂ + HTO(vap)
 - b) Heavier isotopes preferentially accumulate in the liquid phase (VLE): $HTO(vap) + H_2O(liq) \rightarrow H_2O(vap) + HTO(liq) similar to Wet Scrubber (see above)$
 - LPCE contains sections with hydrophobic catalyst to promote a) and sections with packing to promote b)
 - 2. Electrolyser:
 - Enrichment of heavier Q species in the liquid phase due to isotopic effect
 - Generate tritiated hydrogen from tritiated water

KYOTO

USIONEERING

A closer look into the Isotope Separation System

- The Isotope Separation System (ISS) has the main function to separate Q₂ into H, D, T heavy streams
- The process relies on cryogenic distillation (rectification) of hydrogen
 - Normal boiling points:
 - H₂: 20.4 K
 - HD: 22.1 K
 - HT: 22.9 K close molecular mass, close boiling points, hard to separate
 - DT: 24.3 K
 - T₂: 25.0 K
 - One column contains a larger (~100) number of consecutive equilibrium stages
 - Usually, several columns in series depending on
 - Feeds (composition, flow rate)
 - Required purity of product streams (e.g. D/T ratio)

 Q_2 (D/T < 1, heavy fraction)

We built a fuel cycle... and let's make it even better

- Flow rate of tritium in/out the respective system a) determines the size \rightarrow higher flow rate = higher inventorv
- b) **Residence time** of tritium in the respective system = how long does a fluid parcel on average stay in the system → longer residence time = higher inventory

a)

b)

C)

The Fusion Fuel Cycle

Tritium inventory

- The fuel cycle processes tritium and we would like to minimize the amount of tritium that is needed to run the plant
- So, where is the tritium? Inventory is determined by:

Note: Inventory reduction is achieved by:

Reduction of overall flow rate

Optimizing systems to have a low residence time

Residence time

Reducing the flow rate to systems with a high residence time (bypassing)

Flow rates and residence times

Line thickness: Low to **high** tritium flow rate Unit color: Low to **high** residence time Inventory = Flow rate x residence time

© 2025 Kyoto Fusioneering Europe GmbH, ALL RIGHTS RESERVED.

So, how can we reduce the tritium inventory?

Line thickness: Low to **high** tritium flow rate Unit color: Low to **high** residence time Inventory = Flow rate x residence time

So, how can we reduce the tritium inventory?

Line thickness: Low to **high** tritium flow rate Unit color: Low to **high** residence time Inventory = Flow rate x residence time

A closer look into Direct Internal Recycling

- DIR requires <u>ultra-pure</u> separation of hydrogen because we want to minimize the processing time (i.e. residence time)
- Currently, two main technologies are under development:
 - Metal Foil Pump (MFP)
 - Superpermeation of energetic hydrogen atoms/ions through metal foil
 - Proton Conductor Pump (PCP)
 - Electrochemical separation of Q protons through a solidoxide proton conductor

Y. Kathage, et al., "Experimental Progress in the Development of a Metal Foil Pump for DEMO", MDPI Plasma, 6(4), 2023.

A prototypical fuel cycle for DT based magnetic confinement fusion power plants

What's next? Integrated testing!

Water Detritiation SystemIsotope Separation

6 Detritation System

© 2025 Kyoto Fusioneering Europe GmbH, ALL RIGHTS RESERVED. Tim Tei

Tim Teichmann – Fusion Fuel Cycle

Thank you!

2023 KYOTO FUSIONEERING LTD. ALL RIGHTS RESERVED

Confidential | 49