Obstructing Cosmetic Crossing Changes

Joe Boninger (supported by NSF award 2202704)

Boston College

June 11, 2025

Boninger (Boston College)

Cosmetic Crossings

June 11, 2025 1 / 14

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

$K\subset S^3$

A crossing change (and disk)

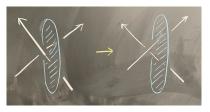
Boninger (Boston College)

Cosmetic Crossings

בּוּאַל בּוּאַ בּיּאַפּ June 11, 2025 2/14

イロト イヨト イヨト イヨト

$K\subset S^3$



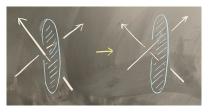
A crossing change (and disk)

Definition

A crossing change is cosmetic if it preserves K.

(日) (四) (日) (日) (日)

$K \subset S^3$



A crossing change (and disk)

Definition

A crossing change is cosmetic if it preserves K.

Conjecture (Lin)

For any K, only a nugatory crossing admits a cosmetic crossing change.

Boninger (Boston College)

Cosmetic Crossings

$K \subset S^3$



A crossing change (and disk)

A nugatory crossing

Definition

A crossing change is cosmetic if it preserves K.

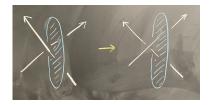
Conjecture (Lin)

For any K, only a nugatory crossing admits a cosmetic crossing change.

Boninger (Boston College)

Cosmetic Crossings

• "Every crossing contains information"



A D N A B N A B N A B N

- "Every crossing contains information"
- A special case of cosmetic surgery

- "Every crossing contains information"
- A special case of cosmetic surgery
- Verified for knots that are:
 - ◊ Two-bridge (Toriso)

- "Every crossing contains information"
- A special case of cosmetic surgery
- Verified for knots that are:
 - Two-bridge (Toriso)
 - Fibered (Kalfagianni)

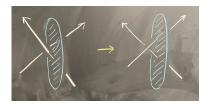
- "Every crossing contains information"
- A special case of cosmetic surgery
- Verified for knots that are:
 - ◊ Two-bridge (Toriso)
 - Fibered (Kalfagianni)
 - Genus one with $\Delta_K \neq 1$ (Ito, building on BFKP)

• • = • •

- "Every crossing contains information"
- A special case of cosmetic surgery
- Verified for knots that are:
 - ◊ Two-bridge (Toriso)
 - Fibered (Kalfagianni)
 - ◊ Genus one with $Δ_K ≠ 1$ (Ito, building on BFKP)
 - Alternating with det(K)
 square-free (Lidman-Moore)

< (日) × (日) × (1)

- "Every crossing contains information"
- A special case of cosmetic surgery
- Verified for knots that are:
 - ◊ Two-bridge (Toriso)
 - Fibered (Kalfagianni)
 - ◊ Genus one with $Δ_K ≠ 1$ (Ito, building on BFKP)
 - Alternating with det(K) square-free (Lidman-Moore)
 - → + more (Balm, Friedl, Powell, Wang...)



• • = • •

Results

Theorem 1 (B., 2023)

Special alternating knots do not admit non-nugatory, cosmetic crossings.

A D N A B N A B N A B N

Results

Theorem 1 (B., 2023)

Special alternating knots do not admit non-nugatory, cosmetic crossings.

Theorem 2 (B., 2024)

If K admits a non-nugatory cosmetic crossing change, and the branched double-cover $\Sigma(K)$ is an L-space, then Δ_K has a factor

$$f(t)f(t^{-1})$$

for some $f \in \mathbb{Z}[t, t^{-1}]$ satisfying $f(-1) \neq \pm 1$.

(日) (四) (日) (日) (日)

Results

Theorem 1 (B., 2023)

Special alternating knots do not admit non-nugatory, cosmetic crossings.

Theorem 2 (B., 2024)

If K admits a non-nugatory cosmetic crossing change, and the branched double-cover $\Sigma(K)$ is an L-space, then Δ_K has a factor

$$f(t)f(t^{-1})$$

for some $f \in \mathbb{Z}[t, t^{-1}]$ satisfying $f(-1) \neq \pm 1$.

• \uparrow Applies to all alternating knots.

(日) (四) (日) (日) (日)

Special Alternating Links

Definition

K is a special alternating link if an alternating diagram of K has an orientable checkerboard surface.

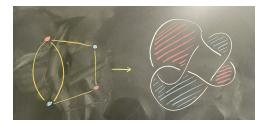


Special Alternating Links

Definition

K is a special alternating link if an alternating diagram of K has an orientable checkerboard surface.

• SALs can be constructed from any bipartite planar graph.

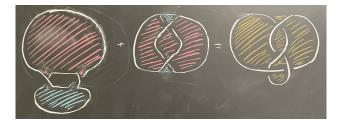


Special Alternating Links

Definition

K is a special alternating link if an alternating diagram of K has an orientable checkerboard surface.

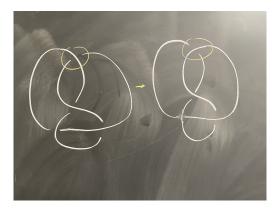
- SALs can be constructed from any bipartite planar graph.
- Every alternating knot is a Murasugi sum of SALs.



A (1) > A (2) > A

Proposition

Alternating link *diagrams* do not admit cosmetic crossings.



Boninger (Boston College)

Cosmetic Crossings

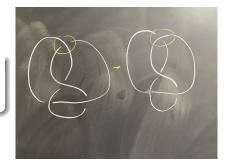
▲ 同 ▶ → 三 ▶

Proposition

Alternating link *diagrams* do not admit cosmetic crossings.

Proof.

• Form the Tait graph G of D.



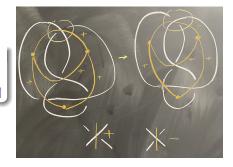
• • • • • • • • • • • •

Proposition

Alternating link *diagrams* do not admit cosmetic crossings.

Proof.

• Form the Tait graph G of D.



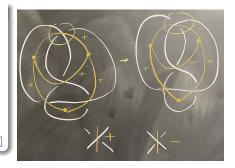
Proposition

Alternating link *diagrams* do not admit cosmetic crossings.

Proof.

- Form the Tait graph G of D.
- 2 For a spanning tree T of G, set

$$w(T) = \prod_{e \in T} \operatorname{sign}(e).$$



• • • • • • • • • • • •

Proposition

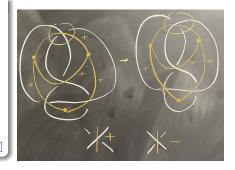
Alternating link *diagrams* do not admit cosmetic crossings.

Proof.

- Form the Tait graph G of D.
- 2 For a spanning tree T of G, set

$$w(T) = \prod_{e \in T} \operatorname{sign}(e).$$

3 Then det
$$(K) = |\sum_T w(T)|$$
.



- 4 ⊒ →

Proposition

Alternating link *diagrams* do not admit cosmetic crossings.

Proof.

- Form the Tait graph G of D.
- **2** For a spanning tree T of G, set

$$w(T) = \prod_{e \in T} \operatorname{sign}(e).$$

- Then det $(K) = |\sum_T w(T)|$.
- For D alternating, changing a sign changes det(K).



< □ > < 凸

The Gordon-Litherland Form

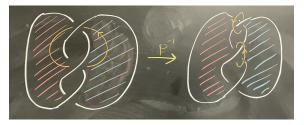
For a surface $S \subset S^3$, $\partial S = K$, the Gordon-Litherland form \mathcal{G}_S is a pairing $H_1(S)^2 \to \mathbb{Z}$ with $|\det(\mathcal{G}_S)| = \det(K)$.

A D N A B N A B N A B N

The Gordon-Litherland Form

For a surface $S \subset S^3$, $\partial S = K$, the Gordon-Litherland form \mathcal{G}_S is a pairing $H_1(S)^2 \to \mathbb{Z}$ with $|\det(\mathcal{G}_S)| = \det(K)$.

 $\mathcal{G}_{\mathcal{S}}([\alpha], [\beta]) = \mathsf{lk}(\alpha, p^{-1}(\beta))$



 $\mathcal{G}_{\mathcal{S}}([\alpha],[\alpha])=2$

Boninger (Boston College)

Cosmetic Crossings

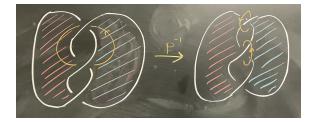
June 11, 2025 7 / 14

イロト 不得 トイラト イラト 一日

The Gordon-Litherland Form

For a surface $S \subset S^3$, $\partial S = K$, the Gordon-Litherland form \mathcal{G}_S is a pairing $H_1(S)^2 \to \mathbb{Z}$ with $|\det(\mathcal{G}_S)| = \det(K)$.

 $\mathcal{G}_{\mathcal{S}}([\alpha], [\beta]) = \mathsf{lk}(\alpha, p^{-1}(\beta))$



Proposition (Murasugi; Greene)

If D is alternating, the checkerboard surfaces of D have positive- and negative-definite GL forms.

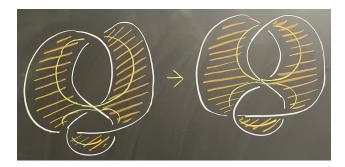
Boninger (Boston College)

Cosmetic Crossings

Second Attempt

Proposition

Alternating link diagrams do not admit cosmetic crossings.



-

(日)

Second Attempt

Proposition

Alternating link diagrams do not admit cosmetic crossings.

Proof.

The Gordon-Litherland form of S changes as follows:

$$A_{+} = \begin{bmatrix} a_{11} & a_{12} & \cdots \\ a_{21} & A' \\ \vdots & & \end{bmatrix} \mapsto A_{-} = \begin{bmatrix} a_{11} - 2 & a_{12} & \cdots \\ a_{21} & A' \\ \vdots & & \end{bmatrix}$$

Second Attempt

Proposition

Alternating link diagrams do not admit cosmetic crossings.

Proof.

The Gordon-Litherland form of S changes as follows:

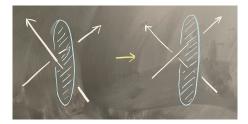
$$A_{+} = \begin{bmatrix} a_{11} & a_{12} & \cdots \\ a_{21} & A' \\ \vdots & & \end{bmatrix} \mapsto A_{-} = \begin{bmatrix} a_{11} - 2 & a_{12} & \cdots \\ a_{21} & A' \\ \vdots & & \end{bmatrix}$$

Since A_+ is definite, $det(A') \neq 0$, so $|det(A_+)| \neq |det(A_-)|$.

< □ > < 同 > < 回 > < 回 > < 回 >

Theorem 1 (B., 2023)

Special alternating knots do not admit non-nugatory, cosmetic crossings.



< □ > < 同 > < 回 > < 回 > < 回 >

Theorem 1 (B., 2023)

Special alternating knots do not admit non-nugatory, cosmetic crossings.

Proof.

If K is SA, any minimal-genus Seifert surface for K is definite.

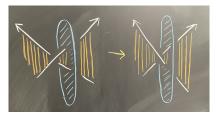
Image: A Image: A

Theorem 1 (B., 2023)

Special alternating knots do not admit non-nugatory, cosmetic crossings.

Proof.

If K is SA, any minimal-genus Seifert surface for K is definite. If U is a cosmetic crossing disk, some such S avoids ∂U [Gabai; S-T].

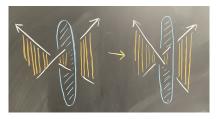


Theorem 1 (B., 2023)

Special alternating knots do not admit non-nugatory, cosmetic crossings.

Proof.

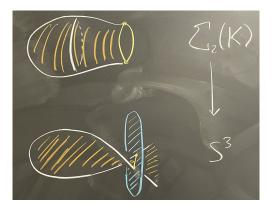
If K is SA, any minimal-genus Seifert surface for K is definite. If U is a cosmetic crossing disk, some such S avoids ∂U [Gabai; S-T].



If U does not separate S, the previous argument works.

What if U Separates S?

... Then the lift of the crossing arc $U \cap S$ to $\Sigma(K)$ is nullhomologous.



Boninger (Boston College)

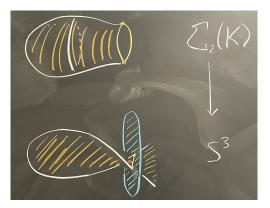
Cosmetic Crossings

June 11, 2025 10 / 14

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

What if U Separates S?

... Then the lift of the crossing arc $U \cap S$ to $\Sigma(K)$ is nullhomologous.



Lidman-Moore (+ Gainullin): if $\Sigma(K)$ is an *L*-space and crossing arc lift is nullhomologous, then *U* is nugatory.

Boninger (Boston College)

Cosmetic Crossings

June 11, 2025 10 / 14

• • • • • • • • • • • •

If $det(K_+) = det(K_-)$, then det(L) = 0.

Boninger (Boston College)

Cosmetic Crossings

June 11, 2025 11 / 14

3

A D N A B N A B N A B N

$$K_{+}$$
 K_{-} L

If $\det(K_+) = \det(K_-)$, then $\det(L) = 0$. (If $\Delta_{K_+} = \Delta_{K_-}$, then $\Delta_L \equiv 0$.)

Boninger (Boston College)

Cosmetic Crossings

June 11, 2025 11 / 14

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへの

$$\sum_{K+} \sum_{k-} \sum_{k-}$$

If det(K_+) = det(K_-), then det(L) = 0. (If $\Delta_{K_+} = \Delta_{K_-}$, then $\Delta_L \equiv 0$.) Motivation for Theorem 2: obstruct "non-trivial" band moves to links with $\Delta_L \equiv 0$.

イロト 不得下 イヨト イヨト 二日

$$\sum_{K+} \sum_{k-} \sum_{k-}$$

If $\det(K_+) = \det(K_-)$, then $\det(L) = 0$. (If $\Delta_{K_+} = \Delta_{K_-}$, then $\Delta_L \equiv 0$.)

Motivation for Theorem 2: obstruct "non-trivial" band moves to links with $\Delta_L \equiv 0.$

Theorem 2 (B., 2024)

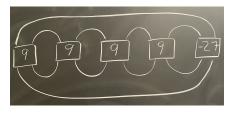
If K admits a non-nugatory cosmetic crossing change, and the branched double-cover of K is an L-space, then Δ_K has a factor $f(t)f(t^{-1})$ for some $f \in \mathbb{Z}[t, t^{-1}]$ satisfying $f(-1) \neq \pm 1$.

< □ > < 同 > < 回 > < 回 > < 回 >

Additional Results

Corollary 1 (B., 2023)

If $L \subset S^3$ has $\Sigma(L)$ an *L*-space, and $H_1(\Sigma(L))$ has a minimal generating set of size 2g(L), then *L* does not admit cosmetic crossing changes.



K = P(9, 9, 9, 9, -27)

Boninger (Boston	Col	lege)
------------	--------	-----	------	---

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Corollary 1 (B., 2023)

If $L \subset S^3$ has $\Sigma(L)$ an *L*-space, and $H_1(\Sigma(L))$ has a minimal generating set of size 2g(L), then *L* does not admit cosmetic crossing changes.

Corollary 2 (B., 2024)

The cosmetic crossing conjecture holds for all pretzel knots $K = P(p_1, p_2, p_3, p_4, q)$ such that:

• $p_i \ge 1$ and $q > \min(p_1, ..., p_4)$.

•
$$p_i \equiv 1$$
 and $q \equiv 3 \mod 4$.

< □ > < □ > < □ > < □ > < □ > < □ >

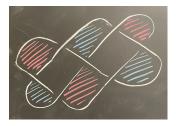
Further Questions

• Is the cosmetic crossing conjecture true for all alternating (or positive!) knots?

< □ > < 同 > < 回 > < 回 > < 回 >

Further Questions

- Is the cosmetic crossing conjecture true for all alternating (or positive!) knots?
- Can a crossing change to an alternating knot preserve the determinant?

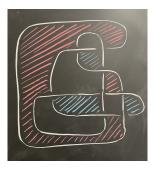


- 4 ∃ ▶

Further Questions

- Is the cosmetic crossing conjecture true for all alternating (or positive!) knots?
- Can a crossing change to an alternating knot preserve the determinant?
- The conjecture remains open for four knots with \leq 10 crossings, and 18 alternating knots with 11 crossings.

Thanks for watching!



A D N A B N A B N A B N

Boninger (Boston College)

Cosmetic Crossings

June 11, 2025 14 / 14

2