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Goal: categorify spaces of invariant tensors

Fix g, set V of representations of Uq(g).

• For every sequence from V, a linear, Z-graded category whose Grothendieck group is the
space of invariants in the corresponding tensor product

• Gluing functors categorifying index contractions
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Approach via matrix factorizations

• Hope: accomplish this using (sub)categories of matrix factorizations, when g is
simply-laced and V is the set of minuscules.

• Matrix factorization = chain complex, but d2 = w .
• w is a sum of terms from boundary points.
• Gluing = fusion, tensor over glued vertices and forget those variables. Still finite if w

nondegenerate.

• Done for g = sln: Khovanov-Rozansky 2004, Yonezawa 2011, Wu 2013, with some
needed input on the decategorified side from Cautis-Kamnitzer-Morrison 2012

• Begun for g = so2n: Khovanov-Rozansky 2007 constructed potentials, factorizations for
vector representations, but decategorification and Reidemeister invariance conjectural.
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Why matrix factorizations?

• Form a 2-category with very good duality properties (Carequeville-Murfet 2012)
• Identities give arc factorizations
• Adjunction maps give foam functoriality

• Easy to define Lee-type deformations, s-type invariants

• Two significant challenges
• Fixing signs
• Far from obvious that the decategorification is as expected
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Recall: colored sl(N) homology
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sl(N) homology: potentials and factorizations

• One potential for each minuscule representation = integer from 1 to N

• w∧k
= 1

N+1pN+1(e1, . . . , ek

• ∂w∧k

/∂ei = ±hN+1−i , so cohomology of unknot is J (w∧k

) = H∗Gr(N, k)

• A factorization whenever k1 + · · ·+ kj = N
• pN+1 is primitive in the Hopf algebra of symmetric functions
• For k = N, the potential w∧N is Morse ⇝ Knörrer periodicity
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sl(N) homology: the categories

• To a specified boundary, assign the full subcategory of the homotopy category of matrix
factorizations on all direct summands of fusions of these fundamental vertices.

• Direct sum decompositions of certain fusions → skein relations in the Grothendieck group
• Exactly match sufficient skein relations for slN invariant spaces
• Reduce any closed diagram to a direct sum of empty diagrams, so in particular all Hom

spaces in the category are in a single Z/2 grading.
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Potentials for Hermitian symmetric spaces
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Hermitian Symmetric Spaces

• G/P for P a maximal parabolic corresponding to a minuscule node for G , G simply-laced.
• Equivalent to asking that, inside compact real G , P is the centralizer of some α with
α2 ∈ Z (G ) and a central U(1) in Z (α).

• This U(1) gives a complex structure

• H∗(G/P) has same graded dimension as the corresponding representation.
• Classification:

• Type A: SU(N)/S(U(k)× U(N − k))
• Type D: SO(2N)/U(2N) (two versions), SO(2N)/(SO(2N − 2)× SO(2))
• Type E: E6/(Spin(10)× U(1)), E7/(E6 × U(1))
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Potentials

Observation: For X Hermitian symmetric, H∗(X ) = J (w) for some potential w .

• Originally from physics, Lerche-Vafa-Warner 1989, see also Lerche-Warner 1991 and
Gukov-Walcher 2005

• Idea – algebras of ground states in certain supersymmetric QFTs should have the form
J (w), in particular Σ-models in Hermitian symmetric spaces.

• Type A potentials are the power sums 1
N+1pN+1, and the exceptional cases are computed

in Lerche-Warner 1991.
• wE6(x , y) = xy3 − 3x5y2 + 2x9y − 5

13x
13
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Type D Potentials

• X = SO(2N)/U(N), the space of orthogonal, ±-oriented complex structures carries a
canonical CN bundle E

• E has a section and E ⊕ E is trivial, so

c(E ) = Z (t) = 1 +
N−1∑
i=1

zi t
i

and Z (t)Z (−t) = 1.

• Alternatively, Z even(t) =
√

1 + Z odd(t)2
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Type D Potentials

• The potential wS = [t2N−1]F (Z odd(t)) has J (wS) = H∗(X ), for

F (t) =

∫ t

0

√
1 + s2ds =

1

2
t
√

1 + t2 +
1

2
log(t +

√
1 + t2)

• For the vector representation V ,

wV = xy2 ± 1

2n − 1
x2n−1

• Used in Khovanov-Rozansky 2007’s conjectural categorification of the Kauffman polynomial
• x , y are Euler classes of canonical R2, R2N−2 bundles over real oriented Grassmannian.
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Factorizations for flag varieties
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Needed ingredients

Fundamental factorizations in type A correspond to

• k1 + · · ·+ kj = N

• Tensor products of minuscules with one-dimensional invariant spaces

• Partial flag varieties

First goal: whenever A,B,C are minuscules with an invariant tensor in A⊗ B ⊗ C , build a
matrix factorization of wA + wB + wC

• This can be done!
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Trivalent intertwiners in type D

• There is a map S± ⊗ V → S∓, so an invariant tensor in S+ ⊗ V ⊗ (S∓)∨

• So, want a factorization of wS(zi ) +wV (x , y)−wS(z ′i ) to use as the fundamental vertex.

• Such a thing does exist, and its endomorphism ring is H∗(SO(2N)/U(N)).

16 / 26



Exceptional trivalent intertwiners

• The defining representation V of E6 has an invariant tensor in V ⊗ V ⊗ V .
• In fact, wE6(x1, y1) + wE6(x2, y2) + wE6(x3, y3) lies in the ideal with the following generators,

allowing for the construction:

x1 + x2 + x3

y1 + y2 + y3 −
1

2
(x41 + x42 + x43 )

x1y1 + x2y2 + x3y3 −
2

5
(x51 + x52 + x53 )

• Dimension agrees with the cohomology of E6/(Spin(8)× U(1)2), probably also agrees as
a ring.
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Gluings of the fundamental vertices

• Fusions of the vertex factorizations, respecting the edge colorings, give a matrix
factorization assigned to any appropriately decorated graphs

• Type D: Every vertex incident to one vector edge and two spinors
• E6: Edges oriented, every vertex a source or sink

• Main question: How do these fusions decompose under direct sums?
• Special case: what is the vector space assigned to a closed graph?

Conjecture: the K-theory of the subcategory generated by summands is isomorphic to the
space of invariant tensors, intertwining fusion of factorization with index contraction.
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Skein rules

19 / 26



Spinor Skeins
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Spinor Skeins
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Spinor Skeins

• Decategorified versions of these relations hold in Rep(Uq(so2n)).

• Suffice to define and prove Reidemeister invariance for vector-vector and vector-spinor
crossing complexes

• Not complete – missing relations among “ladder” graphs with four spinor boundary edges
• When the correct relations are added, these suffice to compute any closed graph
• Not clear how to prove categorified version
• Also unknown if these relations are enough to calculate K-theory with general boundary
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Conjectural E6 Skeins
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Conjectural E6 Skeins

24 / 26



Conjectural E6 Skeins

• These hold at the decategorified level, work in progress to check them for the
categorification

• Suffice to define crossings, check Reidemeister moves
• Seems quite tricky to know if these relations can reduce any closed diagram

• No other clear approach to computing dimensions of the spaces assigned to closed graphs, or
to checking that they’re concentrated in one Z/2 degree
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Crossing complexes

• Currently don’t know how to categorify the spinor-spinor crossing
• Should have ∼ N/2 terms
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