
‘C’ for Embedded
Systems

Cristian Sisterna Senior Associate – ICTP MLAB

Universidad Nacional de San Juan

Embedded C ICTP 2

What is ‘Embedded C’ ?

Embedded C is a set of language extensions for the C

programming language designed specifically for

programming embedded systems — small computing devices

that control hardware in real-time.

It’s not a separate language, but rather C tailored for

embedded applications with additional features to support

direct interaction with hardware.

Embedded C is essentially C adapted to run "closer to the

I/Os" — lean, efficient, and tightly integrated with hardware

Embedded C ICTP 3

Differences Between ‘C’ and ‘Embedded C’
Feature Regular C Embedded C

Target System General-purpose computers (PCs, servers) Microcontrollers, embedded systems

Operating System Often relies on OS (e.g., Linux, Windows) Often no OS or a Real-Time OS (RTOS)

Libraries Standard C libraries (stdio.h, etc.)
Limited or custom libraries; often no I/O

streams

Hardware Access Abstracted from hardware Direct register and port manipulation

Memory Usage Abundant (RAM, Disk) Very limited memory (few KB to MB)

Timing Not deterministic Precise, deterministic timing often needed

I/O Handling Through OS APIs or files Direct I/O via registers (e.g., `PORTA

Compilation Compiles to run on the host system
Cross-compiled for a specific

microcontroller

Toolchains GCC, Clang Keil, MPLAB, IAR, AVR-GCC, etc.

Typical Use Cases Software apps, games, compilers Device drivers, firmware, real-time control

Two salient features of Embedded Programming are code speed and code size. Code
speed is governed by the processing power, timing constraints, whereas code size is

governed by available program memory and use of programming language.

Embedded C ICTP 4

Difference Between ‘C’ and ‘Embedded C’

Embedded systems often have the real-time constraints, which is usually not there
with desktop computer applications.

Embedded systems often do not have a console, which is available in case of desktop
applications.

Embedded C ICTP 5

Advantages of Using Embedded C

Feature Description

Efficiency Designed for low-level access and minimal resource usage.

Hardware Access Supports direct access to hardware registers and I/O ports.

Real-time Capable Used in systems that require deterministic timing.

Portability
Code can often be reused across microcontrollers with minor

changes. Unlike assembly.

Extensions
Compiler-specific features like __interrupt, __bit, __sfr etc. allow

low-level control.

I/O access

It supports access to I/O and provides ease of management of large
embedded projects

Reviewing Embedded
‘C’ Basic Concepts

Embedded C ICTP 6

Embedded C ICTP 7

‘C’ Basic Data Types

Data Type Description Size (Typical) Format Specifier

int Integer (whole numbers) 4 bytes %d

char Character 1 byte %c

float Floating point (single precision) 4 bytes %f

double
Floating point (double

precision)
8 bytes %lf

void
No value (used for functions

that return nothing)
N/A N/A

Embedded C ICTP 8

‘C’ Derived Data Types & Modifiers

These are derived from basic types:

✓ Arrays (e.g., int arr[10];)

✓ Pointers (e.g., int *p;)

✓ Structures (e.g., struct Person { ... };)

✓ Unions (e.g., union Data { ... };)

✓ Functions (e.g., int func(int x);)

You can modify basic types with the

following type qualifiers:

➢ short

➢ long

➢ signed

➢ unsigned

Modified Type Typical Size Notes

short int 2 bytes Smaller range of integers

long int 4 or 8 bytes Larger range

unsigned int 4 bytes Only non-negative values

long double 12 or 16 bytes Higher precision float

Embedded C ICTP -IAEA 9

Xilinx-AMD ‘C’ Basic Data Types

xbasic_types.h

This file contains basic types for Xilinx software IP.

https://github.com/Xilinx/embeddedsw/blob/master/XilinxProcessorIPLib/drivers/common/src/xbasic_types.h

Embedded C ICTP -IAEA 10

Xilinx-AMD ‘C’ Basic Data Types

xil_types.h

The xil_types.h file contains basic types for Xilinx software IP. These

data types are applicable for all processors supported by Xilinx.

https://github.com/Xilinx/embeddedsw/blob/master/lib/bsp/standalone/src/common/xil_types.h

Use of #include directive

#include is a directive that is used to include the contents of a file (usually a header file,

.h file) into your source code.

The syntax for the #include directive can use either double quotes (" ") or angle brackets

(< >), and there are important differences between the two:

#include <filename> (Angle Brackets)

Search Path: When you use angle brackets, the

preprocessor searches for the specified file only

in the standard system directories (e.g.,

/usr/include on Unix/Linux systems). It does not

look in the current directory.

Usage: This is generally used for including

standard library headers or system headers that

are part of the C standard library.

#include <stdio.h>

#include "filename" (Double Quotes)

Search Path: When you use double quotes, the

preprocessor first searches for the specified file in

the same directory as the source file that contains

the #include directive. If the file is not found there,

it then searches the standard system directories.

Usage: This is typically used for including user-

defined header files or files that are part of your

project.

#include “my_header”;

#ifndef directive

#ifndef is a directive that stands for "if not defined".

It's used to prevent multiple inclusion of the same header file, which can cause

compilation errors.

✓ #ifndef checks if the identifier (macro) has not been

defined yet.

✓ If it hasn't, the code inside the block is included.

✓ #define then marks it as defined, so the next time the file

is included, the code is skipped.

Using #ifndef + #define is called a header guard, and it's a best practice in

C/C++ programming.

In C programming, variables can be local or global depending on where they
are declared and how they are accessed.

Embedded C ICTP 13

Local vs Global Variables

Local Variables Global Variables

✓ Declared outside any function.

✓ Exist for the lifetime of the program.

✓ Can be accessed or modified by

any function

✓ Accessible only by the function

within which they are declared

✓ Created when the function is called.

✓ Destroyed when the function exits.

✓ Not accessible outside their scope

•.

Local variables are declared inside a

function, block, or compound statement and

are accessible only within that scope.

Global variables are declared outside

of all functions, usually at the top of

the program file. They are accessible

from any function in the program.

Global and Local Variables Declarations

‘C’ Modifiers

In C language, modifiers are keywords that modify the meaning or

behavior of variables, functions, and data types.

They can affect storage, visibility, lifetime, type size, and optimization

behavior.

‘C’ Modifiers

Storage-Class Modifiers

Type Modifiers

‘C’ Modifiers - Storage-Class Modifiers

Modifier Purpose Notes

auto
Default for local variables (rarely used

explicitly)

register

Hints to store variable in a CPU

register (deprecated in modern

compilers)

static
Keeps variable's value across

function calls / restricts visibility to file
Retains value, restricts linkage.

extern
Declares a variable/function defined

in another file

Share variables/functions

between files.

volatile

Prevents compiler optimization;

ensures variable is read from memory

every time

Useful for variables that

changes outside normal control

(e.g. hardware).

These control the lifetime, scope, and linkage of variables or functions.

Embedded C ICTP 17

Use of the ‘static’ modifier with variables

Embedded C

❖ The ‘static’ modifier causes that the local
variable to be permanently allocated storage in
memory, like a global variable, so the value is
preserved between function calls (but still is
local)

❖The 'static' modifier may also be used with
global variables

❖ This gives some degree of protection to the
variable as it restricts access to the variable to
those functions in the file in which the
variable is declared

1

1

2 2

Embedded C ICTP 18

Use of the ‘static’ modifier with functions

Embedded C

❖ The ‘static’ modifier in a function declaration causes that the functions is only
callable within the file where is declared.

static void helper() {

// only callable within this file

}

Tells the compiler not to optimize the variable because its value can change
unexpectedly (e.g. interrupts, hardware registers).

Ensure each access actually read or write the memory location.

Often your compiler may eliminate code to read the port as part of the compiler's
code optimization process if it does not realize that some outside process is

changing the port's value.

You can avoid this by declaring the variable volatile.

Embedded C ICTP 19

‘volatile’ Variable

Without volatile the compiler might optimize the loop away because it
assumes sensorflag variable never changes.

Embedded C ICTP 20

‘volatile’ Variable Example

Embedded C ICTP 21

Use of the ‘static’ and ‘volatile’ modifiers

Embedded C

Why Combine static and volatile?

o volatile tells the compiler

o “This variable can change at any time (outside normal program flow, like via an

interrupt), so don’t optimize accesses to it.”

o static ensures the variable

o “Persists between function calls and is only visible within this file (or function).”

Embedded C ICTP 22

Use of the ‘static’ and ‘volatile’ modifiers

Embedded C

Example: You have a button
interrupt that sets a flag. The

‘C’ main loop waits for this flag

to change to take action.

static

File-level scope

Keep buttonpressed

local to the file

volatile

Prevents optimization

Ensures compiler does not

cache the variable value, reads

from memory every time

‘C’ Modifiers - Type Modifiers

Modifier Purpose

signed Default for int/char: can hold negative and positive values

unsigned Only positive values (doubles the upper limit)

short Smaller-sized integer (usually 16 bits)

long Larger-sized integer (usually 32 or 64 bits)

long long Even larger integer (usually 64 bits)

These modify the size or sign of data types.

Function data types refer to the types of values that functions can return and the types of
parameters they can accept.

Embedded C ICTP 24

Functions Data Types

Return Type: Every function in C has

a return type that specifies the type of

value the function will return.

Common return types include:

int: Returns an integer value.

float: Returns a floating-point value.

double: Returns a double-precision

floating-point value.

char: Returns a character.

void: Indicates that the function does

not return a value.

Parameter Types: Functions can accept

parameters of various data types. The types

of parameters must be specified in the

function definition. You can have multiple

parameters of different types.

void printSum(int a, float b) {

printf("Sum: %f\n", a + b);

}

Embedded C ICTP 25

Functions Data Types

Function Pointers: In C, you

can also define pointers to

functions, which allows you to

store the address of a function

and call it later.

The type of a function pointer is

defined by the return type and

the parameter types.

2 funcPtr = &printSum; // Assigning the address of printSum to funcPtr

Embedded C ICTP 26

Structures

In C programming language, a structure (struct) is a user-defined data type that allows you to

group different types of variables under a single name.

Embedded C ICTP 27

Review of ‘C’ Pointer

In ‘C’, the pointer data type corresponds to a MEMORY ADDRESS

int x = 1, y = 5, z = 8, *ptr;

1

5

8

x

y

z

1

5

8

1

1

8

8

1

8

a

b

c

d

a b c d

ptr = ?? ptr = &x

ptr

y = *ptr *ptr = z

*ptr = z; // content pointed by ptr gets content of z

ptr = &x; // ptr gets (point to) address of x

y = *ptr; // content of y gets content pointed by ptr

ptr ptr

‘C’ Techniques for
low-level I/O Operations

Embedded C ICTP 28

Bitwise operators in ‘C’: ~ (not), & (and), | (or), ^ (xor)
which operate on one or two operands at bit levels

Embedded C ICTP 29

Bit Manipulation in ‘C’

u8 mask = 0x60; //0110_0000 mask bits 6 and 5

u8 data = 0xb3 //1011_0011 data

u8 d0, d1, d2, d3; //data to work with in the coming example

. . .

d0 = data & mask;

d1 = data & ~mask;

d2 = data | mask;

d3 = data ^ mask;

// 0010_0000; isolate bits 6 and 5 from data

// 1001_0011; clear bits 6 and 5 of data

// 1111_0011; set bits 6 and 5 of data

// 1101_0011; toggle bits 6 and 5 of data

The right shift operator shifts the data right by the specified number
of positions. Bits shifted out the right side disappear. With unsigned
integer values, 0s are shifted in at the high end, as necessary. For
signed types, the values shifted in is implementation-dependant.
The binary number is shifted right by number bits.

Embedded C ICTP 30

Bit Shift Operators

The left shift operator shifts the data right by the specified number
of positions. Bits shifted out the left side disappear and new bits
coming in are 0s. The binary number is shifted left by number bits.

x >> number;

Both operands of a bit shift operator must be integer values

x << number;

void led_knight_rider(XGpio *pLED_GPIO, int nNumberOfTimes)
{

int i=0; int j=0;

u8 uchLedStatus=0;

// Blink the LEDs back and forth nNumberOfTimes

for(i=0;i<nNumberOfTimes;i++)

{

for(j=0;j<8;j++) // Scroll the LEDs up

{

uchLedStatus = 1 << j;

XGpio_DiscreteWrite(pLED_GPIO, 1, uchLedStatus);

delay(ABOUT_ONE_SECOND / 15);

}

for(j=0;j<8;j++) // Scroll the LEDs down

{

uchLedStatus = 8 >> j;

XGpio_DiscreteWrite(pLED_GPIO, 1, uchLedStatus);

delay(ABOUT_ONE_SECOND / 15);

}

}

}

Bit Shift Example

There are cases that in the same memory address different fields are stored

Embedded C ICTP 32

Unpacking Data

Example: let’s assume that a 32-bit memory address contains a 16-bit field for an integer data
and two 8-bit fields for two characters

num ch1 ch0

31 . . . 16 15 . . . 8 7 . . . 0

u32 io_rd_data;

int num;

char chl, ch0;

Unpacking

io_rd_data = my_iord(...);//my_io_read read a data

ch0 =

num =

chl =

(int) ((io_rd_data & 0xffff0000) >> 16);

(char)((io_rd_data & 0x0000ff00) >> 8);

(char)((io_rd_data & 0x000000ff));

io_rd_data

Embedded C ICTP 33

Packing Data

u32 wr_data;

int num = 5;

char chl, ch0;

Pa
ck

in
g

There are cases that in the same memory address different fields are written

Example: let’s assume that a 32-bit memory address will be written as a 16-bit field for an
integer data and two 8-bit fields for two characters

num ch1 ch0

31 . . . 16 15 . . . 8 7 . . . 0

io_wr_data

wr_data = (wr_data << 8) | (u32) ch0; //num[31:16],ch1[15:8]

wr_data = (u32)(num); //num[15:0]

wr_data = (wr_data << 8) | (u32) ch1; //num[23:8],ch1[7:0]

my_iowr(. . . , wr_data) ; //ch0[7:0]

Another Way ….

wr_data = (((u32)(num))<<16)|(((u32)ch1)<<8)|(u32)ch2;

Basic Embedded ‘C’
Program Template

Embedded C ICTP 35

Embedded System Application

In embedded systems, applications are typically designed as a collection of

tasks or functional blocks, each responsible for a specific operation. These

tasks can be implemented using:

Software Routines

✓ Executed by a general-purpose

processor (e.g., ARM Cortex).

✓ Written in C/C++ or assembly.

✓ Good for tasks that are:

✓ Control-intensive

✓ Low-throughput

✓ Complex to parallelize

Hardware Accelerators

✓ Implemented on FPGAs, ASICs, or

dedicated coprocessors.

✓ Designed using RTL (VHDL/Verilog)

or HLS (C/C++ → Hardware).

✓ Best for tasks that are:

✓ Compute-intensive

✓ Highly parallel

✓ Time-critical

Example Embedded System Application

Task Implementation

Frame capture Software

Color space conversion Hardware (HLS)

Edge detection Hardware (RTL/HLS)

Display output Software

Embedded C ICTP 38

Basic Embedded Program Architecture

#include “nnnnn.h”

#include <ppppp.h>

main()

{

sys_init();//

while(1){

task_1();

task_2();

. . .

task_n();

}

}

An embedded application consists of a collection tasks, implemented by
hardware accelerators, software routines, or both.

The flashing-LED system turns on and off two LEDs alternatively according to the interval
specified by the ten sliding switches

Embedded C ICTP 39

I/O Simple Example

Tasks ????

1. reading the interval value from the switches

2. toggling the two LEDs after a specific amount of time

Embedded C ICTP 40

I/O Simple Example

main()

{

while(1){

. . .

task_1();

task_2();

. . .

}

}

main()

{

int period;

while(1){

read_sw(SWITCH_S1_BASE, &period);

led_flash(LED_L1_BASE, period);

}

}

#include “nnnnn.h”

#include “aaaaa.h”

Embedded C ICTP 41

I/O Simple Example - Reading

/**

* function: read_sw ()

* purpose: get flashing period from 10 switches

* argument:

* sw-base: base address of switch PIO

* period: pointer to period

* return:

* updated period

* note :

**/

void read_sw(u32 switch_base, int *period)

{

*period = my_iord(switch_base) & 0x000000ff; //read flashing period

// from switch

}

0x000003ff;

Embedded C ICTP 42

I/O Simple Example - Writing
/**

* function: led.flash ()

* purpose: toggle 2 LEDs according to the given period

* argument:

* led-base: base address of discrete LED PIO

* period: flashing period in ms

* return : none

* note :

* — The delay is done by estimating execution time of a dummy for loop

* — Assumption: 400 ns per loop iteration (2500 iterations per ms)

* - 2 instruct. per loop iteration /10 clock cycles per instruction /20ns per clock cycle(50-MHz clock)

***/

void led_flash(u32 addr_led_base, int period)

{

static u8 led_pattern = 0x01; // initial pattern

unsigned long i, itr;

led_pattern ^= 0x03; // toggle 2 LEDs (2 LSBs)

my_iowr(addr_led_base, led_pattern); // write LEDs

itr = period * 2500;

for (i=0; i<itr; i++) {} // dummy loop for delay

}

Embedded C ICTP 43

I/O Example – Read / Write

int main()

{

int period;

while(1){

read_sw(SWITCH_S1_BASE, &period);

led_flash(LED_L1_BASE, period);

}

return 0;

}

void read_sw(u32 switch_base, int *period)

{

*period = my_iord(switch_base) & 0x000003ff;

}

void led_flash(u32 addr_led_base, int period)

{

static u8 led_pattern = 0x01;

unsigned long i, itr; //static?

led_pattern ^= 0x03;

my_iowr(addr_led_base, led_pattern);

itr = period * 2500;

for (i=0; i<itr; i++) {}

}

Zynq PSoC: Read/Write

From/To GPIO Inputs and

Outputs

Example of Wr/Rd to/from GPIO

1. Create a GPIO instance

2. Initialize the GPIO

3. Set data direction (optional)

4. Read the data

Embedded C ICTP 46

Steps for Reading from a GPIO

1. Create a GPIO instance

2. Initialize the GPIO

3. Set data direction (optional)

4. Read the data

Embedded C ICTP 47

Steps for Reading from a GPIO

1. Create a GPIO instance

Embedded C ICTP 48

Steps for Reading from a GPIO – Step 1

#include “xparameters.h”
#include “xgpio.h”

int main (void)
{

XGpio switches;
XGpio leds;
. . .

2. Initialize the GPIO

Embedded C ICTP 49

Steps for Reading from a GPIO – Step 2

(int) XGpio_Initialize(XGpio *InstancePtr, u16 DeviceID);

InstancePtr: is a pointer to an XGpio instance (already declared).

DeviceID: is the unique ID of the device controlled by this XGpio component (declared in the
xparameters.h file)

@return
- XST_SUCCESS if the initialization was successfull.
- XST_DEVICE_NOT_FOUND if the device configuration data was not

xstatus.h

Embedded C ICTP 50

Steps for Reading from a GPIO – Step 2

(int) XGpio_Initialize(XGpio *InstancePtr, u16 DeviceID);

// AXI GPIO switches initialization

XGpio_Initialize (&switches, XPAR_BOARD_SW_8B_DEVICE_ID);

sw
sw
sw
sw
sw

sw

The xparameters.h file contains the address map for peripherals in the
created system.

This file is generated from the hardware platform created in Vivado

Embedded C ICTP 51

xparameters.h

xparameters.h file can be found underneath the
include folder in the ps7_cortexa9_0 folder of
the BSP main folder

Ctrl + Mouse Over

Embedded C ICTP 52

xparameters.h

3. Set data direction

Embedded C ICTP 53

Steps for Reading from a GPIO – Step 3

void XGpio_SetDataDirection (XGpio *InstancePtr, unsigned Channel, u32 DirectionMask);

InstancePtr: is a pointer to an XGpio instance to be working with.

Channel: contains the channel of the XGpio (1 o 2) to operate with.

DirectionMask: is a bitmask specifying which bits are inputs and which are outputs.
Bits set to ‘0’ are output, bits set to ‘1’ are inputs.

Return: none

Embedded C ICTP 54

Steps for Reading from a GPIO – Step 3

void XGpio_SetDataDirection (XGpio *InstancePtr, unsigned Channel, u32 DirectionMask);

// AXI GPIO switches: bits direction configuration

XGpio_SetDataDirection(&board_sw_8b, 1, 0xffffffff);

4. Read the data

Embedded C ICTP 55

Steps for Reading from a GPIO – Step 4

u32 XGpio_DiscreteRead (XGpio *InstancePtr, unsigned Channel);

InstancePtr: is a pointer to an XGpio instance to be working with.

Channel: contains the channel of the XGpio (1 o 2) to operate with.

Return: read data

Embedded C ICTP 56

Steps for Reading from a GPIO – Step 4

u32 XGpio_DiscreteRead (XGpio *InstancePtr, unsigned Channel);

// AXI GPIO: read data from the switches

sw_check = XGpio_DiscreteRead(&board_sw_8b, 1);

1. Create a GPIO instance

2. Initialize the GPIO

3. Set the data direction (optional)

4. Read the data

Embedded C ICTP 57

Steps for Writing to GPIO

1. Create a GPIO instance

Embedded C ICTP 58

Steps for Writing to a GPIO – Step 1

#include “xgpio.h”
int main (void)
{

XGpio switches;
XGpio leds;
. . .

2. Initialize the GPIO

Embedded C ICTP 59

Steps for Writing to a GPIO – Step 2

(int) XGpio_Initialize(XGpio *InstancePtr, u16 DeviceID);

InstancePtr: is a pointer to an XGpio instance.

DeviceID: is the unique id of the device controlled by this XGpio component

@return
- XST_SUCCESS if the initialization was successfull.
- XST_DEVICE_NOT_FOUND if the device configuration data was not

xstatus.h

Embedded C ICTP 60

Steps for Writing to a GPIO – Step 2

(int) XGpio_Initialize (XGpio *InstancePtr, u16 DeviceID);

// AXI GPIO leds initialization

XGpio_Initialize (&board_leds_8b, XPAR_BOARD_LEDS_8B_DEVICE_ID);

3. Write the data

Embedded C ICTP 61

Steps for Writing to a GPIO – Step 3

void XGpio_DiscreteWrite (XGpio *InstancePtr, unsigned Channel, u32 Data);

InstancePtr: is a pointer to an XGpio instance to be worked on.

Channel: contains the channel of the XGpio (1 o 2) to operate with.

Return: none

Data: Data is the value to be written to the discrete register

Embedded C ICTP 62

Steps for Writing to a GPIO – Step 3

// AXI GPIO: write data (sw_check) to the LEDs

XGpio_DiscreteWrite(& board_leds_8b, 1, sw_check);

void XGpio_DiscreteWrite (XGpio *InstancePtr, unsigned Channel, u32 Data);

Complete GPIO Rd/Wr Example

file:///D:/ictp_labs/lab_gpio_inout/lab_gpio_in_out/c_src/sol/lab_gpio_in_out_Solution.c

‘C’ Drivers for IP Cores

Embedded C ICTP 64

ICTP 65

SPI IP Core - Example

Embedded C

Embedded C ICTP 66

SPI IP Core - Example

SPI IP Core - Example

‘C’ Drivers for
Custom IP

Embedded C ICTP - 68

ICTP 69

Custom IP

Embedded C

Embedded C ICTP 70

My IP – Memory Address Range

▪ The driver code are generated automatically when the IP template is
created.

▪ The driver includes higher level functions which can be called from the
user application.

▪ The driver will implement the low level functionality used to control your
peripheral.

Embedded C ICTP 71

Custom IP Drivers

led_ip\ip_repo\led_ip_1.0\drivers\led_ip_v1_0\src

led_ip.c

led_ip.h
LED_IP_mWriteReg(…)

LED_IP_mReadReg(…)

Embedded C ICTP 72

Custom IP Drivers: *.c

led_ip\ip_repo\led_ip_1.0\drivers\led_ip_v1_0\src\led_ip.c

Embedded C ICTP 73

Custom IP Drivers: *.h

led_ip\ip_repo\led_ip_1.0\drivers\led_ip_v1_0\src\led_ip.h

Embedded C ICTP 74

Custom IP Drivers: *.h

led_ip\ip_repo\led_ip_1.0\drivers\led_ip_v1_0\src\led_ip.h

Embedded C ICTP 75

Custom IP Drivers: *.h

led_ip\ip_repo\led_ip_1.0\drivers\led_ip_v1_0\src\led_ip.h

Embedded C ICTP 76

Custom IP Drivers: *.h

led_ip\ip_repo\led_ip_1.0\drivers\led_ip_v1_0\src\led_ip.h

Embedded C ICTP 77

Custom IP Drivers: *.h

led_ip\ip_repo\led_ip_1.0\drivers\led_ip_v1_0\src\led_ip.h

Embedded C ICTP 78

‘C’ Code for Writing to My_IP

o For this driver, you can see the macros are aliases to the lower level functions
Xil_Out32() and Xil_In32()

o The macros in this file make up the higher level API of the led_ip driver.

o If you are writing your own driver for your own IP, you will need to use low level
functions like these to read and write from your IP as required. The low level hardware
access functions are wrapped in your driver making it easier to use your IP in an
Application project.

Embedded C ICTP 79

IP Drivers – Xil_Out32/Xil_In32

#define LED_IP_mWriteReg(BaseAddress, RegOffset, Data) Xil_Out32((BaseAddress) + (RegOffset), (Xuint32)(Data))

#define LED_IP_mReadReg(BaseAddress, RegOffset) Xil_In32((BaseAddress) + (RegOffset))

Embedded C ICTP 80

IP Drivers – Xil_In32 (xil_io.h/xil_io.c)

/***/
/**
* Performs an input operation for a 32-bit memory location by reading from the
* specified address and returning the Value read from that address.
*
* @param Addr contains the address to perform the input operation at.
*
* @return The Value read from the specified input address.
*
* @note None.
*
**/

u32 Xil_In32(INTPTR Addr)
{

return *(volatile u32 *) Addr;
}

Embedded C ICTP 81

IP Drivers – Xil_Out32 (xil_io.h/xil_io.c)

/***/
/**
* Performs an output operation for a 32-bit memory location by writing the
* specified Value to the the specified address.
*
* @param Addr contains the address to perform the output operation at.
* @param Value contains the Value to be output at the specified address.
*
* @return None.
*
* @note None.
**/

void Xil_Out32(INTPTR Addr, u32 Value)
{

u32 *LocalAddr = (u32 *)Addr;

*LocalAddr = Value;
}

o Select <project_name>_bsp in the project view pane. Right-click

o Select Board Support Package Settings

o Select Drivers on the Overview pane

o If the led_ip driver has not already been selected, select Generic under

the Driver Column for led_ip to access the dropdown menu. From the

dropdown menu, select led_ip, and click OK>

Embedded C ICTP 82

IP Drivers – Vitis ‘Activation’

Embedded C ICTP 83

IP Drivers – Vitis ‘Activation’

System Level Address Map

UNSL - UNSJ 84Embedded C

Embedded C ICTP 85

I/O Read Macro

Read from an Input

int switch_s1;

. . .

#define SWITCH_S1_BASE = 0x00011000;

. .

#define SWITCH_S1_BASE = 0x00011000;

#define my_iord(addr) (*(volatile int *)(addr))

. . .

switch_s1 = *(volatile int *)(0x00011000);

switch_s1 = *(volatile int *)(SWITCH_S1_BASE);

switch_s1 = my_iord(SWITCH_S1_BASE); //

Macro

Embedded C ICTP 86

I/O Write Macro

Write to an Output

char pattern = 0x01;

. . .

#define LED_L1_BASE = 0x11000110;

. . .

#define LED_L1_BASE = 0x11000110;

#define my_iowr(addr, data) (*(int *)(addr) = (data))

. . .

*(0x11000110) = pattern;

*(LED_L1_BASE) = pattern;

my_iowr(LED_L1_BASE, (int)pattern); //

Macro

Bibliography

❑ “Introducción a la Programación en Lenguaje C para
Ingeniería Electrónica”, S. Burgos, Omar Berardi.
Dictumediciones, 2015.

❑ Xilinx Standard C Libraries

❑ “Standalone Library Documentation BSP and
Libraries Document Collection”. AMD UG643
(V2025.1).

https://docs.amd.com/r/2021.1-English/oslib_rm/Xilinx-Standard-C-Libraries
https://docs.amd.com/viewer/book-attachment/II1mdICn2VZwySl6~VATdg/PG~vKeiUDIsVp16WRQVnCg-II1mdICn2VZwySl6~VATdg

	Slide 1: ‘C’ for Embedded Systems
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Use of #include directive
	Slide 12: #ifndef directive
	Slide 13
	Slide 14: Global and Local Variables Declarations
	Slide 15: ‘C’ Modifiers
	Slide 16: ‘C’ Modifiers - Storage-Class Modifiers
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: ‘C’ Modifiers - Type Modifiers
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Another Way ….
	Slide 35
	Slide 36: Embedded System Application
	Slide 37: Example Embedded System Application
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45: Example of Wr/Rd to/from GPIO
	Slide 46: Steps for Reading from a GPIO
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67: SPI IP Core - Example
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87: Bibliography

