
Hardware Description

Language (HDL) for

Reconfigurable

Instrumentation

Cristian Sisterna
S e n i o r A s s o c i a t e , I C T P - M L A B

U n i v e r s i d a d N a c i o n a l S a n J u a n - A r g e n t i n a

What are them ?

VHDL for Synthesis - C. Sisterna ICTP- MLAB 2

Hardware Description Languages

Specialized computer languages
for describing electronic circuits

They are fundamental to
modern digital design,
especially for creating ASICs
and configuring FPGAs.

Used to describe structure,
behavior, and timing of digital

hardware

VHDL

Verilog

SystemVerilog

Chisel

MyHDL

Allow designers to work at a
higher level of abstraction
than schematic capture

HDL

VHDL for Synthesis - C. Sisterna ICTP- MLAB 3

Hardware Description Languages

SystemVerilog SystemC MyHDLVerilogVHDL

Python

based HDL

Superset of Verilog.

Adds OOP, improved
data types, assertions,
interfaces.

Powerful for system-
level verification.

C++ libraries for system-
level modeling.

Often used for
Transaction-Level
Modeling (TLM).

ASIC

FPGA

•Started as a

proprietary language.

•Weakly typed.

•Syntax similar to C

programming

language

•Developed under

the U.S. DoD's

VHSIC program.

•Strongly typed

•More verbose and

formal (resembles

Ada)

VHDL for Synthesis - C. Sisterna

ICTP- MLAB 4

Why HDLs are keys in Digital Design?

Design complex circuits without low-level details

Abstraction

Simulate and test designs before fabrication (cost-saving)

Verification

Create modular and reusable IP (Intellectual Property)
blocks.

Reusability

Automatically transform HDL into ASIC/FPGA’s
hardware components

Synthesis

Enable design of very large and complex systems

Scalability

HDLs

VHDL for Synthesis - C. Sisterna ICTP- MLAB 5

Introduction to VHDL

Very High Speed IC

Hardware

Description

Language

V H D L

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Introduction to VHDL

High level of abstraction

Easy to debug

Parameterized designs

Re-uso

IP Cores (free) available

if(reset=‘1’) then

 count <= 0;

elsif(rising_edge(clk)) then

 count <= count+1;

end if;

6

6

VHDL for Synthesis - C. Sisterna ICTP- MLAB

VHDL Synthesis & Simulation

VHDL
Synthesizable

VHDL

Used to write code
to simulate the
behavior of a design

Used to implement
the design into
hardware (for
instance in FPGA)

7

7

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Synthesis versus Simulation

It’s important to understand that VHLD is both, a Synthesis
language and a Simulation language.

8

8

⚫ Small subset of the language is ‘synthesizable’, meaning
that it can be translated into logic gates, flip-flops, and
other ‘hardware’ components.

⚫ Every line of VHDL code must have a direct translation
into hardware.

Another subset of the language include many
features for ‘simulation’ or ‘verification’, features
that have NO meaning in hardware.

Synthesis

Simulation

VHDL for Synthesis - C. Sisterna ICTP- MLAB 9

VHDL -> Hardware Description

Concurrency

Parallel

VHDL is used to DESCRIBE the
behavior and/or structure of a
Digital System.

The operations in real systems
are executed concurrently.

The VHDL language describes
real systems as a set of
components that operate
concurrently.
Each of these components is
described with concurrent

statements.

Describing Hardware

Concurrent Code -> Executed in Paralell

The complexity of
each component may
vary from a simple
logic gate to a
processor

Components

Complexity

VHDL for Synthesis - C. Sisterna ICTP- MLAB

VHDL ‘Description’ Examples

x

y
z

sel

0

1

if(sel=‘1’) then

 z <= y;

else

 z <= x;

end if;

z <= y when sel=‘1’ else x;

10

10

Libraries and packages provides the
incorporation of external functions,
data types and components to the
component to be described

VHDL for Synthesis - C. Sisterna ICTP- MLAB 11

VHDL - General Component Structure

entity

architecture

I/O

functionality

Libraries &
packages

The entity defines the I/O ports as well
as the name of the component.

Some times a constant(s) is defined
(generic) to write parameterized VHDL code

The architecture it’s where the hardware
behavior and/or structure is described.

It can have from a couple of lines to
thousands lines of VHDL code.

ALL CONCURRENTs !

VHDL for Synthesis - C. Sisterna ICTP- MLAB

VHDL – General Component Structure

entity

architecture

I/O

functionality

mux2x1.vhd

12

x

y
z

sel

0

1

12

Libraries &
packages

VHDL for Synthesis - C. Sisterna ICTP- MLAB

VHDL – General Component Structure
mux2x1.vhd

13

13

Library &

Packages

Entity

Libraries &
packages

entity

I/O

architecture

functionality
Architecture

VHDL for Synthesis - C. Sisterna ICTP- MLAB

VHDL – General Component Structure

14

14

Library &

Packages

Entity

Architecture

library ieee;

use ieee.std_logic_1164.all;

entity mux2x1 is

port(

 x,y,sel: in std_logic;

 z : out std_logic);

end mux2x1;

entity

port(

end ;

architecture test of mux2x1 is

begin

 process(x,y,sel)

 begin

 if(sel=‘1’) then

 z <= y;

 else

 z <= x;

 end if;

 end process;

end test;

VHDL for Synthesis - C. Sisterna ICTP- MLAB

VHDL – General Component Structure

15

15

Library &

Packages

Entity

Architecture

library ieee;

use ieee.std_logic_1164.all;

entity mux2x1 is

port(

 x,y,sel: in std_logic;

 z : out std_logic);

end mux2x1;

entity

port(

end ;

architecture test of mux2x1 is

begin

end test;

architecture test of mux2x1 is

begin

 z <= y when sel=‘1’ else x;

end test;

Test Bench

VHDL for Synthesis - C. Sisterna ICTP- MLAB 16

VHDL for Synthesis - C. Sisterna ICTP- MLAB

VHDL Code – Is it really Works?

17

17

A test bench is a crucial part of the hardware design and
verification process.

It's a separate VHDL entity that is used to simulate and verify
the functionality of a VHDL design (known as the "Device

Under Test" or "DUT") by providing it with input stimuli and
observing its outputs

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Purposes of a test bench

18

18

Output Monitoring

Verification

Stimuli Generation

Debug

It applies a sequence of input values (stimuli) to the DUT's
input ports. These stimuli are designed to stimulate all the
different operational modes and corner cases of the DUT.

It observes the DUT's output
ports and compares them
against expected values.

It determines whether the DUT behaves as intended:
Assertions: Checking if certain conditions are met during
simulation.
Expected Value Comparison: Directly comparing actual
outputs with pre-calculated expected outputs.
Self-checking Test Benches: More advanced test benches that
automatically report pass/fail status.

When the DUT doesn't behave as expected,
the test bench provides a controlled
environment to isolate and debug issues.

Debugging

VHDL for Synthesis - C. Sisterna ICTP- MLAB 19

Test Bench - Verification

VHDL for Synthesis - C. Sisterna ICTP- MLAB

VHDL – Simulation / Verification

20

20

VHDL-FPGA
Design Flow

VHDL for Synthesis - C. Sisterna ICTP- MLAB 21

VHDL for Synthesis - C. Sisterna ICTP- MLAB

VHDL - FPGA Design Flow

22

22

VHDL for Synthesis - C. Sisterna ICTP- MLAB 23

FGPA – Hardware Design Flow

Synthesis

VHDL
Code

FPGA Library of
Components

Timing & Placement Constraints

Synthesis Attributes

Virtex, Spartan,

Arria, Artix, Zynq

Net "CLK" LOC=V10 | IOSTANDARD=LVCMOS33;

Net "CLK" TNM_NET = sys_clk_pin;

TIMESPEC TS_sys_clk_pin = PERIOD sys_clk_pin 100000 kHz;

Net "CS" LOC = T12 | IOSTANDARD = LVCMOS33;

P&R

process (clk,rst)

 if (rst = ‘1’)then

 dbus <= (others => ‘0’);

 elsif(rising_edge(clk)) then

 dbus <= data;

 endif;

end process;

attribute syn_encoding of my_fsm: type is

“one-hot”;

VHDL Simple Example

Design a BCD up-down counter. The count should be displayed in
a 7-segment display.

The system has a high frequency clock and system reset as inputs.

VHDL for Synthesis - C. Sisterna ICTP- MLAB 25

Simple Example – VHDL

Option 01
Option

2

library &
packages

architecture

entity

1

3

VHDL for Synthesis - C. Sisterna ICTP- MLAB 26

Libraries & Packages

Must be present to use
std_logic type. That

is, for ALL
synthesisable designs.

Must be present to add
arithmetic functions

for signed and
unsigned types.

Note: do not do arithmetic operations
with std_logic/std_logic_vector

DO NOT USE these
packages. There do not
belong to the VHDL

IEEE standard.

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Signal/Port Declarations in the Entity

27

high_freq_clock

sys_reset

up_down

dspl1_anodo

seven_segm_dsply

27

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Architecture (top)

28

high_freq_clock

sys_reset

up_down

dspl1_anodo

seven_segm_dsply

Freq.
Divider

bcd_2_7segm

counter

??

28

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Counter entity/arch.

29

high_freq_clock

sys_reset

up_down

dspl1_anodo

seven_segm_dsplycounter

29

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Counter Architecture

30

Declarative part

Descriptive part
(concurrent)

Sequential
statements
(inside a
process)

Concurrent
statement

30

VHDL for Synthesis - C. Sisterna ICTP- MLAB 31

Understanding Concurrency

concurrent

sequential

sequential

concurrent

concurrent

concurrent

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Architecture (top)

32

high_freq_clock

sys_reset

up_down

dspl1_anodo

seven_segm_dsply

Freq.
Divider

bcd_2_7segm

counter

??

32

VHDL Types, Objects & Classes

VHDL for Synthesis - C. Sisterna ICTP- MLAB 34

VHDL Data Types

VHDL
Types

std_logic_vector std_logic

Your Text
Here

natural
(0, +)

positive
(+)

signed /
unsigned

boolean
(True,
False)

integer
(-, +)

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Signal Assignment – strongly typed

35

count <= count + 1;

carry_out <= (a and b) or (a and c) or (b and c);

Z <= y;

Left Hand Side (LHS)

Target Signal

Right Hand Side (RHS)

Source Signal(s)

RHS Signal Data TypeLHS Signal Data Type

signal bandera: integer;

signal flag, enable : std_logic;

. . . .

bandera <= flag; -- ?

enable <= flag; -- ?

35

VHDL for Synthesis - C. Sisterna ICTP- MLAB

VHDL Object

36

An object holds a value of some specified type and
can be one of the three classes:

signal, variable, constant

Class Object Type

signal

variable identifier

constant

std_logic/std_ulogic

unsigned
signed

boolean

std_(u)logic_vector

Declaration Syntax:

object_class <identifier> : type[:= initial_value];

integer

36

VHDL for Synthesis - C. Sisterna ICTP- MLAB 37

std_logic Type

PACKAGE std_logic_1164 IS

 --

 -- logic state system (unresolved)

 --

 TYPE std_ulogic IS ('U', -- Uninitialized

 'X', -- Forcing Unknown

 '0', -- Forcing 0

 '1', -- Forcing 1

 'Z', -- High Impedance

 'W', -- Weak Unknown

 'L', -- Weak 0

 'H', -- Weak 1

 '-' -- Wild card

);

 SUBTYPE std_logic IS resolved std_ulogic;

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Type Conversion - Casting

38

VHDL does allow restricted type of CASTING, that is converting values
between related types

datatype <= type(data_object);

signal max_rem: unsigned (7 downto 0);

signal more_t: std_logic_vector(7 downto 0);

max_rem <= more_t;

max_rem <= unsigned(more_t);

unsigned and std_logic_vector are both vectors of the same element
type, therefore it’s possible a direct conversion by casting. When

there is not type relationship a conversion function is used.

38

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Type Conversion - Functions

39

VHDL does have some built-in functions to convert some
different data types (not all the types allow

conversions)

datatype <= to_type(data_object);

signal internal_counter: integer range 0 to 15;

signal count: std_logic_vector(3 downto 0);

count <= internal_count;

CoUnT <= std_logic_vector(to_unsigned(internal_count,4));

Function converts integer to unsigned

Cast to slv unsigned

slv

39

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Type Conversion – Cast / Function

40

40

VHDL for Synthesis - C. Sisterna ICTP- MLAB 41

VHDL Operators

VHDL for Synthesis - C. Sisterna ICTP- MLAB 42

VHDL Attributes

42

It’s a way of extracting information from a type, from

the values of a type

 It’s also a way to allow to assign additional information

to objects in your design description (such as data related

to synthesis)

User-defined/
Synthesis Attrbiutes

Pre-defined
attributes

Simulation and
Synthesis Only Simulation

VHDL for Synthesis - C. Sisterna ICTP- MLAB 43

Array Attributes

Array attributes are used to obtain information on the

size, range and indexing of an array

It’s good practice to use attributes to refer to the size or

range of an array. So, if the size of the array is change, the

VHDL statement using attributes will automatically adjust to

the change

Array Attributes – Range Related

A’range Returns the range value of a constrained array

A’reverse_range Returns the reverse value of a constrained array

VHDL for Synthesis - C. Sisterna ICTP- MLAB 44

Array Attributes

variable w_bus: std_logic_vector(7 downto 0);

Use of the attributes range and reverse_range

then:

 w_bus’range -- will return: 7 downto 0

while:

 w_bus’reverse_range -- will return: 0 to 7

2017 Intel Corporation - Confidential

User-defined/Synthesis Attributes

45

VHDL provides designers/vendors with a way of adding
additional information to the system to be synthesized

Synthesis tools use this features to add timing,
placement, pin assignment, hints for resource locations,
type of encoding for state machines and several others
physical design information

The bad side of synthesis attributes is that the VHDL
code becomes synthesis tools/FPGA dependant, NO
TRANSPORTABLE ….

2017 Intel Corporation - Confidential

User-defined/Synthesis Attributes

46

attribute syn_preserve: boolean;

attribute syn_preserve of ff_data: signal is true;

type my_fsm_state is (reset, load, count, hold);

attribute syn_encoding: string;

attribute syn_encoding of my_fsm_state: type is “gray”;

attribute attr_name: type;

attribute attr_name of data_object: ObjectType is AttributeValue;

Syntax

Example

2017 Intel Corporation - Confidential

User-defined/Synthesis Attributes

47

type ram_type is array (63 downto 0) of

 std_logic_vector (15 downto 0);

signal ram: ram_type;

attribute syn_ramstyle: string;

attribute syn_ramstyle of ram: signal is “block_ram”;

Example:

VHDL Statements

VHDL for Synthesis - C. Sisterna ICTP- MLAB 48

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Selective Signal Assignment Statement

49

with <selection_signal> select

 target_signal <= <expression> when <value1_ss>,

 <expression> when <value2_ss>,

 ...

 <expression> when <last_value_ss>,

 <expression> when others;

Syntax

A selective signal assignment describes logic
based on mutually exclusive combinations of

values of the selection signal

49

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Selective Signal Assignment Statement

50

library ieee;

use ieee.std_logic_1164.all;

entity TRUTH_TABLE is

 port(A, B, C: in std_logic;

 Y: out std_logic);

end TRUTH_TABLE;

architecture BEHAVE of TRUTH_TABLE is

 signal S1: std_logic_vector(2 downto 0);

begin

 S1 <= A & B & C; -- concatenate A, B, C

 with S1 select

 Y <= ‘1’ when “000” | “010” | “100” ,

 ‘0’ when “001” | “011” | “101”,

 ‘-’ when others;

end BEHAVE;‘-’ means don’t care

A B C Y

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 -

1 1 1 -

“|” means OR only when
used in “with” or “case”

Example: Truth Table

A B C Y

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 -

1 1 1 -

50

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Selective Signal Assignment Statement

51

Synthesis
Result

RTL View

FPGA Technology
View

51

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Conditional Signal Assignment

52

target_signal <=

 <expression> when <boolean_condition> else

 <expression> when <boolean_condition> else

 <expression> when <boolean_condition>[else

<expression>];

Syntax

A conditional signal assignment describes logic based on
unrelated boolean_conditions, the first condition that is

true the value of expression is assigned to the
target_signal

52

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Conditional Signal Assignment

53

dbus <= data when enable = ‘1’ else ‘Z’;

dbus <= data when enable = ‘1’ else (others=>‘Z’);

Main usage

53

Example

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Conditional Signal Assignment

54

library ieee;

use ieee.std_logic_1164.all;

entity my_tri is

 generic(bus_ancho: integer := 4);

 port(

 data: in std_logic_vector(bus_ancho-1 downto 0);

 enable: in std_logic;

 dbus : out std_logic_vector(bus_ancho-1 downto 0)

);

end my_tri;

architecture behave of my_tri is

begin

 y <= a when en = ‘1’ else (others => ‘z’) ;

end behave;

EN

A(0) Y(0)

EN

A(1) Y(1)

EN

A(2) Y(2)

EN

A(3) Y(3)

data(0)

data(1)

data(2)

data(3)

enable

enable

enable

enable

dbus(0)

dbus(1)

dbus(2)

dbus(3)

54

process Statement

A process, with all the sequential
statements, is a simple concurrent
statement.

A process is a concurrent statement, but it is
the primary mode of introducing

sequential statements

VHDL for Synthesis - C. Sisterna ICTP- MLAB 55

Multiple processes can be executed in
parallel

From the traditional programming view,a
process is an infinite loop

Process Statement

56

execution

wait

A process has two states: execution and wait

Once the process has
been executed,

it will wait for the
next satisfied

condition

Until a
condition is
satisfied

VHDL for Synthesis - C. Sisterna ICTP- MLAB 56

VHDL for Synthesis - C. Sisterna ICTP- MLAB

process Statement Syntax

57

[process_label:] process [(sensitivity_list)] [is]

[process_data_object_declarations]

begin

 variable_assignment_statement

 signal_assignment_statement

 wait_statement

 if_statement

 case_statement

 loop_statement

 null_statement

 exit_statement

 next_statement

 assertion_statement

 report_statement

 procedure_call_statement

 [wait on sensitivity_list]

end process [process_label];

Sequential
statements

57

VHDL for Synthesis - C. Sisterna ICTP- MLAB 58

Parts of the process statement
sensitivity_list

◦ List of all the signals that are able to trigger the process

◦ Simulation tools monitor events on these signals

◦ Any event on any signal in the sensitivity list will cause to execute the
process at least once

 sequential_statements

All the sequential statements that will be executed each
time that the process is activated

declarations

Declarative part. Types, functions, procedures and variables
can be declared in this part

 Each declaration is local to the process

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Signal Behaviour in a process

59

While a process is running ALL the SIGNALS in the system

remain unchanged -> Signals are in effect CONSTANTS during

process execution, EVEN after a signal assignment, the

signal will NOT take a new value

SIGNALS are updated at the end of a process

Signals are a mean of communication between processes ->

VHDL can be seen as a network of processes

intercommunicating via signals

59

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Variable Behavior in a process

60

While a process is running ALL the Variables in
the system are updates IMMEDIATELY by a

variable assignment statement

60

VHDL for Synthesis - C. Sisterna ICTP- MLAB 61

process – Combinational/Sequential

YOUR TEXT

sequential
combinational

process

When using processes, a key distinction is made between those that
model sequential logic (controlled by a clock) and those that model

combinational logic.

Clock controlled
logic

Outputs depend
ONLY of its input

values

VHDL for Synthesis - C. Sisterna ICTP- MLAB 62

process – Combinational/Sequential

YOUR TEXT

sequential
combinational

process

A clock-controlled process, also known as a sequential process, describes
logic whose outputs change only at specific edges of a clock signal (e.g.,
rising edge or falling edge). This type of process is used to model sequential
elements like flip-flops, registers, counters, and state machines, which have
memory and store state.
Key Characteristics:
•It is ONLY sensitive to the clock signal and often a reset signal.
•It typically contains an IF statement that checks for a clock edge (e.g.,
rising_edge(clk) or falling_edge(clk)).
•Signal assignments inside the clock edge condition are implemented as
some storage element (e.g., flip-flop, memory).

VHDL for Synthesis - C. Sisterna ICTP- MLAB 63

process – Combinational/Sequential

YOUR TEXT

sequential
combinational

process

A combinational process describes logic whose outputs depend only on the

current values of its inputs. There is no memory or state involved; if the inputs

change, the outputs change (after a propagation delay).

Key Characteristics:

•Its sensitivity list must include all input signals that affect the process's outputs.

If an input changes, the process must re-evaluate to produce the correct output.

•It does not contain clock edge detection (rising_edge or falling_edge).
•Signal assignments are typically concurrent updates, as outputs are directly

derived from inputs.

•There should be no unassigned signals in all possible execution paths within the

process; otherwise, the VHDL synthesizer will infer latches, which is generally

undesirable for combinational logic. All outputs must be assigned a value for every

possible combination of inputs.

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Sequential process example

64

64

Description:

•The process (clk, reset) line
defines the sensitivity list. This means
the process will execute whenever
there's an event (a change in value) on
either the clk or reset signal.

•The if reset = '1' condition handles
the asynchronous reset. If reset is
active (high), Q is immediately set to
'0'. This happens independently of the
clock.

•The elsif rising_edge(clk)
condition means that if the reset is
not active, the statements within this
block will only execute when the clk
signal transitions from '0' to '1'.

•Q <= D; inside the rising_edge
block indicates that the output Q will
take on the value of the input D at
that specific clock edge. This correctly
describes the memory element of a D-
flip-flop.

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Combinational process example

65

65

Description

•The process (A, B, Sel)

line defines the sensitivity list. The
process will execute whenever
there's an event on A, B, or Sel.
This ensures that Y is always
updated whenever any of its
inputs change.

•There are no clock edge or

reset conditions; the logic

simply evaluates based on

current inputs.

•The if Sel = '0' and else
branches ensure that the output Y
is always assigned a value,

regardless of the Sel input. This
is critical to avoid inferring a latch.

VHDL for Synthesis - C. Sisterna ICTP- MLAB

if Statement – 3 to 8 Decoder

66

entity if_decoder_example is

 port(

 a: in std_logic_vector(2 downto 0);

 z: out std_logic_vector(7 downto 0);

end entity;

architecture rtl of if_decoder_example is

begin

if_dec_ex: process (a)

 begin

 if (a = “000”) then

 z <= “00000001”;

 elsif (a = “001”) then

 z <= “00000010”;

 . . .

 else

 z <= (others => ‘0’);

 end if;

 end process if_dec_ex;

end rtl;

a(2:0) b(7:0)
??

66

VHDL for Synthesis - C. Sisterna ICTP- MLAB

if Statement

67

entity example3 is

 port (a, b, c: in std_logic;

 z, y: out std_logic);

end example3;

architecture beh of example3 is

begin

 process (a, b)

 begin

 if c='1' then

 z <= a;

 else

 y <= b;

 end if;

 end process;

end beh;

Most common mistakes for describing combinatorial logic

67

VHDL for Synthesis - C. Sisterna ICTP- MLAB

case Statement

68

[case label:]case <selector_expression> is

 when <choice_1> =>

 <sequential_statements> -- branch #1

 when <choice_2> =>

 <sequential_statements> -- branch #2

 . . .

 [when <choice_n to/downto choice_m > =>

 <sequential_statements>] -- branch #n

 [when <choice_x | choice_y | . . .> =>

 <sequential_statements>] -- branch #...

 [when others =>

 <sequential_statements>]-- last branch

end case [case_label];

68

VHDL for Synthesis - C. Sisterna ICTP- MLAB

case Statement

69

entity mux4 is

 port (sel : in std_ulogic_vector(1 downto 0);

 d0, d1, d2, d3 : in std_ulogic;

 z : out std_ulogic);

end entity mux4;

architecture demo of mux4 is

begin

out_select : process (sel, d0, d1, d2, d3) is

 begin

 case sel is

 when “00” =>

 z <= d0;

 when “01” =>

 z <= d1;

 when “10” =>

 z <= d2;

 when others =>

 z <= d3;

 end case;

 end process out_select;

end architecture demo;

69

VHDL for Synthesis - C. Sisterna ICTP- MLAB

case Statement with if Statement

70

mux_mem_bus :process
(cont_out,I_P0,I_P1,I_A0,I_A1,Q_P0,Q_P1,Q_A0,Q_A1)

begin

 mux_out <= I_P0;

 case (cont_out) is

 when "00" =>

 if(iq_bus = '0') then

 mux_out <= I_P0;--I_A0;

 else

 mux_out <= Q_P0;--Q_A0;

 end if;

 when "01" =>

 if(iq_bus = '0') then

 mux_out <= I_A0;--I_P0;

 else

 mux_out <= Q_A0;--Q_P0;

 end if;

70

VHDL for Synthesis - C. Sisterna ICTP- MLAB

for loop-end loop Statement

71

[loop_label]: for <identifier> in discrete_range loop

<sequential_statements>

end loop [loop_label];

• The identifier is called loop parameter, and for each iteration of

the loop, it takes on successive values of the discrete range,

starting from the left element

• It is not necessary to declare the identifier

• By default the type is integer

• Only exists when the loop is executing

<identifier>

71

VHDL for Synthesis - C. Sisterna ICTP- MLAB

for-loop Statement

72

entity match_bit is

 port (a, b : in std_logic_vector(7 downto 0);

 matches: out std_logic_vector(7 downto 0));

end entity;

architecture behavioral of match_bit is

begin

process (a, b)

 begin

 for i in a’range loop

 matches(i) <= not (a(i) xor b(i));

 end loop;

 end process;

end behavioral;

-- process (a, b)

-- begin

-- matches(7) <= not (a(7) xor b(7));

-- matches(6) <= not (a(6) xor b(6));

-- ..

-- matches(0) <= not (a(0) xor b(0));

-- end process;

72

VHDL for Synthesis - C. Sisterna ICTP- MLAB

for-loop Statement

73

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity count_??? is
port(vec: in std_logic_vector(15 downto 0);

count: out std_logic_vector(3 downto 0))

end count_ones;

architecture behavior of count_???? is

begin

cnt_ones_proc: process(vec)

variable result: unsigned(3 downto 0);

begin

result:= (others =>'0');

for i in vec’range loop

if vec(i)='1' then

result := result + 1;

end if;

end loop;

count <= std_logic_vector(result);

end process cnt_ones_proc;

end behavior;

73

VHDL for Synthesis - C. Sisterna ICTP- MLAB

The Role of Componentes in VHDL

74

Hierarchy in VHDL

Divide & Conquer

 Each subcomponent can be designed and completely
tested

 Create library of components (technology independent if
possible)

 Third-party available components

 Code for reuse

74

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Component Instantiation

75

Component instantiation is a concurrent statement that is used to
connect a component I/Os to the internal signals or to the I/Os of

the higher lever component

▫ component_label it labels the instance by giving a name
to the instanced

▫ generic_assocation_list assign new values to the
default generic values (given in the entity declaration)

▫ port_association_list associate the signals in the top
entity/architecture with the ports of the component. There
are two ways of specifying the port map:
 Positional Association / Name Association

component_label: entity work.component_name

[generic map (generic_assocation_list)]

port map (port_association_list);

75

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Association By Name

76

In named association, an association list is of the form

(formal1=>actual1, formal2=>actual2, … formaln=>actualn);

-- component declaration

component NAND2

 port (a, b: in std_logic;

 z: out std_logic);

end component;

-- component instantiation

U1: entity work.NAND2 port map (a=>S1, z=>S3, b=>S2);

-- S1 associated with a, S2 with b and S3 with z

Connected to Component I/O Port
Internal Signal or Entity

I/O Port

76

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Component Instantiation Example

77

library ieee;

use ieee.std_logic_1164.all;

entity glue_logic is

 port (A, CK, MR, DIN: in std_logic;

 RDY, CTRLA : out std_logic);

end glue_logic ;

architecture STRUCT of glue_logic is

signal S1, S2: std_logic;

begin

 D1: entity work.DFF port map (D=>A, CLOCK=>CK, Q=>S1, QBAR=>S2);

 A1: entity work.AND2 port map (X=>S2, Y=>DIN, Z=>CTRLA);

 N1: entity work.NOR2 port map

 (a =>S1,

 b =>MR,

 c =>RD1);

end STRUCT;

dff
d

 clock

q

qbar

and2
x

y
z

nor2
a

b

c

77

VHLD for Sequential
Logic Design

VHDL for Synthesis - C. Sisterna ICTP- MLAB 78

VHDL for Synthesis - C. Sisterna ICTP- MLAB

D Flip-Flop – VHDL

entity ff_d_example is

 port(

 d : in std_logic;

 clk : in std_logic;

 q : out std_logic);

end entity;

architecture rtl of ff_d_example is

begin

 ff_d: process(clk)

 begin

 if (rising_edge(clk)) then

 q <= d;

 end if;

 end process ff_d;

end rtl;

q

clk

d

79

VHDL for Synthesis - C. Sisterna ICTP- MLAB

D-ff with asynchronous reset

entity ff_example is

 port(

 d, clk, rst_n: in std_logic;

 q: out std_logic);

end entity;

architecture rtl of ff_example is

begin

 ff_d_rst: process (clk, rst_n)

 begin

 if (rst_n=‘0’) then

 q <= ‘0’;

 elsif (rising_edge (clk)) then

 q <= d;

 end if;

 end process ff_d_rst;

end rtl;

80

q

clk

d

rst_n

VHDL for Synthesis - C. Sisterna 81

D-ff with synchronous reset
entity ff_d_srst is

 port(

 d, clk, rst: in std_logic;

 q: out std_logic);

end entity;

architecture rtl of ff_d_srst is

begin

 ff_d_srst: process (clk)

begin

 if (rising_edge (clk)) then

 if (rst =‘1’) then

 q <= ‘0’;

 else

 q <= d;

 end if;

 end if;

end process ff_d_srst;

end rtl;

ICTP- MLAB

q

clk

d

rst

VHDL for Synthesis - C. Sisterna 82

D-ff with async. reset and enable

end entity;

architecture rtl of ff_d_en_rst is

begin

ff_d_en_rst: process (clk, rst)

 begin

 if (rst=‘1’) then

 q <= ‘0’;

 elsif (rising_edge (clk)) then

 if (en=‘1’) then

 q <= d;

 end if;

 end if;

 end process ff_d_en_rst;

end rtl;

ICTP- MLAB

q

clk

d

rst

en

entity ff_d_en_rst is

 port(

 d, clk, en, rst: in std_logic;

 q: out std_logic);

end entity;

VHDL for Synthesis - C. Sisterna 83

Registers
entity reg_d_rst is

 generic(width:= 4);

 port(

 d : in std_logic_vector(width-1 downto 0);

 clk, clr_l: in std_logic;

 q : out std_logic_vector(width-1 downto 0));

end entity;

architecture rtl of reg_d_rst is

begin

 reg_d_arst: process (clk,clr_l)

 begin

 if (clr_l = ‘1’) then

 q <= (others =>‘0’); -- q <= “0000”

 elsif(rising_edge (clk)) then

 q <= d;

 end if;

 end process reg_d_arst;

end rtl;

ICTP- MLAB

VHDL for Synthesis - C. Sisterna ICTP- MLAB 84

What is the implementation result??
library ieee;

use ieee.std_logic_1164.all;

entity shift_pi_po_x8 is

port(

clk, clr : in std_logic;

serial_in : in std_logic;

data_out : out std_logic_vector(7 downto 0);

end shift_pi_po_x8;

architecture behav of shift_si_so_x4 is

signal data_out_temp: std_logic_vector(3 downto 0);

begin

shift_proc: process(clk, clr)

begin

if (clr = '0') then

data_out_temp <= others(=>'0‘);

elsif (rising_edge(clk)) then

data_out_temp <= serial_in & data_out_temp(3 downto 1);

end if;

end process shift_proc;

data_out <= data_out_temp;

end behave;

architecture behav of shift_74x194 is

signal temp_q: std_logic_vector(3 downto 0);

signal ctrl : std_logic_vector(1 downto 0);

begin

ctrl <= s0 & s1;

shift_proc: process(clk, clr_n)

begin

if (clr_n = '0') then

temp_q <= (others => '0');

elsif (rising_edge(clk)) then

case ctrl is

when "11" => temp_q <= paralel_in;
 when "10" => temp_q <= rin & temp(3 downto 1);
 when "01" => temp_q <= temp(2 downto 0) & lin;

 when others => temp_q <= temp_q;

 end case;

 end if;

end process;

q <= temp_q;

end behav;

VHDL for Synthesis - C. Sisterna ICTP- MLAB 85

Shift Register : 74x194

VHDL for Synthesis - C. Sisterna ICTP- MLAB 86

Counter

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity counter_nbits is

 generic(cnt_w: natural:= 4)

 port (

 -- clock & reset inputs

 clk : in std_logic;

 rst : in std_logic;

 -- ouptuts

 count : out std_logic_vector(cnt_w-1 downto

0));

end counter_nbits;

architecture rtl of counter_nbits is

 -- signal declarations

 signal count_i: unsigned(cnt_w-1 downto 0);

begin

count_proc: process(clk, rst)

 begin

 if(rst='0') then

 count_i <= (others => '0');

 elsif(rising_edge(clk)) then

 count_i <= count_i + 1;

 endif;

end process count_proc;

 count <= std_logic_vector(count_i);

end architecture rtl;

VHDL for Synthesis - C. Sisterna ICTP- MLAB 87

Up/Down Counter
library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity counter_ud is

 generic(cnt_w: natural:= 4)

 port (

 -- clock & reset inputs

 clk : in std_logic;

 rst : in std_logic;

 -- control input signals

 up_dw : in std_logic;

 -- ouptuts

 count : out std_logic_vector(cnt_w-1 downto

0));

end counter_ud;

architecture rtl of counter_ud is

-- signal declarations

signal count_i: unsigned(cnt_w-1 downto 0);

begin

 count_proc: process(clk, rst)

 begin

 if(rst='0') then

 count_i <= (others => '0');

 elsif(rising_edge(clk)) then

 if(up_dw = '1') then -- up

 count_i <= count_i + 1;

 else -- down

 count_i <= count_i - 1;

 end if;

 end if;

 end process count_proc;

 count <= std_logic_vector(count_i);

end architecture rtl;

VHDL for Synthesis - C. Sisterna ICTP- MLAB 88

Up/Down Counter - Integers

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity counter_ud_i is

 generic(cnt_w: natural:= 4)

 port (

 -- clock & reset inputs

 clk : in std_logic;

 rst_n : in std_logic;

 -- ouptuts

 count : out std_logic_vector(cnt_w-1 downto

0));

end counter_ud_i;

architecture rtl of counter_ud_i is

begin

 count_proc: process(clk, rst)

 variable count_i: integer range 0 to 255;

begin

 if(rst_n = '0') then

 count_i := 0;

 elsif(rising_edge(clk)) then

 if(count_i = 255) then

 count_i := 0;

 else

 count_i := count_i + 1;

 end if;

 end if;

 end process count_proc;

 count <= std_logic_vector(to_unsigned(count_i,8));

end architecture rtl;
?

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Asynchronous Inputs

89

VHDL for Synthesis - C. Sisterna ICTP- MLAB 90

Synchronizer

VHDL for Synthesis - C. Sisterna ICTP- MLAB 91

Synchronizer

library ieee;
use ieee.std_logic_1164.all;

entity synchronizer is
port(

clk : in std_logic;
asyncin : in std_logic;
syncin : out std_logic);

end synchronizer;

architecture behave of synchronizer is

signal sync_temp: std_logic;

begin

sync_proc: process(clk)

begin
if (rising_edge(clk)) then

sync_temp <= asyncin;

syncin <= sync_temp;

end if;
end process;

end behave;

FINITE STATE
MACHINES (FSM)

DESCRIPTION IN VHDL

Cristian Sisterna

UNSJ
VHDL for Synthesis - C. Sisterna ICTP- MLAB 92

ICTP- MLAB 93

State Machine General Scheme 1

VHDL for Synthesis - C. Sisterna

Outputs
Inputs

Next

State

Logic

Current

State

Logic
Current

 State

Next

State

Output

Logic

Clk

Rst

Next State

Logic

Current

State Logic

Output

Logic

VHDL for Synthesis - C. Sisterna ICTP- MLAB 94

State Machine General Scheme 2

Outputs

Next

State

Inputs
Next

State

Logic

Current

State

Logic

Current

 State Output

Logic

Clk

Rst

Sync

Output

FFs

Next

State

Logic

Current

State

Logic

Output

Logic

Synchr.

Output

Logic

VHDL for Synthesis - C. Sisterna ICTP- MLAB 95

FSM VHDL General Design Flow

Specification
s

Understand the
Problem

Draw the ASM or State
Diagram

Define an FSM
Enumerated Type

Define FSM Signals

Select an Encoding
Technique (optional)

Write the VHDL
Code

Traditional Steps

VHDL Steps

+

VHDL for Synthesis - C. Sisterna ICTP- MLAB 96

FSM Enumerated Type Declaration

Declare an enumerated data type with values (names) that symbolize

the states of the state machine

The only values that current_state and next_state can hold are:

IDLE,START,STOP_1BIT,PARITY,SHIFT

-- declare signals of FSM_States type

signal current_state, next_state: FSM_States;

-- declare the states of the state-machine

-- as enumerated type

type FSM_States is(IDLE,START,STOP_1BIT,PARITY,SHIFT);

Declare the signals for the next state and current state of the state

machine as signal of the enumerated data type already defined for the

state machine

Symbolic State
Names

State Assignment

 During synthesis each symbolic state name has to be mapped to a

unique binary representation

VHDL for Synthesis - C. Sisterna ICTP- MLAB 97

FSM Encoding Techniques

 A good state assignment can reduce the circuit size and increase the

clock rate (by reducing propagation delays)

 The hardware needed for the implementation of the next state logic

and the output logic is directly related to the state assignment

selected

An FSM with n symbolic states requires at least [log2 n] bits to

encode all the possible symbolic values

Commonly used state assignment schemes:

 Binary: assign states according to a binary sequence

 Gray: use the Gray code sequence for assigning states

 One-hot: assigns one ‘hot’ bit for each state

 Almost one-hot: similar to one-hot but add the all zeros code

(initial state)

VHDL for Synthesis - C. Sisterna ICTP- MLAB 98

FSM Encoding Schemes

VHDL for Synthesis - C. Sisterna ICTP- MLAB 99

FSM Encoding Schemes

Binary Gray One-Hot Almost One-hot

idle 000 000 00001 0000

start 001 001 00010 0001

stop_1bit 010 011 00100 0010

parity 011 010 01000 0100

shift 100 110 10000 1000

VHDL for Synthesis - C. Sisterna ICTP- MLAB 100

Encoding Schemes in VHDL

During synthesis each symbolic state name has to be

mapped to a unique binary representation

user attribute
(synthesis attribute)

enum_encoding
(VHDL standard)

explicit user-defined
assignment

default encoding

VHDL for Synthesis - C. Sisterna ICTP- MLAB 101

Results for Different Encoding Schemes

One-hot

safe

One-hot Gray Gray-Safe Binary Johnson

Total

combinational

functions

556 523 569 566 561 573

Dedicated

logic registers
215 215 201 201 201 206

Max. frq. 187.3 175.22 186.39 180.6 197.63 186.22

19 states, state machine

VHDL for Synthesis - C. Sisterna ICTP- MLAB 102

State Machine VHDL Coding - Example

wait_inpin_2det

X = 0edge_det

wait_fall

pulsein_2det

in_2det

in_2det

FSMin_2det
pulse

in_2det

in_2det

clock
resetDescribe in VHDL an FSM

that generate a pulse
per each rising edge of
the input.

Seq. Output

VHDL for Synthesis - C. Sisterna ICTP- MLAB 103

FSM VHDL Coding
Comb. Next State

Logic

Seq. Present State

Clk

Rst

in_2det state

nxt_pr:process (state, in_2det)

begin

 case state is

 when wait_inp =>

 if (in_2det='0') then

 next_state <= wait_inp;

 else

 next_state <= edge_det;

 end if;

 when edge_det =>

 if(in_2det='0') then

 next_state <= wait_inp;

 else

 next_state <= wait_fall;

 end if;

 when wait_fall =>

 if(in_2det='0') then

 next_state <= wait_inp;

 else

 next_state <= wait_fall;

 end if;

 when others =>

 next_state <= wait_inp;

 end case;

end process nxt_pr;

cst_pr: process (clk, rst)

begin

 if(rst = ‘1’) then

 state <= wait_inp;

 elsif (rising_edge(clk)) then

 state <= next_state;

 end if;

end process cst_pr;

out_pr:process (clk, rst)

begin

 if (rst = ‘1’) then

 pulse <= ‘0’;

 elsif (rising_edge(clk)) then

 case state is

 when wait_inp =>

 pulse <= ‘0’;

 when edge_det =>

 pulse <= ‘1’;

 when wait_fall =>

 pulse <= ‘0’;

 when others =>

 pulse <= ‘-’;

 end case;

 end if;

end process out_pr;

pulse

VHDL for Synthesis - C. Sisterna ICTP- MLAB 104

State Machine VHDL Coding (complete)

-- VHDL code example for an FSM

library ieee;

use ieee.std_logic_1164.all;

entity fsm _edge_detect is

 port(

 in_2det : in std_logic;

 clk : in std_logic;

 rst : in std_logic;

 pulse : out std_logic);

end entity fsm_edge_detect;

architecture beh of my_fsm is

 -- fsm enumerated type declaration

 type fsm_states is (wait_inp, edge_det, wait_fall);

 -- fsm signal declarations

 signal next_state, state: fsm_states;

begin

-- current state logic

cst_pr: process (clk, rst)

begin

 if(rst = ‘1’) then

 state <= wait_inp;

 elsif (rising_edge(clk)) then

 state <= next_state;

 end if;

end process cst_pr;

-- next state logic

nxt_pr:process (state, in_2det)

begin

 case state is

 when wait_inp =>

 if(in_2det=‘0’) then

 next_state <= wait_inp;

 else

 next_state <= edge_det;

 end if;

 when edge_det =>

 if ….

 next_state <= .. ;

 ….

 when others =>

 ….

 end case;

end process nxt_pr;

- - output logic

out_pr:process (clk, rst)

begin

 if(rst = ‘1’) then

 pulse <= ‘0’;

 elsif (rising_edge(clk)) then

 case state is

 when wait_inp => pulse <= ‘0’;

 . . .

 when others => pulse <= ‘-’;

 end case;

 end process out_pr;

end architecture beh;

VHDL for Synthesis - C. Sisterna ICTP- MLAB 105

FSM Simulation

Let’s try to obtain an state diagram of a hypothetical memory controller FSM that has the

following specifications:

The controller is between a processor and a memory chip, interpreting commands from the

processor and then generating a control sequence accordingly. The commands, mem, rw and

burst, from the processor constitute the input signals of the FSM. The mem signal is asserted to

high when a memory access is required. The rdwr signal indicates the type of memory access,

and its value can be either ’1’ or ’0’, for memory read and memory write respectively. The

burst signal is for a special mode of a memory read operation. If it is asserted, four

consecutive read operations will be performed. The memory chip has two control signals, oe

(for output enable) and we (for write enable), which need to be asserted during the memory

read and memory write respectively. The two output signals of the FSM, oe and we, are

connected to the memory chip’s control signals. For comparison purpose, let also add an

artificial Mealy output signal, we_mealy , to the state diagram. Initially, the FSM is in the idle

state, waiting for the mem command from the processor. Once mem is asserted, the FSM

examines the value of rdwr and moves to either the read1 or the write state. The input

conditions can be formalized to logic expressions, as shown below:

• mem’ : represents that no memory operation is required (mem=‘0’)

• mem.rdwr: represents that a memory read operation is required (mem=rdwr=‘1’).

• mem.rdwr’: represents that a memory write operation is required (mem=‘1’; rdwr=‘0’)

VHDL for Synthesis - C. Sisterna ICTP- MLAB 106

Another Ex.: Memory Controller FSM

Based on an example from the “RTL Hardware Design Using VHDL” book, By Pong Chu

VHDL for Synthesis - C. Sisterna ICTP- MLAB 107

Memory Controller FSM

Processor

FPGA Memory

Controller FSM

Memory IC

Data Bus

Address Bus

mem

burst

rdwr

oe

we

we_mealy

VHDL for Synthesis - C. Sisterna ICTP- MLAB 108

Memory Controller FSM
mem’

read1

read2

read3

read4

mem.rdwr

burst’

idle

write

we

oe

oe

oe

oe

mem.rdwr’

we_mealy

burst

VHDL for Synthesis - C. Sisterna ICTP- MLAB 109

Memory Controller FSM – VHDL Code

library ieee ;

use ieee.std_logic_1164.all;

entity mem_ctrl is

port (

 clk, reset : in std_logic;

 mem, rdwr, burst: in std_logic;

 oe, we, we_mealy: out std_logic

);

end mem_ctrl ;

architecture mult_seg_arch of mem_ctrl is

 type fsm_states_type is

 (idle, read1, read2, read3, read4, write);

 signal crrnt_state, next_state: fsm_states_type;

begin

VHDL for Synthesis - C. Sisterna ICTP- MLAB 110

Memory Controller FSM – VHDL Code

−− current state process

cs_pr: process (clk, reset)

begin

 if(reset = ’1’) then

 crrnt_state <= idle ;

 elsif(rising_edge(clk))then

 crrnt_state <= next_state;

 end if;

end process cs_pr;

 Next state process (1)

VHDL for Synthesis - C. Sisterna ICTP- MLAB 111

Memory Controller FSM – VHDL Code

−− next−state logic

nxp:process(crrnt_state,mem,rdwr,burst)

begin

 case crrnt_state is

 when idle =>

 if mem = ’1 ’ then

 if rdwr = ’1’ then

 next_state <= read1;

 else

 next_state <= write;

 end if;

 else

 next_state <= idle;

 end if;

 when write =>

 next_state <= idle;

 Next state process (2)

VHDL for Synthesis - C. Sisterna ICTP- MLAB 112

Memory Controller FSM – VHDL Code

when read1 =>

 if (burst = ’1’) then

 next_state <= read2;

 else

 next_state <= idle;

 end if;

 when read2 =>

 next_state <= read3;

 when read3 =>

 next_state <= read4;

 when read4 =>

 next_state <= idle;

 when others =>

 next_state <= idle;

 end case;

end process nxp;

 Moore outputs process

VHDL for Synthesis - C. Sisterna ICTP- MLAB 113

Memory Controller FSM – VHDL Code
−− Moore output logic

moore_pr: process (crrnt_state)

begin

 we <= ’0’; −− default value

 oe <= ’0’; −− default value

 case crrnt_state is

 when idle => null;

 when write =>

 we <= ’1’;

 when read1 =>

 oe <= ’1’;

 when read2 =>

 oe <= ’1’;

 when read3 =>

 oe <= ’1’;

 when read4 =>

 oe <= ’1’;

 when others => null;

 end case ;

end process moore_pr;

 Mealy output process

VHDL for Synthesis - C. Sisterna ICTP- MLAB 114

Memory Controller FSM – VHDL Code

−− Mealy output logic

mly_pr: process(crrt_state,mem,rdwr)

begin

 we_me <= ’0’; −− default value

 case state_reg is

 when idle =>

 if (mem=’1’)and(rdwr =’0’)then

 we_me <= ’1’;

 end if;

 when write => null;

 when read1 => null;

 when read2 => null;

 when read3 => null;

 when read4 => null;

 end case;

end process mly_pr;

VHDL for Synthesis - C. Sisterna ICTP- MLAB 115

Memory Controller FSM – VHDL Code

−− Mealy output logic

we_me <= ’1’ when ((crrnt_state=idle) and (mem=’1’) and(rdwr=’0’))

 else

 ’0’;

 Mealy output statement

VHDL Code to be
used in the Labs

VHDL for Synthesis - C. Sisterna ICTP- MLAB 116

VHDL for Synthesis - C. Sisterna ICTP- MLAB 117

Synchronous one-shot-timer

pulse_len

trig_out

ce

trig_in

clk

aresetn

The purpose of the module oneShotTimer is to generate a

single output pulse of a predefined duration (pulse_len) every

time it receives a rising edge on its trig_in input.

VHDL for Synthesis - C. Sisterna ICTP- MLAB 118

Synchronous one-shot-timer

•generic(DATA_BUS_WIDTH : NATURAL := 16):
•generic is a way to pass constant values into an entity from its instantiation.
•DATA_BUS_WIDTH defines the bit width of the pulse_len input. It defaults to 16 bits, meaning
pulse_len can specify a pulse length from 0 to 65535 clock cycles.

•Port (...): Defines the input and output signals of the block:
•clk: Standard clock input. All internal state changes occur on its rising edge.
•aresetn: Asynchronous active-low reset. When aresetn is '0', the timer is reset.
•ce: Clock Enable. Note: This port is declared but not used yet.
•trig_in: The input signal that, upon a rising edge, initiates the one-shot pulse.
•pulse_len: An input vector that defines the desired duration of the output pulse in terms of clock
cycles.
•trig_out: The output signal that generates a pulse (goes high) for the specified pulse_len duration.

VHDL for Synthesis - C. Sisterna ICTP- MLAB 119

Synchronous one-shot-timer

•architecture Behavioral of oneShotTimer is: Defines the behavior or implementation of the
oneShotTimer entity.
•signal lastTrig_in : std_logic;

•Declares an internal signal named lastTrig_in.
•This signal is crucial for rising edge detection of trig_in. It will store the value of trig_in
from the previous clock cycle.

•signal counter : integer range 0 to 2**DATA_BUS_WIDTH - 1;
•Declares an internal signal named counter.
•It's declared as an INTEGER with a specified range, from 0 up to the maximum value that
can be represented by DATA_BUS_WIDTH bits (e.g., if DATA_BUS_WIDTH is 16, the range is
0 to 65535). This counter tracks the duration of the output pulse.

VHDL for Synthesis - C. Sisterna ICTP- MLAB 120

Synchronous one-shot-timer

•process(clk, aresetn): This is a sequential (clock-controlled) process.
•It's sensitive to clk and aresetn. This means the code inside the process will execute
whenever clk or aresetn changes value.

•if aresetn = '0' then ...: This handles the asynchronous reset. If aresetn goes low, both
lastTrig_in and counter are immediately forced to '0'. This initializes the timer to an
inactive state.
•elsif rising_edge(clk) then ...: This block executes only on the rising edge of the clock,
after checking the reset condition. All the logic inside this elsif is synchronous.
•lastTrig_in <= trig_in; On each rising clock edge, the current value of trig_in is stored into
lastTrig_in. This is the standard way to create a one-clock-cycle delayed version of a signal
for edge detection.

VHDL for Synthesis - C. Sisterna ICTP- MLAB 121

Synchronous one-shot-timer

•if(lastTrig_in = '0' and trig_in = '1') then -- Trigger condition:
•This is the rising edge detection logic. It checks if trig_in was '0' in the previous clock cycle
(lastTrig_in) and is '1' in the current clock cycle (trig_in).
•If a rising edge is detected, counter <= 1; initializes the counter. This makes the trig_out go high
starting from the next clock cycle (because trig_out is 1 when counter /= 0).

•elsif((counter < to_integer(unsigned(pulse_len))) and (counter /= 0)) then: The counting phase.
•to_integer(unsigned(pulse_len)): Converts the STD_LOGIC_VECTOR pulse_len into an INTEGER so
it can be compared with counter. unsigned() treats the vector as an unsigned number.
•counter < ...: Checks if the counter has not yet reached the desired pulse length.
•counter /= 0: Ensures that the counter is actually active (has been triggered).

•If both conditions are true, counter <= counter + 1; increments the counter, continuing the pulse.
•else counter <= 0;: This is the default case.

VHDL for Synthesis - C. Sisterna ICTP- MLAB 122

Synchronous one-shot-timer

•This is a concurrent signal assignment statement. It is outside the process block, meaning
it's continuously evaluated.
•trig_out <= '1' when counter /= 0 else '0';

•The trig_out signal will be '1' whenever the counter is not equal to 0.
•Otherwise (when counter is 0), trig_out will be '0'.
•This effectively means that trig_out is high for the duration that counter is counting
(from 1 up to pulse_len), and low when the timer is idle or reset.

VHDL for Synthesis - C. Sisterna ICTP- MLAB 123

Synchronous one-shot-timer

How it Works Together:
1. Idle State: counter is 0, trig_out is '0'.

2. Trigger: A rising edge on trig_in is detected.

3. Start Pulse: On the next rising clk edge after the trigger, counter is set to 1. trig_out
immediately becomes '1'.

4. Pulse Duration: For subsequent clock cycles, if counter is less than pulse_len and not 0,
counter increments. trig_out remains '1'.

5. Pulse End: When counter becomes equal to pulse_len (meaning pulse_len clock cycles
have passed since the trigger), in the next clock cycle, the elsif condition (counter <
to_integer(unsigned(pulse_len))) becomes false. The else branch executes, resetting
counter to 0.

6. Output Low: As counter becomes 0, trig_out immediately reverts to '0', ending the pulse.

7. Reset: If aresetn goes low at any point, counter and lastTrig_in are reset to 0, forcing
trig_out to '0' and stopping any ongoing pulse.

This design creates a reliable, retriggerable one-shot timer with a configurable pulse
length, synchronized to the system clock.

VHDL for Synthesis - C. Sisterna ICTP- MLAB 124

Synchronous level-crossing trigger

Its purpose is to detect when an input data value, dIn,

crosses a specified threshold value, specifically looking

for either a positive-going (rising) edge crossing or a

negative-going (falling) edge crossing, depending on the

edgeSel input.

The output, trigger, will be set to ‘1’ during one clock

cycle whenever a trigger event is detected

dIn

trigger

threshold

edgeSel

clk

aresetn

VHDL for Synthesis - C. Sisterna ICTP- MLAB 125

Synchronous level-crossing trigger

✓ generic(DATA_BUS_WIDTH : NATURAL := 14):
✓ Generic is a way to pass constant values into an entity from its instantiation.
✓ DATA_BUS_WIDTH is a generic parameter defining the width of the dIn and threshold buses. It's set to a

default value of 14 bits. This makes the design reusable for different data widths without modifying the core code.
✓ Port (...): Defines the input and output signals of the block:

✓ clk: Standard clock input. All internal state changes will occur on its edge.
✓ aresetn: Asynchronous active-low reset. When aresetn is '0', the circuit is reset. The n suffix typically indicates

active-low.
✓ dIn: Input data bus, DATA_BUS_WIDTH bits wide.
✓ threshold: Reference value for comparison, DATA_BUS_WIDTH bits wide.
✓ edgeSel: A single bit to select the type of trigger: '0' for positive-going edge (crossing threshold from below), '1'

for negative-going edge (crossing threshold from above).
✓ trigger: A single-bit output that goes '1' when a trigger condition is detected.

VHDL for Synthesis - C. Sisterna ICTP- MLAB 126

Synchronous level-crossing trigger

•architecture Behavioral of crossLevelTriggerBlock is:

Defines the behavior or implementation of the crossLevelTriggerBlock

entity.

•signal lastVal : std_logic_vector(DATA_BUS_WIDTH - 1 downto 0);

•Declares an internal signal named last lastVal.

•lastVal is a STD_LOGIC_VECTOR of the same width as dIn and threshold.

•This signal is crucial for detecting edge crossings: it stores the value of dIn

from the previous clock cycle.

VHDL for Synthesis - C. Sisterna ICTP- MLAB 127

Synchronous level-crossing trigger

VHDL for Synthesis - C. Sisterna ICTP- MLAB 128

Synchronous level-crossing trigger

•process(clk, aresetn): This is a sequential (clock-controlled) process.

•It's sensitive to clk and aresetn. This means the code inside the process will execute whenever clk or
aresetn changes value (aka, an event on one of those signals).

•if (aresetn = '0') then trigger <= '0’; This handles the asynchronous reset. If aresetn goes low,the output
trigger is immediately forced to '0', regardless of the clock. This is common for initial circuit states.

•elsif (rising_edge(clk)) then: This block executes only on the rising edge of the clock, after checking the
reset condition. All the logic inside this elsif is synchronous.

•lastVal <= dIn;

•This is a synchronous assignment. On each rising clock edge, the current value of dIn is stored into
lastVal.

•This means lastVal will always hold the value of dIn from the previous clock cycle, allowing for edge
detection.

VHDL for Synthesis - C. Sisterna ICTP- MLAB 129

Synchronous level-crossing trigger

if (edgeSel = '0') then -- Positive slope cross-level trigger:

•If edgeSel is '0', the block is configured to detect a positive-going (rising) edge crossing.

•if (unsigned(lastVal) < unsigned(threshold) and unsigned(dIn) >= unsigned(threshold))
then: This is the core detection logic for a positive edge.

•unsigned(): cast that converts STD_LOGIC_VECTOR signals to UNSIGNED type for
numerical comparison.

•The condition checks if the previous data value (lastVal) was strictly less than the
threshold, AND the current data value (dIn) is greater than or equal to the
threshold. This accurately defines a positive cross-level event.

•If this condition is met, trigger is set to '1'.

•else trigger <= '0’; Otherwise, trigger is '0'. This ensures trigger is only '1' for one
clock cycle when the condition is met.

VHDL for Synthesis - C. Sisterna ICTP- MLAB 130

Synchronous level-crossing trigger

else -- Negative slope cross-level trigger (edgeSel = '1'):
•If edgeSel is '1', the block is configured to detect a negative-going (falling) edge crossing.
•if (unsigned(lastVal) > unsigned(threshold) and unsigned(dIn) <= unsigned(threshold))
then: This is the core detection logic for a negative edge.

•The condition checks if the previous data value (lastVal) was strictly greater than the
threshold, AND the current data value (dIn) is less than or equal to the threshold.
This defines a negative cross-level event.
•If this condition is met, trigger is set to '1'.
•else trigger <= '0';: Otherwise, trigger is '0'.

VHDL for Synthesis - C. Sisterna ICTP- MLAB 131

Synchronous level-crossing trigger

In Summary:

This crossLevelTriggerBlock VHDL design acts as a programmable level-crossing
detector:

1. It stores the previous sample of the input data (dIn) in lastVal synchronously on
each clock edge.

2. On each clock edge, it compares the current dIn and the previous lastVal
against a threshold.

3. Based on the edgeSel input, it determines if a positive-going or negative-going
level crossing has occurred.

4. If a crossing is detected, the trigger output goes high for one clock cycle.

5. It also includes an asynchronous active-low reset to initialize the trigger output
to '0’.

This type of module is common in digital signal processing or control systems where
events need to be detected based on signal levels crossing certain thresholds

	Slide 1: Hardware Description Language (HDL) for Reconfigurable Instrumentation
	Slide 2: Hardware Description Languages
	Slide 3: Hardware Description Languages
	Slide 4: Why HDLs are keys in Digital Design?
	Slide 5: Introduction to VHDL
	Slide 6: Introduction to VHDL
	Slide 7: VHDL Synthesis & Simulation
	Slide 8: Synthesis versus Simulation
	Slide 9: VHDL -> Hardware Description
	Slide 10: VHDL ‘Description’ Examples
	Slide 11: VHDL - General Component Structure
	Slide 12: VHDL – General Component Structure
	Slide 13: VHDL – General Component Structure
	Slide 14: VHDL – General Component Structure
	Slide 15: VHDL – General Component Structure
	Slide 16: Test Bench
	Slide 17: VHDL Code – Is it really Works?
	Slide 18: Purposes of a test bench
	Slide 19: Test Bench - Verification
	Slide 20: VHDL – Simulation / Verification
	Slide 21: VHDL-FPGA Design Flow
	Slide 22: VHDL - FPGA Design Flow
	Slide 23: FGPA – Hardware Design Flow
	Slide 24: VHDL Simple Example
	Slide 25: Simple Example – VHDL
	Slide 26: Libraries & Packages
	Slide 27: Signal/Port Declarations in the Entity
	Slide 28: Architecture (top)
	Slide 29: Counter entity/arch.
	Slide 30: Counter Architecture
	Slide 31: Understanding Concurrency
	Slide 32: Architecture (top)
	Slide 33: VHDL Types, Objects & Classes
	Slide 34: VHDL Data Types
	Slide 35: Signal Assignment – strongly typed
	Slide 36: VHDL Object
	Slide 37: std_logic Type
	Slide 38: Type Conversion - Casting
	Slide 39: Type Conversion - Functions
	Slide 40: Type Conversion – Cast / Function
	Slide 41: VHDL Operators
	Slide 42: VHDL Attributes
	Slide 43: Array Attributes
	Slide 44: Array Attributes
	Slide 45: User-defined/Synthesis Attributes
	Slide 46: User-defined/Synthesis Attributes
	Slide 47: User-defined/Synthesis Attributes
	Slide 48: VHDL Statements
	Slide 49: Selective Signal Assignment Statement
	Slide 50: Selective Signal Assignment Statement
	Slide 51: Selective Signal Assignment Statement
	Slide 52: Conditional Signal Assignment
	Slide 53: Conditional Signal Assignment
	Slide 54: Conditional Signal Assignment
	Slide 55: process Statement
	Slide 56: Process Statement
	Slide 57: process Statement Syntax
	Slide 58: Parts of the process statement
	Slide 59: Signal Behaviour in a process
	Slide 60: Variable Behavior in a process
	Slide 61: process – Combinational/Sequential
	Slide 62: process – Combinational/Sequential
	Slide 63: process – Combinational/Sequential
	Slide 64: Sequential process example
	Slide 65: Combinational process example
	Slide 66: if Statement – 3 to 8 Decoder
	Slide 67: if Statement
	Slide 68: case Statement
	Slide 69: case Statement
	Slide 70: case Statement with if Statement
	Slide 71: for loop-end loop Statement
	Slide 72: for-loop Statement
	Slide 73: for-loop Statement
	Slide 74: The Role of Componentes in VHDL
	Slide 75: Component Instantiation
	Slide 76: Association By Name
	Slide 77: Component Instantiation Example
	Slide 78: VHLD for Sequential Logic Design
	Slide 79: D Flip-Flop – VHDL
	Slide 80: D-ff with asynchronous reset
	Slide 81: D-ff with synchronous reset
	Slide 82: D-ff with async. reset and enable
	Slide 83: Registers
	Slide 84: What is the implementation result??
	Slide 85: Shift Register : 74x194
	Slide 86: Counter
	Slide 87: Up/Down Counter
	Slide 88: Up/Down Counter - Integers
	Slide 89: Asynchronous Inputs
	Slide 90: Synchronizer
	Slide 91: Synchronizer
	Slide 92: FINITE STATE MACHINES (FSM) Description in VHDL
	Slide 93: State Machine General Scheme 1
	Slide 94: State Machine General Scheme 2
	Slide 95: FSM VHDL General Design Flow
	Slide 96: FSM Enumerated Type Declaration
	Slide 97: FSM Encoding Techniques
	Slide 98: FSM Encoding Schemes
	Slide 99: FSM Encoding Schemes
	Slide 100: Encoding Schemes in VHDL
	Slide 101: Results for Different Encoding Schemes
	Slide 102: State Machine VHDL Coding - Example
	Slide 103: FSM VHDL Coding
	Slide 104: State Machine VHDL Coding (complete)
	Slide 105: FSM Simulation
	Slide 106: Another Ex.: Memory Controller FSM
	Slide 107: Memory Controller FSM
	Slide 108: Memory Controller FSM
	Slide 109: Memory Controller FSM – VHDL Code
	Slide 110: Memory Controller FSM – VHDL Code
	Slide 111: Memory Controller FSM – VHDL Code
	Slide 112: Memory Controller FSM – VHDL Code
	Slide 113: Memory Controller FSM – VHDL Code
	Slide 114: Memory Controller FSM – VHDL Code
	Slide 115: Memory Controller FSM – VHDL Code
	Slide 116: VHDL Code to be used in the Labs
	Slide 117: Synchronous one-shot-timer
	Slide 118: Synchronous one-shot-timer
	Slide 119: Synchronous one-shot-timer
	Slide 120: Synchronous one-shot-timer
	Slide 121: Synchronous one-shot-timer
	Slide 122: Synchronous one-shot-timer
	Slide 123: Synchronous one-shot-timer
	Slide 124: Synchronous level-crossing trigger
	Slide 125: Synchronous level-crossing trigger
	Slide 126: Synchronous level-crossing trigger
	Slide 127: Synchronous level-crossing trigger
	Slide 128: Synchronous level-crossing trigger
	Slide 129: Synchronous level-crossing trigger
	Slide 130: Synchronous level-crossing trigger
	Slide 131: Synchronous level-crossing trigger

