70 ", | Secretarfa IUPAP
§¥RY ¢ Nacionalde

¢, 3. v. ClenCIla Y INTERNATIONAL UNION OF
ke Tecnologia PURE AND APPLIED PHYSICS

for Theoretical Physics ._1AEA ===

(CTP> International Centre &) unesco

(A
S,
%
%)
)

< A’ TRICENTENARIA

Universidad de San Carlos de Guatemala

1st Mesoamerican Workshop on
Reconfigurable X-ray

Scientific Instrumentation for
Cultural Heritage

‘C’ for Embedded
Systems

Cristian Sisterna Senior Associate — ICTP MLAB ictp

Universidad Nacional de San Juan ¥

What is ‘Embedded C’ ?

Embedded C is a set of language extensions for the C
programming language designed specifically for
programming embedded systems — small computing devices
that control hardware in real-time.

It's not a separate language, but rather C tailored for
embedded applications with additional features to support
direct interaction with hardware.

Embedded C is essentially C adapted to run "closer to the
I/0s" — lean, efficient, and tightly integrated with hardware

Embedded C ICTP

Differences Between ‘C’ and ‘Embedded C’

Feature

Regular C

Embedded C

Target System

General-purpose computers (PCs, servers)

Microcontrollers, embedded systems

=1 Operating System

Often relies on OS (e.g., Linux, Windows)

Often no OS or a Real-Time OS (RTOS)

Libraries

Standard C libraries (stdio.h, etc.)

Limited or custom libraries; often no I/O
streams

" Hardware Access

Abstracted from hardware

Direct register and port manipulation

€ Memory Usage

Abundant (RAM, Disk)

Very limited memory (few KB to MB)

microcontroller

@ Timing Not deterministic Precise, deterministic timing often needed
£/ 1/0 Handling Through OS APIs or files Direct I/O via registers (e.g., PORTA
& Compilation Compiles to run on the host system Cross-compiled for a specific

¥ Toolchains

GCC, Clang

Keil, MPLAB, IAR, AVR-GCC, etc.

*« Typical Use Cases

Software apps, games, compilers

Device drivers, firmware, real-time control

Embedded C

ICTP

3

Difference Between ‘C’ and ‘Embedded C’

Two salient features of Embedded Programming are code speed and code size. Code
speed is governed by the processing power, timing constraints, whereas code size is
governed by available program memory and use of programming language.

Embedded systems often do not have a console, which is available in case of desktop
applications.

Embedded systems often have the real-time constraints, which is usually not there
with desktop computer applications.

Embedded C

Advantages of Using Embedded C
| Featwe [= Description |

€ Efficiency Designed for low-level access and minimal resource usage.
¥ Hardware Access Supports direct access to hardware registers and 1/O ports.
(® Real-time Capable Used in systems that require deterministic timing.

Code can often be reused across microcontrollers with minor

s Portability changes. Unlike assembly.

Compiler-specific features like __interrupt, _ bit, _ sfr etc. allow

¥ Extensions
low-level control.

It supports access to I/O and provides ease of management of large
E1 1/0 access embedded projects

Embedded C

Reviewing Embedded
‘C’ Basic Concepts

‘C’ Basic Data Types

Data Type |Description Size (Typical) | Format Specifier

int Integer (whole numbers) 4 bytes %d

char Character 1 byte %c

float Floating point (single precision) 4 bytes %f

double Floating point (double 8 bytes %lf
precision)

void No value (used_for functions N/A N/A
that return nothing)

Embedded C

‘C’ Derived Data Types & Modifiers

These are derived from basic types:

v Arrays (e.g., int arr[10];) You can modify ba_3|_c types with the
_ following type qualifiers:
v Pointers (e.g., int *p;)
» short
v Structures (e.qg., struct Person{ ... };)
. > long
v Unions (e.g., union Data { ... };) _
_ . > signed
v Functions (e.g., int func(int x);) .
» unsigned
Modified Type | Typical Size Notes
short int 2 bytes Smaller range of integers
long int 4 or 8 bytes Larger range
unsigned int 4 bytes Only non-negative values
long double 12 or 16 bytes | Higher precision float

Embedded C ICTP

Xilinx-AMD ‘C’ Basic Data Types

Xbasic types.h

This file contains basic types for Xilinx software IP.

- unsigned char Xulnt8;

- char Xints;
edef unsigned short Xuinti6;

- short Xintile6;

- unsigned long Xulnt32;

- long Xint32;
cdef float Xfloat32;
- double Xfloate4a;

F unsigned long Xboolean;

Embedded C ICTP -IAEA

https://github.com/Xilinx/embeddedsw/blob/master/XilinxProcessorIPLib/drivers/common/src/xbasic_types.h

Xilinx-AMD °‘C’ Basic Data Types

xil types.h

The xil _types.h file contains basic types for Xilinx software IP. These
data types are applicable for all processors supported by Xilinx.

ypedef uint8 t us;

pedet uintle t ul6;
pedet uint32 t u3z; cypedef char chars;
| 2 F int8 t s8;
- int16 t si16;
- int32 t s32;
F inte4 t s64;
F uinte4 t u64;

F 1nt sint32;

Embedded C ICTP -IAEA

https://github.com/Xilinx/embeddedsw/blob/master/lib/bsp/standalone/src/common/xil_types.h

Use of #include directive

#include is a directive that is used to include the contents of a file (usually a header file,
.h file) into your source code.

The syntax for the #include directive can use either double quotes (" ") or angle brackets
(< >), and there are important differences between the two:

#include <filename> (Angle Brackets) #include "filename™ (Double Quotes)
Search Path: When you use angle brackets, the Search Path: When you use double quotes, the
preprocessor searches for the specified file only preprocessor first searches for the specified file in
in the standard system directories (e.g., the same directory as the source file that contains
/usr/include on Unix/Linux systems). [t does not the #include directive. If the file is not found there,
look in the current directory. it then searches the standard system directories.
Usage: This is generally used for including Usage: This is typically used for including user-
standard library headers or system headers that defined header files or files that are part of your
are part of the C standard library. project.

#include <stdio.h> #include “my header”;

#ifndef directive

#ifndef is a directive that stands for "if not defined".
It's used to prevent multiple inclusion of the same header file, which can cause
compilation errors.

IDENTIFIER v" #ifndef checks if the identifier (macro) has not been
IDENTIFIER defined yet.

v If it hasn't, the code inside the block is included.

v ##define then marks it as defined, so the next time the file
Is included, the code is skipped.

Using #ifndef + #define is called a header guard, and it's a best practice in
C/C++ programming.

Local vs Global Variables

In C programming, variables can be local or global depending on where they
are declared and how they are accessed.

Local Variables Global Variables

Local variables are declared inside a
function, block, or compound statement and
are accessible only within that scope.

Global variables are declared outside
of all functions, usually at the top of
the program file. They are accessible

_ _ from any function in the program.
v" Accessible only by the function

within which they are declared v' Declared outside any function.

v Created when the function is called. v Exist for the lifetime of the program.

v Destroyed when the function exits. v' Can be accessed or modified by

v" Not accessible outside their scope any function

Embedded C

Global and Local Variables Declarations

int flag = 0;
char note = ‘a’;
main ()
{
flag = 1;
functionl ();
flag = 2;

}

int functionl ()

{

int alarm = 128;

alarm =+1;
flag = 3;

}

‘C’ Modifiers

In C language, modifiers are keywords that modify the meaning or
behavior of variables, functions, and data types.

They can affect storage, visibility, lifetime, type size, and optimization
behavior.

Storage-Class Modifiers
'C' Modifiers
Type Modifiers

‘C’ Modifiers - Storage-Class Modifiers

These control the lifetime, scope, and linkage of variables or functions.

Modifier Purpose Notes

Default for local variables (rarely used

auto ..
explicitly)
Hints to store variable in a CPU

register register (deprecated in modern
compilers)

static Keeps variable's value across Retains value, restricts linkage.

function calls / restricts visibility to file
Declares a variable/function defined Share variables/functions

extern in another file between files.
Prevents compiler optimization; Useful for variables that
volatile ensures variable is read from memory | changes outside normal control
every time (e.g. hardware).

Use of the ‘static’ modifier with variables

O “*The 'static' modifier may also be used with O static int flag = 0;
. static char note = ‘a’;
global variables
% This gives some degree of protection to the Tai“ 0
variable as it restricts access to the variable to o
those functions in the file in which the flag = 1;
variable is declared functionl ()7
flag = £;
0 ¢ The ‘static’ modifier causes that the local J
variable to be permanently allocated storage in int functionl ()
memory, like a global variable, so the value is 0 Lt
. L static int alarm = 128;
preserved between function calls (but still is

|Oca” alarm =+1;
flag = 3;

Embedded C

Use of the ‘static’ modifier with functions

¢ The ‘static’ modifier in a function declaration causes that the functions is only
callable within the file where is declared.

static void helper () {

// only callable within this file

Embedded C

‘volatile’ Variable

Tells the compiler not to optimize the variable because its value can change
unexpectedly (e.g. interrupts, hardware registers).

Ensure each access actually read or write the memory location.

Often your compiler may eliminate code to read the port as part of the compiler's
code optimization process if it does not realize that some outside process is
changing the port's value.

You can avoid this by declaring the variable volatile.

Embedded C

‘volatile’ Variable Example

sensorFlag;

O A{
(sensorFlag == @) {

Without volatile the compiler might optimize the loop away because it
assumes sensorflag variable never changes.

Embedded C

Use of the ‘static’ and ‘ vo/atile modifiers

Why Combine static and volatile?

o volatile tells the compiler

o “This variable can change at any time (outside normal program flow, like via an
interrupt), so don’t optimize accesses to it.”

o static ensures the variable
o “Persists between function calls and is only visible within this file (or function).”

Embedded C

Use of the ‘static’ and ‘ vo/atile modifiers

Example: You have a button
interrupt that sets a flag. The

‘C’ main loop waits for this flag

buttonPressed =

to Change to take action. __interrupt() button_isr() {
buttonPressed = e
File-level scope }
static
Keep buttonpressed
local to the file (()){{

(buttonPressed) {

Prevents optimization

buttonPressed = ;

volatile :
Ensures compiler does not }
cache the variable value, reads }

from memory every time

Embedded C }

‘C’ Modifiers - Type Modifiers

These modify the size or sign of data types.

Modifier Purpose

signed Default for int/char: can hold negative and positive values

unsigned | Only positive values (doubles the upper limit)

short Smaller-sized integer (usually 16 bits)

long Larger-sized integer (usually 32 or 64 bits)

long long | Even larger integer (usually 64 bits)

Functions Data Types

Function data types refer to the types of values that functions can return and the types of
parameters they can accept.

Return Type: Every function in C has Parameter Types: Functions can accept
a return type that specifies the type of parameters of various data types. The types
value the function will return. of parameters must be specified in the

function definition. You can have multiple

Common return types include: _
parameters of different types.

int: Returns an integer value.

float: Returns a floating-point value. '|/ \r

double: Returns a double-precision

floating-point value. void printSum(int a, float b) {
char: Returns a character. printf("Sum: %f\n", a + b);
void: Indicates that the function does }

not return a value.

Embedded C

Functions Data Types

Function Pointers: In C, you
can also define pointers to
functions, which allows you to
store the address of a function
and call it later.

The type of a function pointer is
defined by the return type and
the parameter types.

Embedded C

#include <
add(a,

return a + b;

multiply(a,
return a * b;

main() {

(*operation)(,

operation = &add;
printf(“Addition: %d\n", operation(5, 3));

operation = &multiply;
printf(“Multiplication: %d\n", operation(5,
return 0,

-
=2

)]

Structures

In C programming language, a structure (struct) is a user-defined data type that allows you to
group different types of variables under a single name.

#include “xparameters.h”™
#include “xgpic.h”
#include “xgpiops.h”

static XGpioPs psGpiolInstancePtr;
static imt iPinNumber = 7; /*Led LD9

II,-'**
S i=================================== * The XGpio driver instance data. The user is required to allocate a
* wvariable of this type for every GPIO dewvice in the system. A pointer
int main (void) :‘.-'tD a variable of this type is then passed to the driver API functions.
L typedef struct
5“‘ led; P u3z2 Base.ﬂ.ddiess; /* Device base address */
int 1, pshb_check, sw_check; u32 IsReady; /* Device is initialized and ready */
int InterruptPresent; J/* Are interrupts supported in h/w */
it] DU 1 5 /* Are 2 channels supported in h/w */
H XaGpio;

Embedded C

Review of ‘C’ Pointer

In ‘C’, the pointer data type corresponds to a MEMORY ADDRESS

a int x =1, vy =5, z = 8, *ptr;
@ ptr = &x; // ptr gets (point to) address of x
G Y = *ptr; // content of y gets content pointed by ptr
@ *ptr = z; // content pointed by ptr gets content of z
O O O
X . Ptr. Y" . ptr —>I .
[Tyl
z |] |
= .

Embedded C

‘C’ Techniques for
low-level |/O Operations

Bit Manipulation in ‘C’

Bitwise operatorsin ‘C’: ~ (not), & (and), | (or), *~ (xor)
which operate on one or two operands at bit levels

u8 mask = 0x60; //0110 0000 mask bits 6 and 5
u8 data = 0xb3 //1011 0011 data
u8 do0, dl, d2, d3; //data to work with in the coming example

d0 = data & mask; // 0010 0000; isolate bits 6 and 5 from data
dl = data & ~mask; // 1001 0011; clear bits 6 and 5 of data

d2 = data | mask; // 1111 0011; set bits 6 and 5 of data
d3 = data ”~ mask; // 1101 0011l; toggle bits 6 and 5 of data

Embedded C

Bit Shift Operators

Both operands of a bit shift operator must be integer values

The right shift operator shifts the data right by the specified number
of positions. Bits shifted out the right side disappear. With unsigned
integer values, Os are shifted in at the high end, as necessary. For
sighed types, the values shifted in is implementation-dependant.
The binary number is shifted right by number bits.

X >> number;

The left shift operator shifts the data right by the specified number
X << number; of positions. Bits shifted out the left side disappear and new bits
coming in are 0s. The binary number is shifted left by number bits.

Embedded C

Bit Shift Example

void led [XGpio *pLED_GPIO, int nNumberOfTimes)
{

int 1=0; int 7=0;
u8 uchlLedStatus=0;

for (1=0; i<nNumberOfTimes; 1++)

{

{
uchLedStatus = 1 << j;
XGpio DiscreteWrite (pLED GPIO, 1, uchLedStatus);
delay (ABOUT ONE SECOND / 15);

}

for (3-0;3<8; 3+ // (R

{
uchLedStatus = 8 >> 7j;
XGpio DiscreteWrite (pLED GPIO, 1, uchLedStatus);
delay (ABOUT ONE SECOND / 15);

}

Unpacking Data

There are cases that in the same memory address different fields are stored

Example: let’s assume that a 32-bit memory address contains a 16-bit field for an integer data
and two 8-bit fields for two characters

le 15 . . . g 7 . . . 0

31 ...

u3Z2 10 rd data;

int num;
char chl, choO;

— 1o _rd data = my iord(...);//my io read read a data

. = (1 ' >> ;

Unpackug;—= num (int) ((io rd data & Oxff£ff£f0000) 10)
chl = (char) ((10 rd data & 0x0000££00) >> 8);

(char) ((io rd data & 0x000000ff));

ICTP

— chO0 =

Embedded C

Packing Data

There are cases that in the same memory address different fields are written

Example: let’s assume that a 32-bit memory address will be written as a 16-bit field for an
integer data and two 8-bit fields for two characters

31 le 15 . . . g 7 . . . O

u32 wr data;
int num = 5;
char chl, chO;

wr data = (u32) (num); //num[15:0]
= wr data = (wr data << 8) | (u32) chl; //num[23:8],chl1[7:0]
%g wr data = (wr data << 8) | (u32) chO; //num[3l 16],chl1[15:8]
o my iowr(. . . , wr data) ; //ch0[7:0]

Embedded C

Another Way

wr data = (((u32) (num))<<1o6) | (((u32)chl)<<8) | (u3d2)ch2;

Basic Embedded ‘C’
Program Template

Embedded System Application

In embedded systems, applications are typically designed as a collection of
tasks or functional blocks, each responsible for a specific operation. These
tasks can be implemented using:

Software Routines Hardware Accelerators
v Executed by a general-purpose v Implemented on FPGAs, ASICs, or
processor (e.g., ARM Cortex). dedicated coprocessors.
v Written in C/C++ or assembly. v Designed using RTL (VHDL/Verilog)
v Good for tasks that are: or HLS (C/C++ — Hardware).
v Control-intensive v" Best for tasks that are:
v Low-throughput v" Compute-intensive
v Complex to parallelize v" Highly parallel

v" Time-critical

Example Embedded System Application

Frame capture Software
Color space conversion Hardware (HLS)

Edge detection Hardware (RTL/HLS)

Display output Software

Basic Embedded Program Architecture

An embedded application consists of a collection tasks, implemented by
hardware accelerators, software routines, or both.

#include “nnnnn.h”

#include <ppppp.h>

main ()

{
sys init();//
while (1) {
task 1();
task 2();
task n{();
J

Embedded C

I/0 Simple Example

The flashing-LED system turns on and off two LEDs alternatively according to the interval
specified by the ten sliding switches

Tasks ?7?7?

!

1. reading the interval value from the switches

2. toggling the two LEDs after a specific amount of time

Embedded C

I/0 Simple Example

#include “nnnnn.h”
#include “aaaaa.h”

main ()
{ main ()
while (1) { {
- . . int period;
task 1();
task 2(); while (1) {

. .. read sw(SWITCH S1 BASE, é&period);
} led flash(LED L1 BASE, period);

} }

Embedded C

I/0 Simple Example - Reading

/**
* function: read sw ()

* purpose: get flashing period from 10 switches

* argument:

* sw—-base: base address of switch PIO

* period: pointer to period

* return:

* updated period

* note

**/

void read sw(u32 switch base, int *period)
{
*period = my iord(switch base) & 0x000003ff; //read flashing period

// from switch

Embedded C

I/0 Simple Example - Writing

/*******************~k*****~k*******~k**********************~k*~k*****~k*************************

function: led.flash ()
purpose: toggle 2 LEDs according to the given period
argument:
led-base: base address of discrete LED PIO
period: flashing period in ms
return : none
note
* — The delay 1s done by estimating execution time of a dummy for loop
* — Assumption: 400 ns per loop iteration (2500 iterations per ms)
* - 2 instruct. per loop iteration /10 clock cycles per instruction /20ns per clock cycle (50-MHz clock)
***k/

void led flash(u32 addr led base, int period)

{
static u8 led pattern = 0x01; // initial pattern
unsigned long i, itr;

% % % % % X

led pattern "= 0x03; // toggle 2 LEDs (2 LSBs)
my iowr (addr led base, led pattern); // write LEDs

1tr = period * 2500;

for (i=0; i<itr; i++) {} // dummy loop for delay

Embedded C

/0 Example — Read / Write

void read sw(u32 switch base, int *period)
{
*period = my iord(switch base) & 0x000003ff;

int main ()

{

int period;

while (1) {
read sw(SWITCH S1 BASE, &period)
= — void led flash(u32 addr led base, int period)

led flash(LED L1 BASE, period); {

} static u8 led pattern = 0x01;
unsigned long i, itr; //static?

return O;
] | led pattern 7= 0x03;

my lowr (addr led base, led pattern);
itr = period * 2500;
for (i1=0; 1i<itr; 1i++) {}

Embedded C

Zynq PSoC: Read/Write
From/To GPIO Inputs and
Outputs

Example of Wr/Rd to/from GPIO

Diagram X Address Editor x|Address Map x 200
@ © 2 ™M © O s |+ M #, C 9 | = Default) v o
processing system7 0
GPIO_0 +|| {> BTNR
DDR +|| [DDR
FIXED_IO + ||}
M_AXI_GPO_ACLK ZYNQ -0+ !! > FIXED_IO
. M_AXI_GPO i
FCLK_CLKO
FCLK_RESETO_N
ZYNQ7 Processing System processing_system7_0_axi_periph
2y 500 AXI board sw_8b
el S AX] ‘
ARESETN B -
OOSACLK J s_axi_aclk GPIO + I: > sws_8bits
. 500 e —(S _axi_aresetn
rst_processing_system7_0_50M SO0_ARESETN m<m i -
MOD_ACLK o AXI GPIO
slowest_sync_clk mb_reset MOO0_ARESETN
ext_reset_in bus_struct_reset[0:0] MO01_ACLK
aux_reset_in peripheral_reset[0:0] MO1_ARESETN board_leds_8b
mb_debug_sys_rst interconnect_aresetn[0:0] S AXI
dcm_locked ipheral tn[0:0 AXI Interconnect
cm_locke peripheral_aresetn[0:0] o axi_aclk a0 = +D leds_8bits
i t
Processor System Reset 9 s_axi_aresetn
AXI GPIO

Steps for Reading from a GPIO

Create a GPIO instance

Initialize the GPIO

Set data direction (optional)

Read the data

> Wb

Steps for Reading from a GPIO

Create a GPIO instance

Initialize the GPIO

Set data direction (optional)

Read the data

- A\

Steps for Reading from a GPIO - Step 1

1. Create a GPIO instance

{ >/
. v . » typedet struct {
XGpIO SW|tChesr u32 BaseAddress;

XGpio leds; u32 IsReady;
int InterruptPresent;

int IsDual;
} XGpioj;

Embedded C

J.-'=|-=
lI,-'=|-=
II.-'=|-=
‘,-'=|-=

#include “xparameters.h” |
H o" H) .llll**
ffinclude xgplo.h * The Xa@pic driver instance data. The user is required to allocate a
. . . * variable of this type for every GPIO device in the system. A pointer
Int mail (VC”C” * to a variable of this type is then passed to the driver API functions.

Device base address */

Device is initialized and ready */
Are interrupts supported in h/w */
Are 2 channels supported in h/w */

Steps for Reading from a GPIO - Step 2

2. Initialize the GPIO

(int) XGpio Initialize (XGpio *InstancePtr, ul6é DevicelD);

InstancePtr: is a pointer to an XGpio instance (already declared).

DevicelD: is the unique ID of the device controlled by this XGpio component (declared in the
xparameters.h file)

@return
- XST_SUCCESS if the initialization was successfull.]_ xstatus.h
- XST_DEVICE_NOT_FOUND if the device configuration data was not

Embedded C

Steps for Reading from a GPIO - Step 2

(int) XGpio Initialize (XGpio *InstancePtr, ulé DevicelD);

// AXI GPIO switches i1nitialization
XGpio Initialize (&switches, XPAR_BOARD_SW_8B_DEVICE_ID) ;

L] xparameters.h 2 E lab_gpic_in_... L] :{gpiups_h/h

/

/* Definitions for peripheral BOARD ISW 8B */e

ﬂ, board_swi_8b
|zsma l

a_ack G 1| [sws_8hits
ae_aresetn

#define XPAR BOARD ISW BE_BASEADDR @x#1210000
#define XPAR BOARD 'SW . BB HIGHADDR @f4121FFFF
#define XPAR BOARD ISW . 8B _DEVICE ID @
#define XPAR BOARD ISW . BB_INTERRUPT PRESENT @
#define XPAR BOARD 'Sw: 8B IS DUAL @

Embedded C

B00_AHT]+ 2 e A1 GPIO
H01_ANT 1 [

board leds 8b

T
i _ack | [leds_8hits
| i }

AT GPIO

xparameters.h

The xparameters.h file contains the address map for peripherals in the
created system.

This file is generated from the hardware platform created in Vivado

E lab_gpio_in_out.c
[#inc]ude "xparameters.h" |< Ctrl + Mouse Over

Finclude Xgpic.n
#include "xgpicps.h"

4 ﬁ exercise_05_bsp
» 1 BSP Documentation
4 (= psi_cortexad xparameters.h file can be found underneath the
= code include folder in the ps7_cortexa9 O folder of
4 (= include the BSP main folder

Embedded C

xparameters.h

ﬁﬁfﬂ++ - exercise_05_bsp/ps7_cortexa9_0/include/xparameters.h - Xilinx SDK

File Edit Source Refactor Mavigate Search Project Xilinx Tools Run Window Help

MrH@g grA-heaHED wS |l ens
Fa Project Explorer &% = 8 || [« *xparameters.h 2 L] Xgpio.c L] platform.h L] platferm.c
{}=.'=E}| ? = = II.I'***=|'==|'==|'==|'==|'==|'==|'==|'==|'=*******=|'==|'==|'==|'==|'==|'==|'==|'==|'=***************************
b b xil_types.h - /* Definitions for driver GPIO */
B @ xl2cc_counterh #define XPAR_XGPIO NUM_TINSTANCES 1
> [d2ceh /* Definitions for peripheral AXI _GPIO @ */
> || xparameters_ps.h #define XPAR_AXI GPIO @ BASEADDR @x41200000
» |h| xparameters.h #define XPAR_AXI GPIO @ HIGHADDR @x4128FFFF
o [B xplatform_info.h | #define XPAR_AXI_GPIO @ DEVICE_ID @
» [xpm._counterh #define XPAR_AXI_GPIO_@_INTERRUPT_PRESENT @
#define XPAR AXI GPIO @ IS DUAL @
i |h| xpseudo_asm_gcc.h - = - =
[@ xpseudo_asm.h = P e e e SRt b E e L Lt
b R xqspips_hw.h /* Canonical definitions for peripheral AXI GPIO & */
. [R xqspips.h #define XPAR GPIO @ BASEADDR @x41200000
B @ xreg_cortexad.h #define XPAR GPIO & HIGHADDR @x4128FFFF
. h' #define XPAR GPIO @ DEVICE_ID XPAR AXI GPIO @ DEVICE_ID
L HeEHgle . #define XPAR GPIO @ INTERRUPT PRESENT @
b B xscugich #define XPAR GPIO 8 IS DUAL @

Embedded C ICTP

Steps for Reading from a GPIO - Step 3

3. Set data direction

void XGpio_SetDataDirection (XGpio *InstancePtr, unsigned Channel, u32 DirectionMask);

InstancePtr: is a pointer to an XGpio instance to be working with.
Channel: contains the channel of the XGpio (1 o 2) to operate with.

DirectionMask: is a bitmask specifying which bits are inputs and which are outputs.
Bits set to ‘O’ are output, bits set to ‘1’ are inputs.

Return: none

Embedded C

Steps for Reading from a GPIO - Step 3

void XGpio_SetDataDirection (XGpio *InstancePtr, unsigned Channel, u32 DirectionMask);

// AXI GPIO switches: bits direction configuration

XGpio SetDataDirection (&board sw 8b, 1, Oxffffffff);

d_perigh board_sw_85
[zsma
ad_ack GPICs 2| [swis_8hits
st
M00_A: - [AX] GPIO
H01_ANL 1 e
_| board_leds 8b
s 0n
s i ack, el || [leds_Shits
——— T [
AXT GFTO

Embedded C

Steps for Reading from a GPIO - Step 4

4. Read the data

u32 XGpio_DiscreteRead (XGpio *InstancePtr, unsigned Channel);

InstancePtr: is a pointer to an XGpio instance to be working with.
Channel: contains the channel of the XGpio (1 o 2) to operate with.

Return: read data

Embedded C

Steps for Reading from a GPIO - Step 4

u32 XGpio_DiscreteRead (XGpio *InstancePtr, unsigned Channel);

// AXI GPIO: read data from the switches
sw_check = XGpio_DiscreteRead(&board sw 8b, 1);

Steps for Writing to GPIO

Create a GPIO instance

Initialize the GPIO

Set the data direction (optional)
Read the data

- A\

Steps for Writing to a GPIO - Step 1

1. Create a GPIO instance

#include “xgpio.h”
int main (void)
{
XGpio switches;
XGpio leds;

Embedded C

II.-'=|-==|-=
* The XGpic driver instance data. The user is required teo alleocate a
* variable of this type for every GPIO dewvice in the system. A pointer
* to a variable of this type is then passed to the driver API functions.
*/
typedet struct {

u32 BaseAddress; /* Device base address */

u32 IsReady; /* Device is initialized and ready */
int InterruptPresent; /* Are interrupts supported in h/w */
int IsDual; /* Are 2 channels supported in h/w */

} Xapio;

Steps for Writing to a GPIO - Step 2

2. Initialize the GPIO

(int) XGpio Initialize (XGpio *InstancePtr, ulé DevicelD);

InstancePtr: is a pointer to an XGpio instance.

DevicelD: is the unique id of the device controlled by this XGpio component

@return
- XST_SUCCESS if the initialization was successfull.

- XST_DEVICE_NOT_FOUND if the device configuration data was not]’ xstatus.h

Embedded C

Steps for Writing to a GPIO - Step 2

(int) XGpio Initialize (XGpio *InstancePtr, ulé DevicelD);

// AXI GPIO leds initialization
XGpio Initialize (&board leds 8b, XPAR_BOARD_LEDS_8B_DEVICE_ID) ;

" .

L] xparameters.h 2 |E lab_gpic_in_... L] :{lpiups_hw.h ') Sears s 8
it
i _ack mﬂ:ll [sws_8hits
/* Definitions for peripheral BOARDy LEDS 8B */ R sir1

#define XPAR_BOARD LEDS SB_BASEADDR @x41218868 Al CPID
#define XPAR_BOARD LEDS 8B HIGHADDRY @x4121FFFF

- - - - d_leds_8b
#define XPAR_BOARD LEDS 8B DEVICE ID @ o e
#define XPAR_BOARD LEDS 8B INTERRUPT PRESENT @
#define XPAR_BOARD LEDS 8B IS DUAL 8

T
i _ack | [leds_8hits
| i }

AT GPIO

Embedded C

Steps for Writing to a GPIO - Step 3

3. Write the data

void XGpio_DiscreteWrite (XGpio *InstancePtr, unsigned Channel, u32 Data);

InstancePtr: is a pointer to an XGpio instance to be worked on.

Channel: contains the channel of the XGpio (1 o 2) to operate with.

Data: Data is the value to be written to the discrete register

Return: none

Embedded C

Steps for Writing to a GPIO - Step 3

void XGpio_DiscreteWrite (XGpio *InstancePtr, unsigned Channel, u32 Data);

// AXI GPIO: write data (sw check) to the LEDs
XGpio_DiscreteWrite(& board leds 8b,1, sw check);

Embedded C

Complete GPIO Rd/Wr Example

file:///D:/ictp_labs/lab_gpio_inout/lab_gpio_in_out/c_src/sol/lab_gpio_in_out_Solution.c

‘C’ Drivers for IP Cores

SPI IP Core - Example

Embedded C

rst_ps7_0_50M

slowest sync clk
ext_reset_in
aux_reset_in

mb_reset
bus struct reset[0:0]
peripheral_reset[0:0]

[
mb_debug_sys_rst interconnect_aresetn[0:0]
dem_locked peripheral_aresetn[0:0]

Processor System Reset

processing_system7 0

L IRQ_F2P[0:0]

-

poR + ||}

ps7_0_axi_periph

ACLK

£+ 500_AXI

ARESETN L
X

S00_ACLK BN MOO_AXI + i}
SO00_ARESETN miim

MOO_ACLK

MOO_ARESETN

AX| Interconnect

axi_quad_spi_0

-

[+ AXI_LITE
ext_spi_clk
s_axi_aclk

@ 5_axi_aresetn

SPILO +
ip2inte_irpt

LS

AX| Quad SPI

=] spi_rtl

FIXED 10 + |||

{ DDR

M_AXI_GPQ_ACLK

M_AXI_GPO 4 fi
FCLK_CLKO

ZYNQ

FCLK_RESETO N ©—

A

ZYNQ7 Processing System

{O FIXED_IO

SPI IP Core - Example

#include
#include
#include
#include

"xparameters.h"
"xscuglc.h"

"1l exception.h”
<stdio. h>

Embedded C

ff ommmmm - SPI related functions --------------------- 'y
// Initialize the SPI driwver

SPI_ConfigPtr = XSpi LookupConfig(XPAR AXI QUAD SPI 8 DEVICE ID);

if (SPI ConfigPtr == NULL) return XST DEVICE NOT FOUND;

Status = XSpi CfgInitialize(&SpiInstance, SPI_ConfigPtr, SPI_ConfigPtr->BaseAddress);
if (Status != XS5T SUCCESS) return XST_FAILURE;

// Reset the SPI peripheral
XSpl Reset(&SpilInstance);

SPI IP Core - Example

* Initializes a specific XSpi instance such that the driver is ready to use.

* The state of the device after initialization is:

* - Device is disabled
* - S5lave mode
* - Active high clock polarity
* - Clock phase B
* @param InstancePtr is a pointer to the XSpi instance to be worked on.
* @param Config is a reference to a structure containing information
* about a specific SPI device. This function initializes an
* InstancePtr object for a specific device specified by the
* contents of Config. This function can initialize multiple
* instance objects with the use of multiple calls giving
different Config information on each call.
* @param EffectiveAddr is the device base address im the wirtual memory

* address space. The caller is responsible for keeping the

* address mapping from EffectiveAddr to the device physical base
* address unchanged once this function is invoked. Unexpected

* errors may occur if the address mapping changes after this

* function is called. If address translation is not used, use

* Config->BaseAddress for this parameters, passing the physical
* address instead.

* @return

* - XST SUCCESS if successful.

* - XST DEVICE IS STARTED if the device is started. It must be
* stopped to re-initialize.

* @note Hone.

‘int XSpi EfgIn:t:all:ﬂ(KSpl *InstancePtr, XSpi | Conflg *Eunflg.

_ UINTPTR EffectiveAddr) _

‘C’ Drivers for
Custom IP

Custom IP

Embedded C

rst_processing_system?7_0_50M

processing_system?7_0_axi_periph

ACLK

buttons

“|4ES_AXI
axi_ack
_axi_aresetn

GPIO #II—D btns_5bits

AX1 GPIO
switches

_ACLK 0 MO1_AXI 4k i

_ARESETN(0:0] § MOO_AX 3

“l4eS_AXI
_axi_ack
 axi_aresetn

GPIO 4 ||f={, sws_8bits

§—e=M00_ARESETN[0:0] &y MO2 AXI4k |
. 1_ACQK

01_ARESETN[0:0]
Eoz_m
MO2_ARESETN

slowest_sync_ck mb_reset
t_reset_in bus_struct_reset[0:0]
reset_in peripheral_reset[0:0]
mb_debug_sys_rst interconnect_aresetn[0:0)
_Jocked peripheral_aresetn[0:0]
Processor System Reset
processing_system?7_0
DDR 3¢
- FIXED_IO 4¢
—M_AXI_GPO_ACLK ZYNQ M_AXI_GPO4 |3
i FCLK_CLK
FCLK_RESETO_N

AXI Interconnect

led[7:0]

led_ip_v1.0 (Beta)
DDR

FIXED_IO

ZYNQ?7 Processing System

My IP — Memory Address Range

[E—ﬂDiagram x]ﬂ.ﬁdﬂrﬁsﬁﬂm x]

0\ Cell Slave Interface Base M... Offset Address Range High Address
2 |=-4F processing_system7_0
E- B Data (32 address bits : 0x40000000 [1G)

I=I switches S_AXI Reqg Ox4l20 0000 o4 - O0xdlz0 FFEF
: 5_ANI Reg Ox4121 0000 64 - Oxdl21 FFFF
S_ANXI Mema 0x4000_0000 8K = 0x4000_1FFF

1]s_Ax1_reg |ox43co_oooo 0x43C0_FFFF

i |

Embedded C

Custom IP Drivers

" The driver code are generated automatically when the IP template is

created.

" The driver includes higher level functions which can be called from the

user application.

" The driver will implement the low level functionality used to control your

peripheral.

led ip\ip_repo\led ip_1.0\drivers\led ip _v1 0\src <

pu—

Embedded C

—

led ip.c

led ip.h —

LED IP_mWriteReqg(...)

LED IP_mReadReq(...)

Custom IP Drivers: *.c

led _ip\ip_repo\led ip _1.0\drivers\led ip_v1 O\src\led ip.c

Organize » Mew folder 2) led e B2
1 lab_custom_ip * Name Date modified Type

1. lab_custom_ip.cache)) o
lab - o h |_|#|Ed_lp-h# 8/19,/2015 6:57 PM H# File JEEFErkkkkkkkkRRRRRRRRRRRREEEE Tne]pde Files *****
) lab_custom_ip.hw

. I b_ _.p | led_ip B/18/20158:28 PM C File ‘ #include "led ip.h"

, lab_custom_ip.runs

- - = | led_ip 8/18/2015 8:28 PM H File

1. lab_custom_ip.sdk JRFEEEEFLXFEXEIF LR FXEFXXE2E Fynction Definitions *
| b_ T | led_ip_selftest 8/18,/2015 8:28 PM C File

) lab_custom_ip.sim

. | b_ _.p || Makefile 8/18/2015 8:28 PM File

o lab_custom_ip.srcs

L led_ip

|l ip_repo F

L edit_led_ip_v1_0.hw

m

L edit_led_ip_vl_D.sim
L led ip 1.0
L bd

L drivers

L led ip vl 0
. data

L. sfC

Embedded C

Custom IP Drivers: *.h

led _ip\ip_repo\led ip _1.0\drivers\led ip_v1 O\src\led ip.h

Organize * MNew folder g
\ lab_custom_ip “ MName Date modified Type
L lab_custemn_ip.cache) o
_ || #Fled_ip.h# B/19/2015 6:57 PM H=# File
. lab_custom_ip.hw])
)) led_ip 8/18/2015 8:48 PM C File
. lab_custom_ip.runs ; -
) | led_ip 8/18/2015 8:28 PM H File
L lab_custom_ip.sdk - - [
o | led_ip_selftest 8/18,/2015 8:28 PM C File
. lab_custom_ip.sim]]
] || Makefile B/18/2015 8:28 PM File
. lab_custom_ip.srcs
L led_ip
\l ip_repo F

Loedit_led_ip_vl_0.hw

m

L edit_led_ip_v1_0.sim
L led_ip 10
I bd

L drivers

1 led_ip_vl 0
| data

ly src

Embedded C

Custom IP Drivers: *.h

led _ip\ip_repo\led ip _1.0\drivers\led ip_v1 O\src\led ip.h

T led_iph 57

ll,-':k:k**:k:k:k:k:k:k:l-:******:k IHC].UdE FilES ******:I-C:I-ﬂd-::k:k******:k:k:kf

#include "xil types.h"
#include "xstatus.h”

#define LED IP S AXI SLV REG@ OFFSET @
#define LED IP S AXI SLV _REG1_OFFSET 4
#define LED IP S AXI SLV _REG2_OFFSET 8
#define LED IP 5 AXI SLV REG3 OFFSET 12

Embedded C

Custom IP Drivers: *.h

led ip\ip_repo\led ip _1.0\drivers\led ip_v1 O\src\led ip.h

J.l'=|-==|'=

%

* Write a value to a LED IP register. A 32 bit write is performed.

* If the component is implemented in a smaller width, only the least
* significant data is written.

E

E

fiparam BaseAddress is the base address of the LED IPdevice.

* [@param RegOffset is the register offset from the base to write to.
* [@param Data is the data written to the register.

E 2

* [@return None.
E S
* [@note
* C-style signature:
* wvoid LED IP mWriteReg({u32 BaseAddress, unsigned RegOffset, u32 Data)
E 2
*/
#define LED IP mlriteReg(BaseAddress, RegOffset, Data) \
Xil Out32((BaseAddress) + (RegOffset), (u32)(Data))

Embedded C

Custom IP Drivers: *.h

led ip\ip_repo\led ip _1.0\drivers\led ip_v1 O\src\led ip.h

ll,-'*:l-t

Read a value from a LED IP register. A 32 bit read is performed.

If the component is implemented in a smaller width, only the least
significant data is read from the register. The most significant data
will be read as @.

O R OH O W W

lparam BaseAddress is the base address of the LED _IP device.
* [param RegOffset is the register offset from the base to write to.

£

* fireturn Data is the data from the register.
&
* [@note
* C-style signature:
* w32 LED_IP mReadReg(u32 BaseAddress, unsigned RegOffset)
&
*/
#define LED IP mReadReg(BaseAddress, RegOffset) \
Xil In32((BaseAddress) + (RegOffset))

Embedded C

Custom IP Drivers: *.h

led ip\ip_repo\led ip _1.0\drivers\led ip_v1 O\src\led ip.h

II,-'**

*

* Run a self-test on the driver/device. Note this may be a destructive test if
* resets of the device are performed.

*

* If the hardware system is not built correctly, this function may never

* return to the caller.

*

* [param baseaddr_p is the base address of the LED _IP instance to be worked on
*

* [@return

*

* - XS5T SUCCESS if all self-test code passed

* - XST_FAILURE if any self-test code failed

*

* [note Caching must be turned off for this function to work.

* [inote Self test may fail if data memory and device are not on the same bus.
*

*/

XStatus LED _IP Reg SelfTest(wvoid * baseaddr p);

Embedded C

‘C’ Code for Writing to My_IP

tinclude “xparameters.h"
#include "xgpic.h™
#include "led _ip.h"

int main (wvoid)

1
Xa@pic dip, push;
int i, psb_check, dip_check;

xil_printf{"-- Start of the Program --‘\rin"};

XGpic Initialize(&dip, XPAR SWITCHES DEVICE_ID);
Xaopioc SetDataDirection(&dip, 1, @xffffffff);

¥opio Initialize(&push, XPAR BUTTONS DEVICE ID);
XGpic SetDataDirection(&push, 1, exffffffff);

while (1)
1

psb_check = XGpio_DiscreteRead(&push, 1);

x¥il _printf("Push Butteons Status ¥x\r\n", psb_check);
dip check = XGpio DiscreteRead(&dip, 1);

¥il printf("DIP Switch Status ¥x\r'\n", dip_check);

for (i=8; i<9999999; i++);

Embedded C

IP Drivers — Xil Out32/Xil In32

#define LED_IP_mWriteReg(BaseAddress, RegOffset, Data){ Xil Out32((BaseAddress) + (RegOffset), (Xuint32)(Data))

#define LED_IP_mReadReg(BaseAddress, RegOffset)l Xil In32((BaseAddress) + (RegOffset))

o For this driver, you can see the macros are aliases to the lower level functions
Xil_Out32() and Xil_In32()

o The macros in this file make up the higher level API of the led_ip driver.

o If you are writing your own driver for your own IP, you will need to use low level
functions like these to read and write from your IP as required. The low level hardware
access functions are wrapped in your driver making it easier to use your IP in an
Application project.

Embedded C

IP Drivers — Xil_In32 (xil_io.h/xi/l_io.c)

/***/

/**
* Performs an input operation for a 32-bit memory location by reading from the

* specified address and returning the Value read from that address.
*

* @param Addr contains the address to perform the input operation at.
*

* @return The Value read from the specified input address.
*

* @note None.
k

**/

u32 Xil_In32(INTPTR Addr)
{

return *(volatile u32 *) Addr;

Embedded C

IP Drivers — Xil_Out32 (xil_io.h/xil_io.c)

/***/

/**
* Performs an output operation for a 32-bit memory location by writing the

* specified Value to the the specified address.
*

* @param Addr contains the address to perform the output operation at.

* @param Value contains the Value to be output at the specified address.
*

* @return None.
ES

* @note None.
**/

void Xil_Out32(INTPTR Addr, u32 Value)

{
u32 *LocalAddr = (u32 *)Addr;

*LocalAddr = Value;

Embedded C

IP Drivers - Vitis ‘Activation’

o Select <project_name>_bsp in the project view pane. Right-click

o Select Board Support Package Settings
o Select Drivers on the Overview pane

o If the led_ip driver has not already been selected, select Generic under

the Driver Column for led_ip to access the dropdown menu. From the

dropdown menu, select led _ip, and click OK>

IP Drivers - Vitis ‘Activation’

m Board Support Package Settings

Board Support Package Settings
Control various settings of your Board Support Package.

4 Cherview

ctandalone .
[4 drivers Drivers
psi_cortexad 0 The table below lists all the components found in your hardware system. You can modify the driver (

component. If you do not want to assign a driver to a component or peripheral, please choose 'none’

Component Component Type Diriver

ps/_cortexad psi_cortexald cpu_cortexad

awi_brarm_ctrl 0 axi_bram_ctrl bram

buttons axi_gpio gpic

led_ip led_ip led_ip -
ps7_afi_0 psi_afi none.

ps7_afi_1 ps7_afi S

ps/_afi_2 psi_afi

Embedded C

System Level Address Map

FFFC_0000 to FFFF_FFFFIZ) : :
Embedded C OCM is not mapped high 84

CPUs and Other Bus
Address Range ACP AXI_HP | o ctersil) MNotes
OCM oM oCM Address not filtered by SCU and OCM is
mapped low
DDR oM oCM Address filtered by SCU and OCM is
. mapped low
0000 0000 to 0003 FFFF(Z
- - Address filtered by SCU and OCM is not
DDR
mapped low
Address not filtered by 5CU and OCM is
not mapped low
DDR Address filtered by SCU
0004 0000 to 0007 FFFF
- - Address not filtered by SCU
DDR DDR DDR Address filtered by SCU
0008_0000 to 000F_FFFF -
DDR DDR Address not filtered by SCU(3)
Aol0 o000 i0 ADED EDED NI NI onoe Acrpccible to all interconpnerct moactere
General Purpose Port #0 to the PL,
4000 _0000 to 7FFF_FFFF PL PL M_AXI_GPO
General Purpose Port #1 to the PL,
8000_0000 to BFFF_FFFF PL PL M_AXL_GP1
E00C_0000 to EO2F_FFFF (013 (13 /0 Peripheral registers, see lable 4-6
E100 0000 to ESFF_FFFF SMC SMC S5MC Memories, see Table 4-5
F800_0000 to FB0O0_OBFF SLCR SLCR SLCR registers, see Table 4-3
F800_1000 to F8B0_FFFF PS PS PS System registers, see Table 4-7
F850 0000 to FBF0_2FFF CPU CPU Private registers, see Table 4-4
FCO0D_0000 to FDFF_FFFFA | Quad-SPI Quad-SPI | Quad-5PI linear address for linear mode
OCcM OCM OCM OCM is mapped high

/O Read Macro

Read from an Input

~

int switch sl;

switch sl = *(volatile int *) (0x00011000);
N </

s N
#define SWITCH S1 BASE = 0x00011000;

switch sl = *(volatile int *)(SWITCH_SI_BASE);/

-
/#define SWITCH S1 BASE = 0x00011000; R
[#define my iord(addr) (*(volatile int *) (addr))] Macro
switch sl = my iord(SWITCH S1 BASE); // P

ICTP

Embedded C

I/O Write Macro

Write to an Output

4)
char pattern = 0x01;

0x11000110) = pattern;

*(
N
4 _)
#define LED L1 BASE = 0x11000110;

*(LED L1 BASE) = pattern;

N J
(#define LED L1 BASE = 0x11000110; A
[#define my iowr (addr, data) (* (int *) (addr) = (data)) :MMacm)

\Ty_iowr(LED_Ll_BASE, (int) pattern) ; //

Embedded C ICTP

Bibliography

2 “Introduccion a la Programacion en Lenguaje C para
Ingenieria Electronica’, S. Burgos, Omar Berardi.
Dictumediciones, 2015.

0 Xilinx Standard C Libraries

0 “Standalone Library Documentation BSP and
Libraries Document Collection”. AMD UG643
(V2025.1).

https://docs.amd.com/r/2021.1-English/oslib_rm/Xilinx-Standard-C-Libraries
https://docs.amd.com/viewer/book-attachment/II1mdICn2VZwySl6~VATdg/PG~vKeiUDIsVp16WRQVnCg-II1mdICn2VZwySl6~VATdg

	Slide 1: ‘C’ for Embedded Systems
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Use of #include directive
	Slide 12: #ifndef directive
	Slide 13
	Slide 14: Global and Local Variables Declarations
	Slide 15: ‘C’ Modifiers
	Slide 16: ‘C’ Modifiers - Storage-Class Modifiers
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: ‘C’ Modifiers - Type Modifiers
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Another Way ….
	Slide 35
	Slide 36: Embedded System Application
	Slide 37: Example Embedded System Application
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45: Example of Wr/Rd to/from GPIO
	Slide 46: Steps for Reading from a GPIO
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67: SPI IP Core - Example
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87: Bibliography

