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Heating & Current Drive

Role of Additional heating systems
• Ohmic heating is not sufficient to reach fusion-

relevant temperatures 

• Access to H-mode or target confinement regimes

• Sustain non-inductive currents (current drive)

• Energy loss channels must be balanced, e.g.: 
thermal conduction, radiation, neutron power… 

Power balance
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Pohmic + Paux + Palpha = Ploss 

Ohmic power 

limited to Ti ⁓3 keV

Alpha particle power 

effective at high Ti ⁓10-15 keV

Auxiliary heating system

bridge the gap

tokamaks: Pohmic + Paux + Palpha = Ploss 

stellarators: Paux + Palpha = Ploss 

ignition: Palpha = Ploss 

20 MW

20→60 MW
33-50 MWElectron Cyclotron 

Heating

Ion Cyclotron Heating

Heating Neutral Beams

Paux = ηcoup ηconv Pelectr

Coupling of injected 

power to plasma

Conversion from 

wall-plug to injected 

power

Efficiency
Auxiliary heating systems have their own efficiency:

Paux 

Pelectr

Pelectr

Paux 



Neutral beams in fusion plasmas
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• neutral atoms can penetrate through the 
confining magnetic field

• Ionization by collision with plasma ions and 
electrons

• Fast ion trapped in the magnetic field 
transfers energy to plasma ions and 
electrons  by coulomb interaction

W. Kraus, CAS (CERN Accelerator School – Ion Sources) 2012

Neutral beam 
intensity

Absorption 
legth

shinethrough

𝜆 ≈
𝐸

18 ⋅ 𝑛 ⋅ 𝐴

n in 1019 m-3, 
E in keV, 
A in amu

• High densities and large plasma volume 
require high energy for depositing power at 
the core region of the fusion plasma

• Often, high-confinement regimes are 
achieved by neutral beam heating 
-> low plasma target thickness when neutral 
beam is activated, then, it evolves with time.

• Ionization depth in the fusion plasma: 
characteristic length scales as

current

E
n



What are Neutral Beams used for?
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Plasma Heating

Current Drive

Fast neutrals → fast ions → non-inductive current

Toroidal Torque

Injected neutral flux imparts 
momentum, increasing plasma rotation

Plasma Fuelling

Useful for core fuelling, negligible 
for larger devices

https://doi.org/10.1063/1.4897186

Plasma Diagnostics

CXRS, MSE – spectral 
analysis of light emission 
generated by collisions of 
fast neutrals with plasma

P. Vincenz, RFX

https://doi.org/10.1063/1.4897186


Neutral beam injectors integration
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NBI physics
- Heating (temperature)
- Current drive (plasma current)
- Momentum injection (plasma fluid rotation)

NBI parameters
• Energy:

• low -> small plasma/low density
• high -> big plasma/high density, current drive

• Direction: 
• Tangential: longer path into dense plasma, 

current drive and torque input
• Perpendicular: easier to integrate, short path 

into plasma, larger losses
• On-axis vs off-axis: central heating, longer 

path into plasma vs larger current drive

ON-AXIS



(counter-curr)

190 keV-6 MW
Negative-NBI 1180 keV-5 MW

Negative-NBI 2

180 keV-5 MW
Negative-NBI 3

40 keV-6 MW
Positive-NBI 4

40-50 keV-6 MW
Positive-NBI 5

(tangential, counter-curr)

(tangential, 
counter-curr)

(tangential, co-curr)

(perpendicular)

(perpendicular)

Neutral beam injectors integration
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Large Helical Device LHD  (NIFS, Japan)Joint European Torus JET (CCFE, UK)



Present and future Neutral beam injectors (NBI)
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R0 a Ip Bt Installed heating power (MW)

(m) (m) (MA) (T) P-NBI N-NBI ECRH ICRH LH

TFTR 2.4 0.8 2.2 5 40 - - 11 -

JET 2.96 1.25 4.8 3.45 34 - - 10 7

JT-60U 3.4 1.1 5 4.2 40 3 4 7 8

AUG 1.65 0.65 1.2 3.1 20 - 6 8 -

EAST 1.7 0.4 1.0 3.5 8 - 4 12 10

DIII-D 1.67 0.67 2.1 20 - 5 4 -

JT-60SA 2.97 1.17 5 2.25 24 10 7 - -

DTT 2.19 0.7 5.5 6 - 10 32 8 -

ITER 6.2 2.0 15 5.3 - 33-50 20-67 10-20 -

NBI heating is dominant in most past, present and planned tokamaks
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Positive and Negative-ion based NBIs
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Precursor ion beam:
Most tokamaks until now have used positive ions. 

 

Basic principle:
The ion beam is accelerated electrostatically, through 
multi-aperture electrodes (beamlets), then neutralised 
interacting with a thick gas target.

 

Ian Day, UKAEA 



Positive and Negative-ion based NBIs
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Experimental Measurement at JT-60U 
[M. Kuriyama, Fus. Eng. Design, 39-40:115, 1998]

Precursor ion beam:
Most tokamaks until now have used positive ions. 

However, neutralisation in gas cells of high-energy 
hydrogen ions is only possible from negative ions.

Positive ions
• Easy to produce (2400 A/m2)
• Multiple ion species (H+, H2

+,H3
+)

• Neutralisation efficiency decreases with energy

Negative ions
• Hard to produce (240-370 A/ m2)
• One species (H-)
• Co-extracted and stripped electrons constitute 

additional power load
• Neutralisation efficiency minimum 58%



Negative-ion based injectors for ITER
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2 (+1) HNB (H, D)

• V = 870 keV (H), 1 MeV (D)

• I = 46 A (H), 40 A (D)

• 1/e divergence < 7 mrad

• tpulse = 3600 s

• Pbeam = 16.5 MW

1 DNB (H)

• V = 100 keV

• I = 60 A

• tpulse = 3 s every 20 s

• Fmod = 5 Hz

https://www.iter.org/mach/heating

S. Serov, IO

https://www.iter.org/mach/heating


Negative-ion based injectors for ITER
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From the concept to the 
engineering design...



Negative-ion based injectors for ITER

5/26/2025 E. Sartori - Neutral Beam Injectors for Fusion12



ITER Neutral Beam Test Facility
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Padova

ION SOURCE 
PROTOTYPE
SPIDER

INJECTOR
PROTOTYPE
MITICA

Buildings completed 2015 

SPIDER started op. 2018
MITICA will start op. in 2027



Outline

• Introduction to neutral beam injectors 
• What are used for
• Beam energy and precursor negative ion beams
• Present international R&D in view of ITER

• NBI Systems
• Ion source
• Accelerator
• Neutraliser
• Residual ion dump and calorimeter 
• Beam diagnostics
• Vacuum and power supplies

• Summary
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Ion source
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SPIDER source: an RF-driven 
negative ion source 
(view from rear side)

⁓180 cm

JET PINI: a filament driven 
positive ion source

60 cm 

Large Kamaboko source of JT60-U



Ion source
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Negative ion sources
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LHD H- source JT60SA H- source ITER H-- source

Volume 0.11 m3

Surface 1.23 m2

1998 (concluded)

Jext=370 A/m2

div=5.5 mrad

Volume 0.41 m3

Surface 3.2 m2

1996 (mature)

Jext=210 A/m2

div=8 mrad

Volume 0.44 m3

Surface 5.2 m2

Deployment 2027

Jext=330 A/m2

div=5-7 mrad

Y. Takeiri, M. Osakabe, K. Tsumori, Y. Oka,

O. Kaneko, E. Asano, T. Kawamoto, R.

Akiyama and M. Tanaka, J. Plasma Fusion

Res. 74, 1434 (1998)

M. Hanada, N. Akino, et al., J. Plasma Fusion Res. Ser. 9 (2010) 208.
Y. OKUMURA et al., Rev. Sci. Instrum., 67, 1018 ~1996!.

G. Serianni et al. Rev. Sci. Instrum. 93, 081101 (2022)

Test stands for the ITER H-- source

Volume 0.24 m3

Surface 2.9 m2

2013 (mature)

Jext=330 A/m2

Volume 0.44 m3

Surface 5.2 m2

2018 (R&D ongoing)

Jext=220 A/m2

(filament-arc source) (filament-arc source)
(RF source)

(RF sources)

0.35

1.45

0.21

48 filaments

0.55 m 0.68 m 

1.22 m

0.8 m 

1.8 m

~0.4 m

8 RF drivers

0.9 m 8 RF drivers

4 RF drivers

1.8 mELISE
½ ITER source

SPIDER
prototype ITER source
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net RF power coupled
to plasma ~40%

assuming 10% of 
arc current by
positive ions

Iacc /Pplasma ~0.2 A/kW
Negative ion sources
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RF-driven source for ITER to minimize maintenance

Extracted negative ion current density is comparable

Considering the effective power coupled to the plasma, the 
negative ion current scales similarily, despite the different 
source type

Uniformity of the extracted beam pattern is rather good

Examples of beam uniformity in SPIDER, various source 

parameters (pressure and RF power)



E. Sartori, 
RFX

Negative ion sources: caesium and filter field
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At Te=2 eV, electron detachment is 3 times faster 
than at Te=1 eV

needs filter field of uniform effectiveness 
Difficult design, given large dimensions.
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[D. Faircloth, CERN 
Accelerator School]

B field used in negative ion sources to 
separate in two regions the plasma: 

tandem concept implies vertical drifts
(magnetised electrons)

0

400

200

z 
[m

m
]

0 200 400-400 -200
x [mm] 

0 200 400-400 -200

0

400

200

600

x [mm] 

z 
[m

m
]

0-200

0

200

x [mm] 

z 
[m

m
]

200
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JT60SA H- source

ITER H-- source

𝑣𝐸×𝐵
𝑑𝑟𝑖𝑓𝑡

= 𝑬 × 𝑩/𝐵2

𝑣𝛻𝑝×𝐵
𝑑𝑟𝑖𝑓𝑡

= −𝛻𝑝𝑒 × 𝑩/𝐵2

𝑣𝛻𝐵
𝑑𝑟𝑖𝑓𝑡

= (𝑚𝑣⊥
2/2𝑞𝐵) 𝑩 × 𝛻𝐵/𝐵2

𝑛− =
(𝑑𝑛_/𝑑𝑡)𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

𝜈𝑟𝑒𝑚𝑜𝑣𝑎𝑙

given the quite short λ_ of negative ions
before extraction, uniform H- production 
yield at the extraction region is needed

Use of caesium to produce neative ions:
• Coats extraction grid and lowers work function 

(binding energy for electrons in a solid)
• H and H+ can capture electrons to become H-

• Extractable current density increases by factor of 10



Ion beam acceleration 
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SPIDER acceleration grid with 
1280 apertures

LHD N-NBI accelerator

JT60-U 500keV accelerator

Extractor and accelerator of MITICA 
duing alignment procedures



1017

1014

1015

1016

[m-3]

Te~1 eV, Ti~0.1 eV PIC simulation, 100 million particles, grid size 3λD

Ion beam extraction from the source plasma
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Beam composed by multiple beamlets 
Ions are extracted from the source plasma 
through multiple small apertures (10-15 mm 
diameter) forming “beamlets”  

Multiple electrodes are used

VACC
VEXT

GGEGPG

Ion 
source 

VBIAS

Arc power /
RF power

⁓10-40V ⁓10kV ⁓50-200kV



Ion beam extraction from the source plasma
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Beam composed by multiple beamlets 
Extractable current limited by space-charge 
(Child-Langmuir law, planar diodes):

S. R. Lawrie, et al. Rev. Sci. Instrum., vol. 87, p. 02B122, 2016. 
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vacuum permittivity)

electrons, χ = 2.334∙10-6 A/V3/2

protons, χ = 5.45∙10-8 A/V3/2

In negative ion sources, due to 
the low negative ion production 
rate, a limit given by the 
available current is reached. 

By increasing the discharge 
power, normally, the available  
negative ion current density 
increases.  

The extractable ion beam current is proportional to V3/2; 
the proportionality constant is called perveance P of 
the extraction system:

]AV[  3/2

2/3

−=
V

I
P

At the same perveance, the 
beam shape is identical!
i.e. ion space-charge effects 
have the same significance
compared to externally 
applied electric fields.

z

r(z)



Ion beam extraction from the source plasma
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177A/m2 355A/m2 461A/m2

Beamlet simulation via axisymmetric ray tracing & Poisson solver code – courtesy P Veltri

Example in SPIDER triode accelerator, increasing perveance 
(i.e. increasing discharge power in the source plasma) .

The beamlet focusing at the exit of the accelerator can be 
calculated from the RMS angle of ion trajectories with 
respect to the beamlet axis: “divergence”

“divergence”

J (A/m2)

θ rm
s

(A
/m

2 )

θ



Ion beam acceleration
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Larger accelerating voltage applied between EG and GG to 
reach 100s keV.

Each electrode act as an electrostatic lens, in particular EG:
 

Vacc/Vex

Too low

Too high

Just rightV beam energy at electrode,

E1 and E2 electric fields upstream and 

downstream the electrode

f focal distance (f<0 diverging beamlet)

𝑓 =
4𝑉

𝐸2 − 𝐸1

VACC
VEXT

GGEGPG

Ion 
source 

VBIAS

Arc power /
RF power

⁓10-40V ⁓10kV ⁓50-200kV

An optimum ratio of potentials Vacc/Vex
shall be applied for minimizing the beam divergence:



PG EG GG

PG EG GG

Vext scan
(Vacc/Vext=const)

Iext/Vext
3/2

discharge 
power scan

Ion beam optics
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VACC
VEXT

GGEGPG

Ion 
source 

VBIAS

Arc power /
RF power

⁓10-40V ⁓10kV ⁓50-200kV

→ perveance I∙V-1.5

→ electrostatic lenses f=4U/(E2-E1)

Experimentally, what are the knobs? 

- Power into plasma discharge
(arc power, RF power...)

- Extraction grid voltage Vext

- Acceleration grid voltage Vacc

→ plasma density→ extracted current
→ perveance I∙V-1.5

→ electrostatic lenses f=4U/(E2-E1)



Ion beam optics: complex interactions
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PG

EG

GG

• Permanent magnets in extraction grid deflect electrons…
but also ions!

• Compensation methods required for ions:
Electrostatic compensation at EG (steering grid), 
or compensating magnets inside EG or GG...
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• Complex interactions between beamlets: 
coulomb repulsion (acting especially in the low energy 
part of the accelerator)

• Compensation must be applied to correct the steering 
angle

Result in BUG, 
courtesy B Segalini



Losses and power loads on electrodes
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Kashiwagi

In Negative ion beams, electron detachment from H- is highly 
probable → stripping. 

 −=
GGx

gs dxxnxVL
0

)())((

H−, H2 →   H, H2, e 

P
 [

k
W

]

(up to 30% of negative ion current 
is lost in MITICA/ITER HNB!!)

• If it occurs at incomplete acceleration, neutral particles are 
useless for plasma heating! With σ total stripping cross-
section, the stripping loss reads:

• the stripped electron is accelerated by the electric field onto 
the electrodes: losses of efficiency and large heat loads

Calculations for 
MITICA accelerator, P Agostinetti



High Voltage conditioning
• proceeds by applying an increase voltage to the electrodes, 

causing the emission of charges, up to a breakdown;

• When the voltage is applied again, a slightly higher voltage 
can be reached:
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about 100 h of 
HV applied 

obtained at  nominal 
H2 pressure ~3-4 10-2 Pa

Beam source 
(rear side)
at -1 MV 

accelerator
grids Vacuum 

Vessel at 
ground 
potential 

single
gap

https://www.iter.org/node/20687/successful-round-tests-mitica

What are these points? 
Movie...



Neutraliser cell 
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MITICA neutraliser

Neutraliser integrated with each 
ion source at JET

⁓10m long neutraliser cell in JT60-SA



Ion beam drift: beam plasma formation
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• Ion beam cannot propagate in a vacuum: beam ions are “repelled” by Coulomb 
interaction

• Space Charge Compensation (SCC): potential well produced by beam charge 
density traps secondary charges of opposite sign

• electrons compensate H+ beams, H2
+ ions compensate H- beams; positive ion 

beams are usually slightly undercompensated, negative ion beams are slightly 
overcompensated.

• Beams can travel long distances in low density gases! Studied in the 70s for 
space-war applications

• If complete compensation is assumed, the beamlet optics is fixed after the 
accelerator (fixed divergence angle ω).

Ionization of background gas by beam particle

Ionization of background gas by secondary electrons

Stripping of beam particle (Negative Ion Beam only)

t (μs)
Beam ions

Background charge of opposite sign
Background gas



Ion beam drift: beam plasma formation
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• Ion beam cannot propagate in a vacuum: beam ions are “repelled” by Coulomb 
interaction

• Space Charge Compensation (SCC): potential well produced by beam charge 
density traps secondary charges of opposite sign

• electrons compensate H+ beams, H2
+ ions compensate H- beams; positive ion 

beams are usually slightly undercompensated, negative ion beams are slightly 
overcompensated.

• Beams can travel long distances in low density gases! Studied in the 70s for 
space-war applications.

• If complete compensation is assumed, the beamlet optics is fixed after the 
accelerator (fixed divergence angle ω).

Ionization of background gas by beam particle

Ionization of background gas by secondary electrons

Stripping of beam particle (Negative Ion Beam only)



Ion beam neutralization
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• Beam neutralization: normalized fluxes of 
beam species evolve as a function of x:

• Cross-sections σij (e.g. Barnett’s ORNL “Red book”, IAEA “Aladdin”)

• Competing charge-changing channels are always present, for instance: 

𝐻− +𝐻2 → 𝐻 + 𝐻2 + 𝑒

𝐻− +𝐻2 → 𝐻+ + 𝐻2 + 2𝑒

𝐻 + 𝐻2 → 𝐻+ + 𝐻2 + 𝑒

neutralization

double electron detachment 

reionization

vs

𝑑Γ

Γ
= ±𝜎𝑖𝑗𝑛𝑔 𝑥 𝑑𝑥
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integrated density (1018 m-2)

D-

D0

D+
• neutralization yield as a function of the integrated gas 

density (or “target thickness”) has a 
maximum, then decreases due to reionization losses. 

Example: deuterium D- beam accelerated at 1 MV



Residual ion dump and calorimeter
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JET NB deflection magnet, 
residual ion dumps and 
calorimeter

Electrostatic Residual Ion Dump and 
swirl-tube calorimeter in MITICA

Calorimeter in SPIDER



Residual ion dump
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Remaining ions (positive and/or 

negative) need to be removed 

from the beam before reaching the 

tokamak field. 

• Deflected either magnetically 

or electrostatically

• Cooled plates intercept ions at 

off-normal incidence

ITER E-RID
• 20kV ± 10 kV
• From 3 MW/m2 (7 mrad divergence) 

to 8.5 MW/m2 (3 mrad divergence)
• CuCrZr panels with swirt tapes 

MAST-U RID
• 12 MW/m2 

• hypervapotrons

F. Dhalla et al, Fusion 
Engineering and Design 96–
97 (2015) 458–462

A.F. Lifschitz et al 2014 Nucl. Fusion 54 043020

R.I.D.

E

E

NEUTRALIZER



Calorimeter
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Use:
• Needed for beam conditioning outside of 

tokamak pulses (HV, Cs…)
• Measure beam power, beam footprint, 

neutralisation fraction

Thermomechanical design: 
• High Heat Flux component design

(∼15–20 MW/m2): use of swirl tapes or 
hypervapotron to enhance local heat 
transfer coefficient. 

• Number of beam cycles: fatigue life
Beam on/off cycles
Breakdowns

• Material activation: subject to direct 
neutron flux from the torus →minimize 
volume, low-activation materials

ITER calorimeter

• From 7.3 MW/m2 (7 mrad divergence) 
to 14.3 MW/m2 (3 mrad divergence)

• 13 MW/m2 (swirl tubes)

• Steady-state: 100 kg/s cooling water

MAST-U calorimeter

• 12 MW/m2 
(hypervapotrons)

✓ Boiling & turbulence to improve heat transfer 

coefficient

✓ Stress from internal pressure of coolant

✓ Material considerations limit temperature of 

element e.g. CuCrZr<450C to avoid precipitation 

of Cr leading to hardening



CFC inertial calorimeter

Carbon fibre composite blocks used as 
calorimeter. 

• When exposed to a short beam 
pulse, CFC tile temperature 
distribution reaches equilibrium in 
the fibre direction (beam direction) 
within few second.

• Footprint of the beam is practically 
“frozen” and infrared imaging can be 
used to derive power density 
distribution.

Properties of the diagnostic:

• Short pulses

• High spatial resolution: 1-2 mm

• Accuracy: <10%
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Example with isolated beamlets



Doppler shift spectroscopy 
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Light emission from interaction between beam particles and 

residual gas molecules:

• Target emission

• Beam emission

Line intensity ratio  species composition

Line width  beam divergence, optimum perveance

Line shape  accelerator losses

Spatial resolution  beam profiles, non-uniformity
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Pumping system
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JET NB Injector cryopump

One of the two cryopanels of MITICA

[1] G Duesing, Vacuum 37 309-315 (1987)

JET NBI (H2)[1]

S=8000 m3/s
Q=25 Pa∙m3/s

p=5∙10-3 Pa
ITER NBI (H2)[2]

S=4700 m3/s
Q=48 Pa∙m3/s

p=3∙10-3 Pa

[2] M. Dremel, et al, Nucl Fus 49 075035 (2009)



Cryopump design and requirements

Requirements given by neutraliser gas:

• Required gas throughput at the 
neutraliser reads:

• Due to cryopump limited capacity, the 
operation time is inversely proportional 
to Q

• Because of the beam divergence 𝜔, the 
transmitted power F decreases with the 
total beamline lenght:
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𝑄 ∝
1

(𝐿𝑛𝑒𝑢)
2

𝐹 ∝ erf
𝑇

2 ⋅ 𝐿
⋅
1

𝜔

Gas injection

Gas to cryopumps

Tokamak port

wlim

wlim

Neutraliser length
Cryopumps

Gas injection

wlim

wlim

Beam source

𝐿

𝐿𝑛𝑒𝑢

𝑇

JET cryopump
• A = 40 m2

• S = 8000 m3/s
• Q = 25 Pa∙m3/s
• p = 5x10-3 Pa

J Buckerfield,et al., Fus. Eng. 
Design 215 (2025) 114991

ITER cryopump
• A = 38 m2

• S = 4700 m3/s
• Q = 48 Pa∙m3/s
• p = 3x10-3 Pa



Power supplies

5/26/2025 E. Sartori - Neutral Beam Injectors for Fusion40



Summary and ITER perspective
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Neutral beams offer:
• Flexible and powerful heating method (high total power, long pulses, power waveforms, beam position)

• Ease of coupling to plasma. No upper limitations regarding plasma density 
• High reliability
• Complex, robust and well-established technology
Disadvantages:
• Low efficiency at present (but negative ion precursor is better)
• Expensive
ITER Heating neutral beam developments:
• RF-based sources confirmed linear dependence 

of ion current against discharge power.
• Rather uniform beam pattern on calorimeter.
• Voltage holding up to 870 kV verified (without beam)
• Achieving low divergence and proper beamlet aiming to achieve target power

Acknowledgement
My thanks to the teams in the Neutral beam test facility, IO, laboratories 
and DAs helping us and working on the systems mentioned in this presentation.
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Post doc and young researcher- grant

PhD in “Fusion Science and Engineering” since 2006
~10 PhD students/year

Students in Thesis and Interniship

6 courses in Bachelors and Master programmes      
dedicated to Fusion Science and Engineering



prof. Emanuele Sartori

Neutral Beam Injectors
22nd May 2025 – Joint ICTP-IAEA Fusion Energy School
International Centre for Theoretical Physics – Trieste

emanuele.sartori@igi.cnr.it - Università degli Studi di Padova and Consorzio RFX
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