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Multidisciplinary  Laboratory

Main Areas of Expertise

•Read-out electronics and high performance Digital Signal Processing. 

•Advanced FPGA Design and Programmable Systems-on-Chip.

•Reconfigurable virtual instrumentation for Particle Detectors.

•Novel architectures for Supercomputing Based on FPGA.

•Instruments and methods for X-Ray Imaging and Analytical Techniques.
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Outline
• Introduction

• Pulsed signals: Description levels

• Processing chain: Detector/Sensor, Preamplification, Pulse shaping, Data acquisition, 
transmission, . . .

• Digital Pulse Processor (DPP): Main functional blocks, Features extraction, Dead times, 
Pattern recognition, . . .  

• DPP Optimization

• Data analysis

• Pulse modeling

• Digital Penalized Least Mean Squares (DPLMS) method for filtering optimization

• Discussion and Conclusions
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More technical details in
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Pulsed signals: Description levels
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Processing chain
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Printed circuit board housing the detector 
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Detector, CSA, Pulse Shaper
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Pulse Processing Chain  
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SDD CSA Analog 
Shaper

ADC (Slow) DPP

Anti-aliasing ADC (fast) DPP

Current pulse Voltage step SemiGaussian
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Digital Pulse Processor (DPP)
       Main functional blocks, Features extraction, Dead times, Pattern recognition, . . .  
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Minimal version convolution
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Digital Pulse Processing Strategy for 
High-Resolution and High-Performance Amplitude 

Measurement

Pulse arrival
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A typical experimental pulse
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Pulse amplitude measurement
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A simple trapezoidal shaper
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convolution
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After some algebra . . . 
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Geometrically Derived FIR Filter
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Input pulse Output pulse
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DPP Optimization
Pulse modeling
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DPP Optimization

Pulse modeling
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𝑆𝑖 =  ቊ
0,  𝑖 ≤ 𝑡0

𝐴,  𝑖 > 𝑡0
 

𝑆𝑖 =  ൝
0,  𝑖 ≤ 𝑡0

𝐴 1 − 𝑒 ൗ−(𝑖−𝑡0)
𝜏 ,  𝑖 > 𝑡0

 

𝑆𝑖 =  ቐ
𝐵0 + 𝑖𝐵1 ,  𝑖 ≤ 𝑡0

𝐴 1 − 𝑒 ൗ− 𝑖−𝑡0
𝜏 + 𝐵0 + 𝑖𝐵1 ,  𝑖 > 𝑡0

 

𝑆𝑖 =  ቐ
𝐵0 + 𝑖𝐵1 + 𝑛𝑖 ,  𝑖 ≤ 𝑡0

𝐴 1 − 𝑒
ൗ− 𝑖−𝑡0

𝜏 + 𝐵0 + 𝑖𝐵1 + 𝑛𝑖 ,  𝑖 > 𝑡0
 

Deterministic component
(ideal pulse)

Stochastic component
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Digital Pulse Processing: Detecting Arrival Time
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Input signal analysis
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FIR Design and Optimization

Stochastic componentDeterministic component

Autocorrelation function

Ideal input pulse shape

Model + Parameters

Additive noise
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FIR Design and Optimization 

A. Cicuttin, June 2025

The ideal case corresponding to a single photon 
detection is represented by the step function 𝑆𝑖

𝑆𝑖 =  ቊ
0,  𝑖 ≤ 𝑡0

𝐴,  𝑖 > 𝑡0
 

The finite frequency response of the CSA 
determines a limited rise time that could be 
modeled (1s t aprox) as an exponential growth

𝑆𝑖 =  ൝
0,  𝑖 ≤ 𝑡0

𝐴(1 − 𝑒 ൗ−(𝑖−𝑡0 )
𝜏), 𝑖 > 𝑡0

 

A constant detector leakage current determines a 
baseline with a steady slope and a variable offset on 
top of which the signal segment must be processed 

𝑆𝑖 =  ቐ
𝐵0 + 𝑖𝐵1,  𝑖 ≤ 𝑡0

𝐴 1 − 𝑒 ൗ− 𝑖−𝑡0
𝜏 + 𝐵0 + 𝑖𝐵1, 𝑖 > 𝑡0

 

 

Input pulse modeling  I

Several sources of noise will contribute with an 
additive spurious signal 𝑛𝑖 that degrades the voltage 
step measurement 

𝑆𝑖 =  ቐ
𝐵0 + 𝑖𝐵1 + 𝑛𝑖,  𝑖 ≤ 𝑡0

𝐴 1 − 𝑒 ൗ− 𝑖−𝑡0
𝜏 + 𝐵0 + 𝑖𝐵1 + 𝑛𝑖,  𝑖 > 𝑡0
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FIR Design and Optimization 
Input noise characterization
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Some statistic results from the extracted parameters after fitting 1447 segments 
with the special bi-exponential function.
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The proposed signal model has five (quite independent) parameters

(1) Amplitude, 
(2) Arrival Time, 
   (3) Exponential Time, 
     (4) Offset,
       (5) Slope Coefficient 
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FIR Design and Optimization 
Input noise characterization
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Pulse models comparison
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In this case the average normalized ACF can be approximated with a0=0.965 and a1=-0.2

Uncorrelated white noise 

Autocorrelation model
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Negative values determine a peak in the PSD
 (via the Winner-Khintchine theorem) 
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Histograms of fitting 
parameters corresponding 
to the bi-exponential model.
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. . . scattered plots and 
correlation distances between 
pair of parameters may reveal 
non idealities of the DAQ system.

They looks nice but . . .
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Non linearity: Amplification gain depends on offset (!)
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Detection arrival time depends on pulse amplitude (!)
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DPP: Digital Penalized LMS Method for filtering optimization
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DPP: Digital Penalized LMS Method for filtering optimization

Normalized average ACF
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DPP: Digital Penalized LMS Method for filtering optimization

Offset rejection
Slope rejection

Output noise Output flat top

Ideal 
requirements 
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DPP: Digital Penalized LMS Method for filtering optimization
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DPP: Digital Penalized LMS Method for filtering optimization
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Conclusions

• High-resolution pulse amplitude measurement can be achieved by 
considering concrete experimental noise and accurate pulse 
modeling.

• DPP can be optimized through DPLMS method allowing satisfactory 
trade-off among competing requirements that cannot be all 
simultaneously satisfied.

• An appropriate data analysis provides the necessary information to 
apply the DPLMS method, and it may also provide information about 
the quality the frontend electronics and data acquisition system. 
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Tank you ! 
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Backup slides: X-Ray Photon detection with Silicon Drift Detectors (SDD)
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SiliconAnode

Cathodes

Holes

Electrons

Cathodes

Pre Amplification Current pulse Photon absorption by
Photoelectric effect
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Pile up: Being a Poissonian process, two or more photons could be absorbed in the SDD 
within any arbitrary small time window. The superposition of two photons absorbed at times 
𝑡0 and 𝑡1  and respectively with amplitudes 𝐴0 and 𝐴1  is then given by

𝑆𝑖 =

𝐵0 + 𝑖𝐵1 + 𝑛𝑖 ,  𝑖 ≤ 𝑡0

𝐴0 1 − 𝑒
ൗ− 𝑖−𝑡0

𝜏 + 𝐵0 + 𝑖𝐵1 + 𝑛𝑖 ,  𝑡0 <  𝑖 ≤ 𝑡1

𝐴0 1 − 𝑒
ൗ− 𝑖−𝑡0

𝜏 + 𝐴1 1 − 𝑒
ൗ− 𝑖−𝑡1

𝜏 + 𝐵0 + 𝑖𝐵1 + 𝑛𝑖 ,  𝑖 > 𝑡1

 

Backup slides: Pile up (1) 

39



A. Cicuttin, June 2025

. . . and in general for m+1 photons

𝑆𝑖 =

𝐵0 + 𝑖𝐵1 + 𝑛𝑖 ,  𝑖 ≤ 𝑡0

𝐴0 1 − 𝑒 ൗ− 𝑖−𝑡0
𝜏 + 𝐵0 + 𝑖𝐵1 + 𝑛𝑖 ,  𝑡0 <  𝑖 ≤ 𝑡1

𝐴0 1 − 𝑒 ൗ− 𝑖 −𝑡0
𝜏 + 𝐴1 1 − 𝑒 ൗ− 𝑖−𝑡1

𝜏 + 𝐵0 + 𝑖𝐵1 + 𝑛𝑖 ,  𝑡1 <  𝑖 ≤ 𝑡2

.

.

.

෍

𝑗=0

𝑚

𝐴𝑗 1 − 𝑒
ൗ

− 𝑖−𝑡𝑗
𝜏 + 𝐵0 + 𝑖𝐵1 + 𝑛𝑖 ,  𝑖 > 𝑡𝑚  

Backup slides: Pile up (2) 

40



Backup slides: Pileup rejection
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Input 
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Backup slides: Uncertainty relation between Energy and Time
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