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What are them ? 

VHDL for Synthesis - C. Sisterna ICTP- MLAB 2

Hardware Description Languages

Specialized computer languages 
for describing electronic circuits

They are fundamental to 
modern digital design, 
especially for creating ASICs 
and configuring FPGAs.

Used to describe structure, 
behavior, and timing of digital 

hardware

VHDL

Verilog

SystemVerilog

Chisel

MyHDL

Allow designers to work at a 
higher level of abstraction 
than schematic capture

HDL
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Hardware Description Languages

SystemVerilog SystemC MyHDLVerilogVHDL

Python 

based HDL

Superset of Verilog.

Adds OOP, improved 
data types, assertions, 
interfaces.

Powerful for system-
level verification.

C++ libraries for system-
level modeling.

Often used for 
Transaction-Level 
Modeling (TLM).

ASIC  

FPGA

•Started as a 

proprietary language. 

•Weakly typed. 

•Syntax similar to C 

programming 

language  

•Developed under 

the U.S. DoD's 

VHSIC program. 

•Strongly typed

•More verbose and 

formal (resembles 

Ada)
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Why HDLs are keys in Digital Design? 

Design complex circuits without low-level details

Abstraction

Simulate and test designs before fabrication (cost-saving)

Verification

Create modular and reusable IP (Intellectual Property) 
blocks.

Reusability

Automatically transform HDL into ASIC/FPGA’s    
hardware components

Synthesis

Enable design of very large and complex systems

Scalability

HDLs
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Introduction to VHDL

Very High Speed IC
 

Hardware

Description

Language

V H D L
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Introduction to VHDL

High level of abstraction 

Easy to debug

Parameterized designs

Re-uso

IP Cores (free) available

if(reset=‘1’) then

 count <= 0;

elsif(rising_edge(clk)) then 

 count <= count+1;

end if;  

6

6
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VHDL Synthesis & Simulation

VHDL 
Synthesizable

VHDL

Used to write code 
to simulate the 
behavior of a design

Used to implement 
the design into 
hardware (for 
instance in FPGA)

7
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Synthesis versus Simulation

It’s important to understand that VHLD is both, a Synthesis 
language and a Simulation language.

8

8

⚫ Small subset of the language is ‘synthesizable’, meaning 
that it can be translated into logic gates, flip-flops, and  
other ‘hardware’ components.

⚫ Every line of VHDL code must have a direct translation 
into hardware.    

Another subset of the language include many 
features   for ‘simulation’ or ‘verification’, features 
that have NO meaning in hardware.

Synthesis

Simulation
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VHDL -> Hardware Description

Concurrency

Parallel

VHDL is used to DESCRIBE the 
behavior and/or structure of a 
Digital System. 

The operations in real systems 
are executed concurrently. 

The VHDL language describes 
real systems as a set of 
components that operate 
concurrently. 
Each of these components is 
described with concurrent 

statements. 

Describing Hardware

Concurrent Code -> Executed in Paralell

The complexity of 
each component may 
vary from a simple 
logic gate to a 
processor

Components

Complexity
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VHDL ‘Description’ Examples

x

y
z

sel

0

1

if(sel=‘1’) then 

 z <= y;

else

 z <= x;

end if; 

z <= y when sel=‘1’ else x;

10
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Libraries and packages provides the 
incorporation of external functions, 
data types and components to the 
component to be described
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VHDL - General Component Structure

entity

architecture

I/O

functionality

Libraries & 
packages

The entity defines the I/O ports as well 
as the name of the component. 

Some times a constant(s) is defined 
(generic) to write parameterized VHDL code 

The architecture it’s where the hardware 
behavior and/or structure is described.

It can have from a couple of lines to 
thousands lines of VHDL code.

ALL CONCURRENTs ! 
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VHDL – General Component Structure 

entity

architecture

I/O

functionality

mux2x1.vhd

12

x

y
z

sel

0

1

12

Libraries & 
packages
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VHDL – General Component Structure 
mux2x1.vhd

13

13

Library & 

Packages

Entity

Libraries & 
packages

entity

I/O

architecture

functionality
Architecture
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VHDL – General Component Structure 

14

14

Library & 

Packages

Entity

Architecture

library ieee;

use ieee.std_logic_1164.all;

entity mux2x1 is

port(

  x,y,sel: in  std_logic;

   z     : out std_logic);

end mux2x1;

entity 

port(

end       ;

architecture test of mux2x1 is

begin

 process(x,y,sel)

 begin

  if(sel=‘1’) then 

 z <= y;

  else

 z <= x;

  end if; 

 end process;

end test;
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VHDL – General Component Structure 

15
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Library & 

Packages

Entity

Architecture

library ieee;

use ieee.std_logic_1164.all;

entity mux2x1 is

port(

  x,y,sel: in  std_logic;

   z     : out std_logic);

end mux2x1;

entity 

port(

end       ;

architecture test of mux2x1 is

begin

end test;

architecture test of mux2x1 is

begin

 

 z <= y when sel=‘1’ else x;

end test;



Test Bench
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VHDL Code – Is it really Works? 

17

17

A test bench is a crucial part of the hardware design and 
verification process. 

It's a separate VHDL entity that is used to simulate and verify 
the functionality of a VHDL design (known as the "Device 

Under Test" or "DUT") by providing it with input stimuli and 
observing its outputs
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Purposes of a test bench

18

18

Output Monitoring

Verification

Stimuli Generation

Debug

It applies a sequence of input values (stimuli) to the DUT's 
input ports. These stimuli are designed to stimulate all the 
different operational modes and corner cases of the DUT.

It observes the DUT's output 
ports and compares them 
against expected values.

It determines whether the DUT behaves as intended: 
Assertions: Checking if certain conditions are met during 
simulation.
Expected Value Comparison: Directly comparing actual 
outputs with pre-calculated expected outputs.
Self-checking Test Benches: More advanced test benches that 
automatically report pass/fail status.

When the DUT doesn't behave as expected, 
the test bench provides a controlled 
environment to isolate and debug issues.

Debugging
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Test Bench - Verification
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VHDL –   Simulation / Verification 

20

20



VHDL-FPGA
Design Flow
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VHDL - FPGA Design Flow

22

22
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FGPA – Hardware Design Flow

Synthesis

VHDL 
Code

FPGA Library of 
Components

Timing & Placement Constraints

Synthesis Attributes

Virtex, Spartan,

Arria, Artix, Zynq 

Net "CLK" LOC=V10 | IOSTANDARD=LVCMOS33;

Net "CLK" TNM_NET = sys_clk_pin;

TIMESPEC TS_sys_clk_pin = PERIOD sys_clk_pin 100000 kHz;

Net "CS" LOC = T12 | IOSTANDARD = LVCMOS33;

P&R

process (clk,rst)

 if (rst = ‘1’)then 

 dbus <= (others => ‘0’);

 elsif( rising_edge(clk)) then 

 dbus <= data;

 endif;

end process; 

attribute syn_encoding of my_fsm: type is 

“one-hot”;



VHDL Simple Example



Design a BCD up-down counter. The count should be displayed in 
a 7-segment display. 

The system has a high frequency clock and system reset as inputs. 
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Simple Example – VHDL 

Option 01
Option 

2

library & 
packages

architecture

entity

1

3
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Libraries & Packages

Must be present to use 
std_logic type. That 

is, for ALL 
synthesisable designs.

Must be present to add 
arithmetic functions 

for signed and 
unsigned types.

Note: do not do arithmetic operations 
with std_logic/std_logic_vector

DO NOT USE these 
packages. There do not 
belong to the VHDL 

IEEE standard. 
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Signal/Port Declarations in the Entity

27

high_freq_clock

sys_reset

up_down

dspl1_anodo

seven_segm_dsply

27
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Architecture (top)

28

high_freq_clock

sys_reset

up_down

dspl1_anodo

seven_segm_dsply

Freq. 
Divider

bcd_2_7segm

counter

??

28
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Counter entity/arch.

29

high_freq_clock

sys_reset

up_down

dspl1_anodo

seven_segm_dsplycounter

29
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Counter Architecture

30

Declarative part

Descriptive part
(concurrent)

Sequential 
statements 
(inside a 
process)

Concurrent 
statement

30
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Understanding Concurrency

concurrent

sequential

sequential

concurrent

concurrent

concurrent
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Architecture (top)

32

high_freq_clock

sys_reset

up_down

dspl1_anodo

seven_segm_dsply

Freq. 
Divider

bcd_2_7segm

counter

??

32



VHDL Types, Objects & Classes
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VHDL Data Types

VHDL 
Types

std_logic_vector std_logic

Your Text 
Here

natural 
(0, +)

positive
(+)

signed / 
unsigned

boolean
(True, 
False)

integer 
(-, +)
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Signal Assignment – strongly typed

35

count     <= count + 1; 

carry_out <= (a and b) or (a and c) or (b and c);

Z         <= y;

Left Hand Side (LHS)

Target Signal 

Right Hand Side (RHS) 

Source Signal(s)

RHS Signal Data TypeLHS Signal Data Type

signal bandera: integer;

signal flag, enable : std_logic; 

. . . .

bandera <= flag; -- ? 

enable <= flag;    -- ?

35
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VHDL Object

36

An object holds a value of some specified type and 
can be one of the three classes:           

signal, variable, constant

Class           Object            Type

signal       

variable             identifier  

constant   

std_logic/std_ulogic

unsigned
signed

boolean

std_(u)logic_vector

Declaration Syntax:

object_class <identifier> : type[ := initial_value];

integer

36
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std_logic Type

PACKAGE std_logic_1164 IS

    ------------------------------------------------    

    -- logic state system  (unresolved)

    ------------------------------------------------    

    TYPE std_ulogic IS ( 'U',  -- Uninitialized

                         'X',  -- Forcing  Unknown

                         '0',  -- Forcing  0

                         '1',  -- Forcing  1

                         'Z',  -- High Impedance   

                         'W',  -- Weak     Unknown

                         'L',  -- Weak     0       

                         'H',  -- Weak     1       

                         '-'   -- Wild card

                       );

     SUBTYPE std_logic IS resolved std_ulogic;
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Type Conversion - Casting

38

VHDL does allow restricted type of CASTING, that is converting values 
between related types

datatype <= type(data_object);

signal max_rem: unsigned (7 downto 0); 

signal more_t: std_logic_vector( 7 downto 0); 

max_rem <= more_t; 

max_rem <= unsigned(more_t);

unsigned and std_logic_vector are both vectors of the same element 
type, therefore it’s possible a direct conversion by casting. When 

there is not type relationship a conversion function is used.

38
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Type Conversion - Functions

39

VHDL does have some built-in functions to convert some 
different data types (not all the types allow 

conversions) 

datatype <= to_type(data_object);

signal internal_counter: integer range 0 to 15; 

signal count: std_logic_vector( 3 downto 0); 

count <= internal_count; 

CoUnT <= std_logic_vector(to_unsigned(internal_count,4));

Function converts integer to unsigned  

Cast to slv unsigned

slv

39
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Type Conversion – Cast / Function

40

40
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VHDL Operators
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VHDL Attributes

42

It’s a way of extracting information from a type, from 

the values of a type

    It’s also a way to allow to assign additional information 

to objects in your design description (such as data related 

to synthesis)

User-defined/ 
Synthesis Attrbiutes

Pre-defined 
attributes

Simulation and 
Synthesis Only Simulation
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Array Attributes

Array attributes are used to obtain information on the 

size, range and indexing of an array

It’s good practice to use attributes to refer to the size or 

range of an array. So, if the size of the array is change, the 

VHDL statement using attributes will automatically adjust to 

the change 

Array Attributes – Range Related

A’range Returns the range value of a constrained array

A’reverse_range Returns the reverse value of a constrained array
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Array Attributes

variable w_bus: std_logic_vector(7 downto 0);

Use of the attributes range and reverse_range 

then:

 w_bus’range    -- will return:   7 downto 0

while:

 w_bus’reverse_range  -- will return:   0 to 7
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User-defined/Synthesis Attributes

45

VHDL provides designers/vendors with a way of adding 
additional information to the system to be synthesized

Synthesis tools use this features to add timing, 
placement, pin assignment, hints for resource locations, 
type of encoding for state machines and several others 
physical design information

The bad side of synthesis attributes is that the VHDL 
code becomes synthesis tools/FPGA dependant, NO 
TRANSPORTABLE ….
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User-defined/Synthesis Attributes

46

attribute syn_preserve: boolean;

attribute syn_preserve of ff_data: signal is true;

type my_fsm_state is (reset, load, count, hold);

attribute syn_encoding: string;

attribute syn_encoding of my_fsm_state: type is “gray”;

attribute attr_name: type;

attribute attr_name of data_object: ObjectType is AttributeValue;

Syntax

Example
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User-defined/Synthesis Attributes

47

type ram_type is array (63 downto 0) of 

                        std_logic_vector (15 downto 0);

signal ram: ram_type;

attribute syn_ramstyle: string;

attribute syn_ramstyle of ram: signal is “block_ram”; 

Example:



VHDL Statements
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Selective Signal Assignment Statement

49

with <selection_signal> select

    target_signal <= <expression> when <value1_ss>,

          <expression> when <value2_ss>,

      ...

     <expression> when <last_value_ss>,

          <expression> when others;

Syntax

A selective signal assignment describes logic 
based on mutually exclusive combinations of 

values of the selection signal

49
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Selective Signal Assignment Statement

50

library ieee; 

use ieee.std_logic_1164.all;

entity TRUTH_TABLE is

  port(A, B, C: in std_logic;

             Y: out std_logic);

end TRUTH_TABLE;

architecture BEHAVE of TRUTH_TABLE is

  signal S1: std_logic_vector(2 downto 0);

begin

  S1 <= A & B & C; -- concatenate A, B, C

  with S1 select

    Y <= ‘1’ when “000” | “010” | “100” ,

         ‘0’ when “001” | “011” | “101”,

         ‘-’ when others;

end BEHAVE;‘-’ means don’t care

A B C Y

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 -

1 1 1 -

“|” means OR only when 
used in “with” or “case” 

Example: Truth Table

A B C Y

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 -

1 1 1 -

50
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Selective Signal Assignment Statement

51

Synthesis 
Result

RTL View

FPGA Technology 
View

51
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Conditional Signal Assignment

52

target_signal <= 

 <expression> when <boolean_condition> else

 <expression> when <boolean_condition> else                 

 ....

 <expression> when <boolean_condition>[else 

<expression>];

Syntax

A conditional signal assignment describes logic based on 
unrelated boolean_conditions, the first condition that is 

true the value of expression is assigned to the 
target_signal

52
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Conditional Signal Assignment

53

dbus <= data when enable = ‘1’ else ‘Z’;

dbus <= data when enable = ‘1’ else (others=>‘Z’);

Main usage

53



Example
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Conditional Signal Assignment

54

library ieee;

use ieee.std_logic_1164.all;

entity my_tri is

  generic(bus_ancho: integer := 4);

  port(

   data:   in std_logic_vector(bus_ancho-1 downto 0);

   enable: in std_logic;

   dbus :  out std_logic_vector(bus_ancho-1 downto 0)

   );

end my_tri;

architecture behave of my_tri is

begin

  y <= a  when en = ‘1’ else (others => ‘z’) ;

end behave;

EN

A(0) Y(0)

EN

A(1) Y(1)

EN

A(2) Y(2)

EN

A(3) Y(3)

data(0)

data(1)

data(2)

data(3)

enable

enable

enable

enable

dbus(0)

dbus(1)

dbus(2)

dbus(3)

54



process Statement

A process, with all the sequential 
statements, is a simple concurrent 
statement. 

A process is a concurrent statement, but it is 
the primary mode of introducing 

sequential statements
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Multiple processes can be executed in 
parallel 

From the traditional programming view,a 
process is an infinite loop



Process Statement

56

execution

wait

A process has two states: execution and wait

Once the process has 
been executed,                 

it will wait for the 
next satisfied 

condition

Until a 
condition is 
satisfied

VHDL for Synthesis - C. Sisterna ICTP- MLAB 56
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process Statement Syntax

57

[process_label:] process [(sensitivity_list)] [is]

[process_data_object_declarations]

begin

 variable_assignment_statement

 signal_assignment_statement

 wait_statement

 if_statement

 case_statement

 loop_statement

 null_statement

 exit_statement

 next_statement

 assertion_statement

 report_statement

 procedure_call_statement

  [wait on sensitivity_list]

end process [process_label];

Sequential 
statements

57
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Parts of the process statement
sensitivity_list

◦ List of all the signals that are able to trigger the process

◦ Simulation tools monitor events on these signals

◦ Any event on any signal in the sensitivity list will cause to execute the 
process at least once

 sequential_statements

All the sequential statements that will be executed each 
time that the process is activated

declarations

Declarative part. Types, functions, procedures and variables 
can be declared in this part

 Each declaration is local to the process
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Signal Behaviour in a process

59

While a process is running ALL the SIGNALS in the system 

remain unchanged -> Signals are in effect CONSTANTS during 

process execution, EVEN after a signal assignment, the 

signal will NOT take a new value

SIGNALS are updated at the end of a process

Signals are a mean of communication between processes -> 

VHDL can be seen as a network of processes 

intercommunicating via signals

59
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Variable Behavior in a process

60

While a process is running ALL the Variables in 
the system are updates IMMEDIATELY by a 

variable assignment statement

60
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process – Combinational/Sequential

YOUR TEXT

sequential
combinational

process

When using processes, a key distinction is made between those that 
model sequential logic (controlled by a clock) and those that model 

combinational logic.

Clock controlled 
logic

Outputs depend 
ONLY of its input 

values
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process – Combinational/Sequential

YOUR TEXT

sequential
combinational

process

A clock-controlled process, also known as a sequential process, describes 
logic whose outputs change only at specific edges of a clock signal (e.g., 
rising edge or falling edge). This type of process is used to model sequential 
elements like flip-flops, registers, counters, and state machines, which have 
memory and store state.
Key Characteristics:
•It is ONLY sensitive to the clock signal and often a reset signal. 
•It typically contains an IF statement that checks for a clock edge (e.g., 
rising_edge(clk) or falling_edge(clk)). 
•Signal assignments inside the clock edge condition are implemented as 
some storage element (e.g., flip-flop, memory). 
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process – Combinational/Sequential

YOUR TEXT

sequential
combinational

process

A combinational process describes logic whose outputs depend only on the 

current values of its inputs. There is no memory or state involved; if the inputs 

change, the outputs change (after a propagation delay). 

Key Characteristics:

•Its sensitivity list must include all input signals that affect the process's outputs. 

If an input changes, the process must re-evaluate to produce the correct output. 

•It does not contain clock edge detection (rising_edge or falling_edge). 
•Signal assignments are typically concurrent updates, as outputs are directly 

derived from inputs. 

•There should be no unassigned signals in all possible execution paths within the 

process; otherwise, the VHDL synthesizer will infer latches, which is generally 

undesirable for combinational logic. All outputs must be assigned a value for every 

possible combination of inputs.
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Sequential process example

64

64

Description: 

•The process (clk, reset) line 
defines the sensitivity list. This means 
the process will execute whenever 
there's an event (a change in value) on 
either the clk or reset signal. 

•The if reset = '1' condition handles 
the asynchronous reset. If reset is 
active (high), Q is immediately set to 
'0'. This happens independently of the 
clock. 

•The elsif rising_edge(clk) 
condition means that if the reset is 
not active, the statements within this 
block will only execute when the clk 
signal transitions from '0' to '1'. 

•Q <= D; inside the rising_edge 
block indicates that the output Q will 
take on the value of the input D at 
that specific clock edge. This correctly 
describes the memory element of a D-
flip-flop. 
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Combinational process example

65

65

Description

•The process (A, B, Sel) 

line defines the sensitivity list. The 
process will execute whenever 
there's an event on A, B, or Sel. 
This ensures that Y is always 
updated whenever any of its 
inputs change. 

•There are no clock edge or 

reset conditions; the logic 

simply evaluates based on 

current inputs. 

•The if Sel = '0' and else 
branches ensure that the output Y 
is always assigned a value, 

regardless of the Sel input. This 
is critical to avoid inferring a latch. 
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if Statement – 3 to 8 Decoder

66

entity if_decoder_example is

  port(

 a: in  std_logic_vector(2 downto 0);

 z: out std_logic_vector(7 downto 0);

end entity; 

architecture rtl of if_decoder_example is

begin

if_dec_ex: process (a)

 begin

     if   (a = “000”) then 

   z <= “00000001”;

   elsif (a = “001”) then 

   z <= “00000010”;

          . . . 

   else                   

   z <= (others => ‘0’);

   end if;

 end process if_dec_ex;

end rtl;

a(2:0) b(7:0)
??

66
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if Statement

67

entity example3 is

   port ( a, b, c: in  std_logic;

           z, y: out std_logic);

end example3;

architecture beh of example3 is

begin

 process (a, b)

  begin

   if c='1' then

  z <= a;

   else

  y <= b;

   end if;

 end process;

end beh;

Most common mistakes for describing combinatorial logic

67
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case Statement

68

[case label:]case <selector_expression> is

   when <choice_1> =>

     <sequential_statements> -- branch #1

   when <choice_2> =>

     <sequential_statements> -- branch #2

     . . .

   [when <choice_n to/downto choice_m > =>

     <sequential_statements>] -- branch #n

     ....

   [when <choice_x | choice_y | . . .> =>

     <sequential_statements>] -- branch #...

   [when others =>

     <sequential_statements>]-- last branch 

end case [case_label];
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case Statement

69

entity mux4 is

  port ( sel            : in std_ulogic_vector(1 downto 0);

         d0, d1, d2, d3 : in std_ulogic;

         z              : out std_ulogic );

end entity mux4;

architecture demo of mux4 is

begin

out_select : process (sel, d0, d1, d2, d3) is

 begin

 case sel is

  when “00” =>   

   z <= d0;

      when “01” =>   

   z <= d1;

  when “10” =>   

   z <= d2;

      when others => 

   z <= d3;

    end case;

 end process out_select;

end architecture demo;
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case Statement with if Statement

70

mux_mem_bus :process 
(cont_out,I_P0,I_P1,I_A0,I_A1,Q_P0,Q_P1,Q_A0,Q_A1)

begin  

 mux_out <= I_P0;    

 case (cont_out) is      

 when "00" =>        

    if(iq_bus = '0') then        

   mux_out <= I_P0;--I_A0;       

    else          

  mux_out <= Q_P0;--Q_A0;       

    end if;       

 when "01" =>       

    if(iq_bus = '0') then       

  mux_out <= I_A0;--I_P0;        

    else         

  mux_out <= Q_A0;--Q_P0;       

     end if; 

     . . . . . . 
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for loop-end loop Statement

71

[loop_label]: for <identifier> in discrete_range loop

<sequential_statements>

end loop [loop_label];

• The identifier is called loop parameter, and for each iteration of 

the loop, it takes on successive values of the discrete range, 

starting from the left element

• It is not necessary to declare the identifier 

• By default the type is integer 

• Only exists when the loop is executing

<identifier>
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for-loop Statement

72

entity match_bit is

        port ( a, b    : in  std_logic_vector(7 downto 0);

                matches: out std_logic_vector(7 downto 0));

end entity;

architecture behavioral of match_bit is

begin

process (a, b)

  begin

  for i in a’range loop

        matches(i) <= not (a(i) xor b(i));

  end loop;

  end process;

end behavioral;

-- process (a, b)

-- begin

-- matches(7) <= not (a(7) xor b(7));

-- matches(6) <= not (a(6) xor b(6));

-- ..

-- matches(0) <= not (a(0) xor b(0));

-- end process;

72
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for-loop Statement

73

library ieee; 

use ieee.std_logic_1164.all;

use ieee.numeric_std.all; 

entity count_??? is
port(vec: in std_logic_vector(15 downto 0); 

count: out std_logic_vector(3 downto 0))

end count_ones;

architecture behavior of count_???? is

begin

cnt_ones_proc: process(vec) 

variable result: unsigned(3 downto 0); 

begin

result:= (others =>'0'); 

for i in vec’range loop

if vec(i)='1' then

result := result + 1; 

end if; 

end loop; 

count <= std_logic_vector(result); 

end process cnt_ones_proc;

end behavior;

73
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The Role of Componentes in VHDL

74

Hierarchy in VHDL 

Divide & Conquer

         Each subcomponent can be designed and completely 
tested

         Create library of components (technology independent if 
possible)

         Third-party available components

         Code for reuse
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Component Instantiation

75

Component instantiation is a concurrent statement that is used to 
connect a component I/Os to the internal signals or to the I/Os of 

the higher lever component

▫ component_label it labels the instance by giving a name
to the instanced

▫ generic_assocation_list assign new values to the 
default generic values (given in the entity declaration)

▫ port_association_list associate the signals in the top 
entity/architecture with the ports of the component. There
are two ways of specifying the port map:
 Positional Association  / Name Association

component_label: entity work.component_name

[generic map (generic_assocation_list)]

port map (port_association_list);

75



VHDL for Synthesis - C. Sisterna ICTP- MLAB

Association By Name

76

In named association, an association list is of the form

(formal1=>actual1, formal2=>actual2, … formaln=>actualn);

-- component declaration

component NAND2

 port (a, b: in  std_logic;

    z: out std_logic);

end component;

-- component instantiation

U1: entity work.NAND2 port map (a=>S1, z=>S3, b=>S2);

-- S1 associated with a, S2 with b and S3 with z 

Connected to Component I/O Port 
Internal Signal or Entity 

I/O Port
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Component Instantiation Example

77

library ieee;

use ieee.std_logic_1164.all;

entity glue_logic is

  port (A, CK, MR, DIN: in  std_logic; 

 RDY, CTRLA     : out std_logic); 

end glue_logic ;

architecture STRUCT of glue_logic is 

signal S1, S2: std_logic; 

begin

 D1: entity work.DFF  port map (D=>A, CLOCK=>CK, Q=>S1, QBAR=>S2);

 A1: entity work.AND2 port map (X=>S2, Y=>DIN, Z=>CTRLA); 

 N1: entity work.NOR2 port map 

 (a =>S1, 

  b =>MR, 

  c =>RD1); 

end STRUCT;

dff
d

      clock

q

qbar

and2
x

y
z

nor2
a

b

c
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D Flip-Flop – VHDL 

entity ff_d_example is

  port(

  d   : in  std_logic;

  clk : in  std_logic;

  q   : out std_logic);

end entity; 

architecture rtl of ff_d_example is

begin

 ff_d: process(clk)

 begin

  if (rising_edge(clk)) then

    q <= d;

  end if;

 end process ff_d;

end rtl;

q

clk

d
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D-ff with asynchronous reset

entity ff_example is

  port(

    d, clk, rst_n: in  std_logic;

                q: out std_logic);

end entity; 

architecture rtl of ff_example is

begin

 ff_d_rst: process (clk, rst_n)

 begin

 if (rst_n=‘0’) then 

     q <= ‘0’;

 elsif (rising_edge (clk)) then 

     q <= d;

 end if; 

 end process ff_d_rst;

end rtl;

80
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D-ff with synchronous reset
entity ff_d_srst is

  port(

 d, clk, rst: in  std_logic;

           q: out std_logic);

end entity; 

architecture rtl of ff_d_srst is

begin

 ff_d_srst: process (clk)

begin

 if (rising_edge (clk)) then 

    if (rst =‘1’) then 

  q <= ‘0’;

    else 

  q <= d;

   end if; 

 end if; 

end process ff_d_srst;

end rtl;

ICTP- MLAB
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D-ff with async. reset and enable

end entity; 

architecture rtl of ff_d_en_rst is

begin

ff_d_en_rst: process (clk, rst)

 begin

 if (rst=‘1’) then 

     q <= ‘0’;  

 elsif (rising_edge (clk)) then 

   if (en=‘1’) then 

    q <= d;

   end if; 

 end if; 

 end process ff_d_en_rst;

end rtl;

ICTP- MLAB

q

clk

d

rst

en

entity ff_d_en_rst is

  port(

 d, clk, en, rst: in  std_logic;

 q:              out std_logic);

end entity; 
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Registers
entity reg_d_rst is

 generic(width:= 4);

 port(

  d      : in  std_logic_vector(width-1 downto 0);

   clk, clr_l: in  std_logic;

  q      : out std_logic_vector(width-1 downto 0));

end entity; 

architecture rtl of reg_d_rst is

begin

 reg_d_arst: process (clk,clr_l)

 begin

 if (clr_l = ‘1’) then 

     q <= (others =>‘0’);    -- q <= “0000”

  elsif(rising_edge (clk)) then 

     q <= d;

 end if; 

 end process reg_d_arst;

end rtl;

ICTP- MLAB
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What is the implementation result??
library ieee;

use ieee.std_logic_1164.all;

entity shift_pi_po_x8 is

port(

clk, clr : in std_logic; 

serial_in : in std_logic;

data_out : out std_logic_vector(7 downto 0);

end shift_pi_po_x8;

architecture behav of shift_si_so_x4 is

signal data_out_temp: std_logic_vector(3 downto 0); 

begin

shift_proc: process(clk, clr)

begin

if (clr = '0') then

data_out_temp <= others(=>'0‘);

elsif (rising_edge(clk)) then

data_out_temp <= serial_in & data_out_temp(3 downto 1);

end if;

end process shift_proc;

data_out <= data_out_temp;

end behave;



architecture behav of shift_74x194 is

signal temp_q: std_logic_vector(3 downto 0); 

signal ctrl  : std_logic_vector(1 downto 0);

begin

ctrl <= s0 & s1;

shift_proc: process(clk, clr_n)

begin

if (clr_n = '0') then

temp_q <= (others => '0');

elsif (rising_edge(clk)) then

case ctrl is

when "11" => temp_q <= paralel_in; 
 when "10" => temp_q <= rin & temp(3 downto 1); 
 when "01" => temp_q <= temp(2 downto 0) & lin;

   when others => temp_q <= temp_q;

     end case; 

   end if; 

end process; 

q <= temp_q; 

end behav; 
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Shift Register : 74x194
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Counter

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all; 

entity counter_nbits is

  generic(cnt_w: natural:= 4)    

  port (

 -- clock & reset inputs

 clk     : in std_logic;        

 rst     : in std_logic;

 -- ouptuts

 count   : out std_logic_vector(cnt_w-1 downto 

0));

end counter_nbits;

architecture rtl of counter_nbits is 

 -- signal declarations 

 signal count_i: unsigned(cnt_w-1 downto 0); 

begin    

count_proc: process(clk, rst)  

 begin    

  if(rst='0') then      

    count_i <= (others => '0');            

  elsif(rising_edge(clk)) then      

    count_i <= count_i + 1; 

 endif;

end process count_proc;  

 count <= std_logic_vector(count_i); 

end architecture rtl; 
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Up/Down Counter
library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all; 

entity counter_ud is

  generic(cnt_w: natural:= 4)    

  port (

 -- clock & reset inputs

 clk     : in std_logic;        

 rst     : in std_logic;

 -- control input signals

 up_dw   : in std_logic; 

 -- ouptuts

 count   : out std_logic_vector(cnt_w-1 downto 

0));

end counter_ud;

architecture rtl of counter_ud is 

-- signal declarations 

signal count_i: unsigned(cnt_w-1 downto 0); 

begin    

 count_proc: process(clk, rst)  

 begin    

  if(rst='0') then      

    count_i <= (others => '0');       

  elsif(rising_edge(clk)) then      

    if(up_dw = '1') then -- up        

       count_i <= count_i + 1;      

    else                 -- down

       count_i <= count_i - 1;      

    end if;    

   end if;     

 end process count_proc;  

 count <= std_logic_vector(count_i);

end architecture rtl; 
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Up/Down Counter - Integers

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all; 

entity counter_ud_i is

  generic(cnt_w: natural:= 4)    

  port (

 -- clock & reset inputs

 clk     : in std_logic;        

 rst_n   : in std_logic;

 -- ouptuts

 count   : out std_logic_vector(cnt_w-1 downto 

0));

end counter_ud_i;

architecture rtl of counter_ud_i is 

begin    

 count_proc: process(clk, rst) 

  variable count_i: integer range 0 to 255; 

begin    

  if(rst_n = '0') then      

     count_i := 0;    

  elsif(rising_edge(clk)) then      

    if(count_i = 255) then        

       count_i := 0;      

    else                 

       count_i := count_i + 1;      

    end if;    

   end if;     

 end process count_proc;  

 count <= std_logic_vector(to_unsigned(count_i,8));

end architecture rtl; 
?
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Asynchronous Inputs
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Synchronizer
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Synchronizer

library ieee;
use ieee.std_logic_1164.all;

entity synchronizer is
port(

clk      : in std_logic; 
asyncin  : in std_logic;
syncin   : out std_logic);

end synchronizer;

architecture behave of synchronizer is

signal sync_temp: std_logic; 

begin 

sync_proc: process(clk)

begin
if (rising_edge(clk)) then 

sync_temp <= asyncin;

syncin    <= sync_temp; 

end if;
end process;

end behave;



FINITE STATE 
MACHINES (FSM) 

DESCRIPTION IN VHDL 

Cristian Sisterna
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State Machine General Scheme 1
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State Machine General Scheme 2
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FSM VHDL General Design Flow

Specification
s

Understand the 
Problem 

Draw the ASM or State 
Diagram

Define an FSM 
Enumerated Type

Define FSM Signals

Select an Encoding 
Technique (optional)

Write the VHDL 
Code

Traditional Steps

VHDL Steps

+
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FSM  Enumerated Type Declaration

Declare an enumerated data type with values (names) that symbolize 

the states of the state machine

The only values that current_state and next_state can hold are: 

IDLE,START,STOP_1BIT,PARITY,SHIFT

-- declare signals of FSM_States type            

signal current_state, next_state: FSM_States;

-- declare the states of the state-machine 

-- as enumerated type   

type FSM_States is(IDLE,START,STOP_1BIT,PARITY,SHIFT);    

Declare the signals for the next state and current state of the state 

machine as signal of the enumerated data type already defined for the 

state machine

Symbolic State 
Names



State Assignment

 During synthesis each symbolic state name has to be mapped to a 

unique binary representation
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FSM Encoding Techniques

 A good state assignment can reduce the circuit size and increase the 

clock rate (by reducing propagation delays)

 The hardware needed  for the implementation of the next state logic 

and the output logic is directly related to the state assignment 

selected



An FSM with n symbolic states requires at least [log2 n ] bits to 

encode all the possible symbolic values

Commonly used state assignment schemes:

 Binary: assign states according to a binary sequence

 Gray: use the Gray code sequence for assigning states

 One-hot: assigns one ‘hot’ bit for each state

 Almost one-hot: similar to one-hot but add the all zeros code 

(initial state)
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FSM Encoding Schemes
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FSM Encoding Schemes

Binary Gray One-Hot Almost One-hot

idle 000 000 00001 0000

start 001 001 00010 0001

stop_1bit 010 011 00100 0010

parity 011 010 01000 0100

shift 100 110 10000 1000



VHDL for Synthesis - C. Sisterna ICTP- MLAB 100

Encoding Schemes in VHDL 

During synthesis each symbolic state name has to be 

mapped to a unique binary representation

user attribute 
(synthesis attribute)

enum_encoding 
(VHDL standard)

explicit user-defined 
assignment

default encoding
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Results for Different Encoding Schemes

One-hot 

safe

One-hot Gray Gray-Safe Binary Johnson

Total 

combinational 

functions

556 523 569 566 561 573

Dedicated 

logic registers
215 215 201 201 201 206

Max. frq. 187.3 175.22 186.39 180.6 197.63 186.22

19 states, state machine
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State Machine VHDL Coding - Example

wait_inpin_2det

X = 0edge_det

wait_fall

pulsein_2det

in_2det

in_2det

FSMin_2det
pulse

in_2det

in_2det

clock
resetDescribe in VHDL an FSM 

that generate a pulse 
per each rising edge of 
the input. 



Seq. Output
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FSM VHDL Coding
Comb. Next State 

Logic

Seq. Present State

Clk

Rst

in_2det state

nxt_pr:process (state, in_2det)

begin

  case state is

     when wait_inp => 

         if (in_2det='0') then 

            next_state <= wait_inp;

         else 

           next_state <= edge_det;

         end if; 

  when edge_det => 

         if(in_2det='0') then

            next_state <= wait_inp;

         else  

            next_state <= wait_fall; 

         end if;

  when wait_fall => 

         if(in_2det='0') then

             next_state <= wait_inp;

         else 

             next_state <= wait_fall; 

         end if;  

    when others => 

          next_state <= wait_inp;  

 end case;

end process nxt_pr;

cst_pr: process (clk, rst)

begin

   if(rst = ‘1’) then

         state <= wait_inp;

  elsif (rising_edge(clk)) then

         state <= next_state;

   end if;

end process cst_pr;

out_pr:process (clk, rst)

begin

 if (rst = ‘1’) then

      pulse   <= ‘0’;

 elsif (rising_edge(clk)) then

    case state is

        when wait_inp => 

                       pulse <= ‘0’;

         when edge_det =>  

                       pulse <= ‘1’;

         when wait_fall => 

                        pulse <= ‘0’;

          when others =>  

                        pulse <= ‘-’;

     end case;

 end if;

end process out_pr;

pulse
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State Machine VHDL Coding (complete)

-- VHDL code example for an FSM

library ieee;

use ieee.std_logic_1164.all;

entity fsm _edge_detect is

  port( 

         in_2det : in   std_logic;

        clk          : in  std_logic;

        rst          : in std_logic;

        pulse     : out std_logic );

end entity fsm_edge_detect;

architecture beh of my_fsm is

 -- fsm enumerated type declaration

 type fsm_states is (wait_inp, edge_det, wait_fall); 

 -- fsm signal declarations

 signal next_state, state: fsm_states;

begin  

-- current state logic 

cst_pr: process (clk, rst)

begin

   if(rst = ‘1’) then

         state <= wait_inp;

   elsif (rising_edge(clk)) then

         state <= next_state;

   end if;

end process cst_pr;

-- next state logic

nxt_pr:process (state, in_2det)

begin

  case state is

     when wait_inp => 

         if(in_2det=‘0’) then 

               next_state <= wait_inp;

         else

               next_state <= edge_det;

        end if; 

     when edge_det => 

         if ….

               next_state <= .. ;

          …. 

      when others => 

          …. 

  end case;

end process nxt_pr;

- - output logic

out_pr:process (clk, rst)

begin

   if(rst = ‘1’) then

          pulse   <= ‘0’;

   elsif (rising_edge(clk)) then

     case state is

          when wait_inp  =>   pulse <= ‘0’;

           . . .

         when others    =>   pulse <= ‘-’;

     end case;

 end process out_pr;

end architecture beh;
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FSM Simulation 



Let’s try to obtain an state diagram of a hypothetical memory controller FSM that has the 

following specifications: 

The controller is between a processor and a memory chip, interpreting commands from the 

processor and then generating a control sequence accordingly. The commands, mem, rw and 

burst, from the processor constitute the input signals of the FSM. The mem signal is asserted to 

high when a memory access is required. The rdwr signal indicates the type of memory access, 

and its value can be either ’1’ or ’0’, for memory read and memory write respectively. The 

burst signal is for a special mode of a memory read operation. If it is asserted, four 

consecutive read operations will be performed. The memory chip has two control signals, oe 

(for output enable) and we (for write enable), which need to be asserted during the memory 

read and memory write respectively. The two output signals of the FSM, oe and we, are 

connected to the memory chip’s control signals. For comparison purpose, let also add an 

artificial Mealy output signal, we_mealy , to the state diagram. Initially, the FSM is in the idle 

state, waiting for the mem command from the processor. Once mem is asserted, the FSM 

examines the value of rdwr and moves to either the read1 or the write state. The input 

conditions can be formalized to logic expressions, as shown below:

• mem’ : represents that no memory operation is required (mem=‘0’)

• mem.rdwr: represents that a memory read operation is required (mem=rdwr=‘1’).

• mem.rdwr’: represents that a memory write operation is required (mem=‘1’; rdwr=‘0’)
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Another Ex.: Memory Controller FSM

Based on an example from the “RTL Hardware Design Using VHDL” book, By Pong Chu
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Memory Controller FSM

Processor

FPGA Memory 

Controller FSM

Memory IC

Data Bus

Address Bus

mem

burst

rdwr

oe

we

we_mealy
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Memory Controller FSM
mem’

read1

read2

read3

read4

mem.rdwr

burst’

idle

write

we

oe

oe

oe

oe

mem.rdwr’

we_mealy

burst
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Memory Controller FSM – VHDL Code

library ieee ;

use ieee.std_logic_1164.all;

entity mem_ctrl is

port (

 clk, reset      : in  std_logic;

 mem, rdwr, burst: in  std_logic;

 oe, we, we_mealy: out std_logic

      );

end mem_ctrl ;

architecture mult_seg_arch of mem_ctrl is

 type fsm_states_type is

       (idle, read1, read2, read3, read4, write);

 signal crrnt_state, next_state: fsm_states_type;

begin
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Memory Controller FSM – VHDL Code

−− current state process

cs_pr: process (clk, reset)

begin

 if(reset = ’1’) then

     crrnt_state <= idle ;

 elsif(rising_edge(clk))then

     crrnt_state <= next_state;

 end if;

end process cs_pr;



 Next state process (1)
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Memory Controller FSM – VHDL Code

−− next−state logic

nxp:process(crrnt_state,mem,rdwr,burst)

begin

 case crrnt_state is

   when idle =>

     if mem = ’1 ’ then

       if rdwr = ’1’ then

         next_state <= read1;

       else

   next_state <= write;

       end if;

     else

  next_state <= idle;

     end if;

   when write =>

     next_state <= idle;



 Next state process (2)
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Memory Controller FSM – VHDL Code

when read1 =>

    if (burst = ’1’) then

      next_state <= read2;

    else

      next_state <= idle;

    end if;

  when read2 =>

    next_state <= read3;

  when read3 =>

    next_state <= read4;

  when read4 =>

    next_state <= idle;

  when others =>

    next_state <= idle;

 end case;

end process nxp;



 Moore outputs process
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−− Moore output logic

moore_pr: process (crrnt_state)

begin

  we <= ’0’; −− default value

  oe <= ’0’; −− default value

  case crrnt_state is

     when idle => null;

     when write =>

          we <= ’1’;

     when read1 =>

          oe <= ’1’;

     when read2 =>

          oe <= ’1’;

     when read3 =>

          oe <= ’1’;

     when read4 =>

          oe <= ’1’;

     when others => null;

  end case ;

end process moore_pr;



 Mealy output process
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−− Mealy output logic

mly_pr: process(crrt_state,mem,rdwr)

begin

  we_me <= ’0’; −− default value

  case state_reg is

    when idle =>

      if (mem=’1’)and(rdwr =’0’)then

         we_me <= ’1’;

      end if;

    when write => null;

    when read1 => null;

    when read2 => null;

    when read3 => null;

    when read4 => null;

  end case;

end process mly_pr;
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−− Mealy output logic

we_me <= ’1’ when ((crrnt_state=idle) and (mem=’1’) and(rdwr=’0’))   

             else

         ’0’;

 Mealy output statement 



VHDL Code to be 
used in the Labs
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Synchronous one-shot-timer

pulse_len

trig_out

ce

trig_in

clk

aresetn

The purpose of the module oneShotTimer is to generate a 

single output pulse of a predefined duration (pulse_len) every 

time it receives a rising edge on its trig_in input. 
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Synchronous one-shot-timer

•generic(DATA_BUS_WIDTH : NATURAL := 16): 
•generic is a way to pass constant values into an entity from its instantiation. 
•DATA_BUS_WIDTH defines the bit width of the pulse_len input. It defaults to 16 bits, meaning 
pulse_len can specify a pulse length from 0 to 65535 clock cycles. 

•Port (...): Defines the input and output signals of the block: 
•clk: Standard clock input. All internal state changes occur on its rising edge. 
•aresetn: Asynchronous active-low reset. When aresetn is '0', the timer is reset. 
•ce: Clock Enable. Note: This port is declared but not used yet.
•trig_in: The input signal that, upon a rising edge, initiates the one-shot pulse. 
•pulse_len: An input vector that defines the desired duration of the output pulse in terms of clock 
cycles. 
•trig_out: The output signal that generates a pulse (goes high) for the specified pulse_len duration.
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•architecture Behavioral of oneShotTimer is: Defines the behavior or implementation of the 
oneShotTimer entity. 
•signal lastTrig_in : std_logic; 

•Declares an internal signal named lastTrig_in. 
•This signal is crucial for rising edge detection of trig_in. It will store the value of trig_in 
from the previous clock cycle. 

•signal counter : integer range 0 to 2**DATA_BUS_WIDTH - 1;
•Declares an internal signal named counter. 
•It's declared as an INTEGER with a specified range, from 0 up to the maximum value that 
can be represented by DATA_BUS_WIDTH bits (e.g., if DATA_BUS_WIDTH is 16, the range is 
0 to 65535). This counter tracks the duration of the output pulse.



VHDL for Synthesis - C. Sisterna ICTP- MLAB 120

Synchronous one-shot-timer

•process(clk, aresetn): This is a sequential (clock-controlled) process. 
•It's sensitive to clk and aresetn. This means the code inside the process will execute 
whenever clk or aresetn changes value. 

•if aresetn = '0' then ...: This handles the asynchronous reset. If aresetn goes low, both 
lastTrig_in and counter are immediately forced to '0'. This initializes the timer to an 
inactive state. 
•elsif rising_edge(clk) then ...: This block executes only on the rising edge of the clock, 
after checking the reset condition. All the logic inside this elsif is synchronous. 
•lastTrig_in <= trig_in; On each rising clock edge, the current value of trig_in is stored into 
lastTrig_in. This is the standard way to create a one-clock-cycle delayed version of a signal 
for edge detection. 
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•if(lastTrig_in = '0' and trig_in = '1') then -- Trigger condition: 
•This is the rising edge detection logic. It checks if trig_in was '0' in the previous clock cycle 
(lastTrig_in) and is '1' in the current clock cycle (trig_in). 
•If a rising edge is detected, counter <= 1; initializes the counter. This makes the trig_out go high 
starting from the next clock cycle (because trig_out is 1 when counter /= 0). 

•elsif((counter < to_integer(unsigned(pulse_len))) and (counter /= 0)) then: The counting phase. 
•to_integer(unsigned(pulse_len)): Converts the STD_LOGIC_VECTOR pulse_len into an INTEGER so 
it can be compared with counter. unsigned() treats the vector as an unsigned number. 
•counter < ...: Checks if the counter has not yet reached the desired pulse length. 
•counter /= 0: Ensures that the counter is actually active (has been triggered). 

•If both conditions are true, counter <= counter + 1; increments the counter, continuing the pulse. 
•else counter <= 0;: This is the default case. 
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•This is a concurrent signal assignment statement. It is outside the process block, meaning 
it's continuously evaluated. 
•trig_out <= '1' when counter /= 0 else '0';

•The trig_out signal will be '1' whenever the counter is not equal to 0. 
•Otherwise (when counter is 0), trig_out will be '0'. 
•This effectively means that trig_out is high for the duration that counter is counting 
(from 1 up to pulse_len), and low when the timer is idle or reset.
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Synchronous one-shot-timer

How it Works Together:
1. Idle State: counter is 0, trig_out is '0'. 

2. Trigger: A rising edge on trig_in is detected. 

3. Start Pulse: On the next rising clk edge after the trigger, counter is set to 1. trig_out 
immediately becomes '1'. 

4. Pulse Duration: For subsequent clock cycles, if counter is less than pulse_len and not 0, 
counter increments. trig_out remains '1'. 

5. Pulse End: When counter becomes equal to pulse_len (meaning pulse_len clock cycles 
have passed since the trigger), in the next clock cycle, the elsif condition (counter < 
to_integer(unsigned(pulse_len))) becomes false. The else branch executes, resetting 
counter to 0. 

6. Output Low: As counter becomes 0, trig_out immediately reverts to '0', ending the pulse. 

7. Reset: If aresetn goes low at any point, counter and lastTrig_in are reset to 0, forcing 
trig_out to '0' and stopping any ongoing pulse. 

This design creates a reliable, retriggerable one-shot timer with a configurable pulse 
length, synchronized to the system clock.
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Synchronous level-crossing trigger 

Its purpose is to detect when an input data value, dIn, 

crosses a specified threshold value, specifically looking 

for either a positive-going (rising) edge crossing or a 

negative-going (falling) edge crossing, depending on the 

edgeSel input. 

The output, trigger, will be set to ‘1’ during one clock 

cycle whenever a trigger event is detected

dIn

trigger

threshold

edgeSel

clk

aresetn
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Synchronous level-crossing trigger 

✓ generic(DATA_BUS_WIDTH : NATURAL := 14): 
✓ Generic is a way to pass constant values into an entity from its instantiation. 
✓ DATA_BUS_WIDTH is a generic parameter defining the width of the dIn and threshold buses. It's set to a 

default value of 14 bits. This makes the design reusable for different data widths without modifying the core code. 
✓ Port (...): Defines the input and output signals of the block: 

✓ clk: Standard clock input. All internal state changes will occur on its edge. 
✓ aresetn: Asynchronous active-low reset. When aresetn is '0', the circuit is reset. The n suffix typically indicates 

active-low. 
✓ dIn: Input data bus, DATA_BUS_WIDTH bits wide. 
✓ threshold: Reference value for comparison, DATA_BUS_WIDTH bits wide. 
✓ edgeSel: A single bit to select the type of trigger: '0' for positive-going edge (crossing threshold from below), '1' 

for negative-going edge (crossing threshold from above). 
✓ trigger: A single-bit output that goes '1' when a trigger condition is detected.
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Synchronous level-crossing trigger 

•architecture Behavioral of crossLevelTriggerBlock is: 

Defines the behavior or implementation of the crossLevelTriggerBlock 

entity. 

•signal lastVal : std_logic_vector(DATA_BUS_WIDTH - 1 downto 0); 

•Declares an internal signal named last lastVal. 

•lastVal is a STD_LOGIC_VECTOR of the same width as dIn and threshold. 

•This signal is crucial for detecting edge crossings: it stores the value of dIn 

from the previous clock cycle.
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Synchronous level-crossing trigger 
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Synchronous level-crossing trigger 

•process(clk, aresetn): This is a sequential (clock-controlled) process. 

•It's sensitive to clk and aresetn. This means the code inside the process will execute whenever clk or 
aresetn changes value (aka, an event on one of those signals). 

•if (aresetn = '0') then trigger <= '0’;  This handles the asynchronous reset. If aresetn goes low,the output 
trigger is immediately forced to '0', regardless of the clock. This is common for initial circuit states. 

•elsif (rising_edge(clk)) then: This block executes only on the rising edge of the clock, after checking the 
reset condition. All the logic inside this elsif is synchronous. 

•lastVal <= dIn;

•This is a synchronous assignment. On each rising clock edge, the current value of dIn is stored into 
lastVal. 

•This means lastVal will always hold the value of dIn from the previous clock cycle, allowing for edge 
detection.
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Synchronous level-crossing trigger 

if (edgeSel = '0') then -- Positive slope cross-level trigger: 

•If edgeSel is '0', the block is configured to detect a positive-going (rising) edge crossing. 

•if (unsigned(lastVal) < unsigned(threshold) and unsigned(dIn) >= unsigned(threshold)) 
then: This is the core detection logic for a positive edge. 

•unsigned(): cast that converts STD_LOGIC_VECTOR signals to UNSIGNED type for 
numerical comparison. 

•The condition checks if the previous data value (lastVal) was strictly less than the 
threshold, AND the current data value (dIn) is greater than or equal to the 
threshold. This accurately defines a positive cross-level event. 

•If this condition is met, trigger is set to '1'. 

•else trigger <= '0’; Otherwise, trigger is '0'. This ensures trigger is only '1' for one 
clock cycle when the condition is met.
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Synchronous level-crossing trigger 

else -- Negative slope cross-level trigger (edgeSel = '1'): 
•If edgeSel is '1', the block is configured to detect a negative-going (falling) edge crossing. 
•if (unsigned(lastVal) > unsigned(threshold) and unsigned(dIn) <= unsigned(threshold)) 
then: This is the core detection logic for a negative edge. 

•The condition checks if the previous data value (lastVal) was strictly greater than the 
threshold, AND the current data value (dIn) is less than or equal to the threshold. 
This defines a negative cross-level event. 
•If this condition is met, trigger is set to '1'. 
•else trigger <= '0';: Otherwise, trigger is '0'.
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Synchronous level-crossing trigger 

In Summary:

This crossLevelTriggerBlock VHDL design acts as a programmable level-crossing 
detector:

1. It stores the previous sample of the input data (dIn) in lastVal synchronously on 
each clock edge. 

2. On each clock edge, it compares the current dIn and the previous lastVal 
against a threshold. 

3. Based on the edgeSel input, it determines if a positive-going or negative-going 
level crossing has occurred. 

4. If a crossing is detected, the trigger output goes high for one clock cycle. 

5. It also includes an asynchronous active-low reset to initialize the trigger output 
to '0’. 

This type of module is common in digital signal processing or control systems where 
events need to be detected based on signal levels crossing certain thresholds
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