
Luis Guillermo García Ordóñez

FreeRTOS Operating system
and lwIP for SoC

2

Outline

● Firmware development for microcontrollers
○ Bare Metal,
○ O.S. Based Embedded Systems

● FreeRTOS
○ Motivation for using FreeRTOS

● FreeRTOS in the Zynq
○ Integration of FreeRTOS on Xilinx hardware

● What is lwIP
● Practical applications (UDMA)

1st Mesoamerican Workshop on Reconfigurable X-ray and Scientific Instrumentation for Cultural
Heritage | (smr 4078)

3

Meet the superloop:
● Forever loop that sequences the

set of tasks
● Polled or interrupt-based I/O
● Typical in standalone

implementations

Pros:
● Simple
● No OS overhead

Cons:
● Difficult to scale up (low number

of tasks)
● Difficult to balance time and tasks

priorities

Firmware development for microcontrollers

The Bare-metal approach:

4

● Multi-threaded: multiple threads
spawn to carry out multiple tasks
concurrently

● Each task has different priority
and timing requirements

● The operating system provides
some hardware abstraction layer

● Extra services, such as a
filesystem, network stack, ...

● Pros:
○ More modular architecture
○ Tasks can be pre-empted.

Avoid priority inversion
● Cons:

○ More complex and extra
overhead

○ Higher memory requirements
○ Thread execution is difficult

to test
○ Usually not Determinist…..

But

Firmware development for microcontrollers

O.S. Based Embedded Systems

O.S. Based Embedded
Systems
FreeRTOS

O.S. vs Real Time
O.S. (RTOS):
Simple OS has a
non-deterministic
response time to external
events, RTOS however
replies to all the
external activities in
minimal and
deterministic time.

● Born in 2003 and initially conceived for microcontrollers
○ Really light
○ Platform-Independent, Modular and Simple
○ Minimal processing overhead

■ FreeRTOS IRQ dispatch 10-50 cycles aprox.*
■ Embedded Linux IRQ dispatch = 100 cycles aprox.
■ Ported to a large number of architectures (e.g. ARM, AVR, RISC-V, and MicroBlaze)

● Currently is Amazon the company that stewards the development of the O.S.
● Open Source MIT license
● More information at www.FreeRTOS.org

*For ARM Cortex-M, it may vary depending of the architecture

http://www.freertos.org

6

Which I should choose?
Motivation of FreeRTOS

Bare Metal

● An application that does not require
task/thread preemption

● Where real-time deadline is not a
requirement
(deterministic behavior)

● Low-level applications which do not
have large memory to fulfill the
need of an operating system.

● When you don’t want to use
third-party firmware and drivers to
interfere with your application

● A low-cost application which can
access all the registers of the
hardware.

RTOS

● An application that needs task
preemption and where interrupts
and tasks need to be prioritized .i.e.
hard real-time deadline requirement

● High-level application where the
computing cost of the project is not
a big deal.

● High memory usage and efficient
processing are required.

● Applications in which modularity is
an important point to be followed
and code redundancy should be
minimum.

7

FreeRTOS ecosystem of products:
Motivation of FreeRTOS

● Amazon FreeRTOS for IoT devices
● Network communication stack
● Command Line Interface
● SSL/TLS security
● File systems (e.g. FAT32)

8

FreeRTOS in Xilinx tools
FreeRTOS & Zynq

FreeRTOS completely integrated in
Xilinx Software Development Flow
Provided as a BSP:
● Extension of the standalone

BSP
○ All low level drivers can be

directly used
● Includes the O.S. runtime
Optional extensions:
● Filesystem
● Network
● ...

9

FreeRTOS Design Flow
FreeRTOS & Zynq

11

Xilinx configuration is through the mss file in
the FreeRTOS BSP generated in Vitis

FreeRTOS Configuration

12

Xilinx configuration is through the mss file in
the FreeRTOS BSP generated in Vitis

FreeRTOS Configuration

13

Xilinx configuration is through the mss file in
the FreeRTOS BSP generated in Vitis

FreeRTOS Configuration

14

FreeRTOS Tasks
FreeRTOS Tasks

https://www.digikey.com/en/maker/projects/introduction-to-rtos-solution-to-part-3-task-scheduling

15

FreeRTOS Tasks
FreeRTOS Tasks

https://www.digikey.com/en/maker/projects/introduction-to-rtos-solution-to-part-3-task-scheduling

16

FreeRTOS tasks
FreeRTOS tasks

● Every thread of execution is a task
● Tasks are independent between them. They have their own execution context

(memory)
● Tasks are never called from the program
● Tasks are executed by the FreeRTOS scheduler depending on their priorities and as

a response to events
● Only one task active at the same time
● Tasks never return
● There’s a special IDLE task

○ No need to create it

17

A typical FreeRTOS application will look like
this

FreeRTOS tasks

18

Tasks can be in different states of execution

Ready:
• When the task can be selected for execution, but is

kept waiting since the CPU is busy with another task
(depends on priority – next slide)

Running :
• Really executing the code

Blocked:
• Waiting for something:

- An event. (e.g. a message has been received in a
queue)

- vTaskDelay() has been called so a certain time must
pass.

Suspended:
• After calling vTaskSuspend()
• Can later be resumed using xTaskResume()

FreeRTOS tasks

FreeRTOS task model

19

FreeRTOS tasks

FreeRTOS priorities

● Tasks have priorities, used to the scheduler to select the most urgent one
● The range of different priorities is configurable in "FreeRTOSConfig.h"

○ configMAX_PRIORITIES

● Tasks can change their own priority, as well as the priority of other tasks.
● The IDLE task is the one with the lowest priority "task.h"

○ tskIDLE_PRIORITY ((UBaseType_t) 0U)

● The FreeRTOS scheduler is preemptive:
○ If a task with a higher priority that the actual one is READY, then the RUNNING

one will be evicted and moved to the READY state, while the former will start the
execution

20

FreeRTOS tasks creation
FreeRTOS tasks

Tasks are modelled after normal C functions e.g.

static void My_Task(void *myParameters);

● void return:
○ And remember in fact they should never return

● void pointer for arguments. Can be later casted to the right type

Since not called, they must be registered (created) into the scheduler
● The IDLE task is created automatically (special case)

Can also be destroyed at run-time

Some related functions:
● xtaskCreate()
● xtaskDelete()

21

In order to create a Task:

BaseType_t xTaskCreate(TaskFunction_t pxTaskCode,

 const char * const pcName,

 const configSTACK_DEPTH_TYPE usStackDepth,

 void * const pvParameters,

 UBaseType_t uxPriority,

 TaskHandle_t * const pxCreatedTask

pxTaskCode: pointer to the function that really implements the task
pcName: name assigned, mainly used for debug purposes
usStackDepth: refers to the local memory assigned to the task

● The configMINIMAL_STACK_SIZE parameter set in the FreeRTOSConfig.h configuration file
pvParameters: since no parameters are sent to the task
uxPriority: priority assigned to the task.

● This constant is defined as the minimum possible priority
● The lowest the number, the lowest the priority

pxCreatedTask: task handler
● From my past slide: static void My_Task(void *myParameters);

Task creation
FreeRTOS tasks

Task creation
example

 xTaskCreate(My_Task_Code,

(const char *) const “My_Task_Name”,

configMINIMAL_STACK_SIZE,

&myParameters,

 tskIDLE_PRIORIRTY,

 &My_Task

22

Hello World
FreeRTOS tasks

23

Once the scheduler is started, the task
becomes ready
Since it’s the only task apart from the IDLE one
(always present) it will be scheduled to RUN.
There are no other tasks but the IDLE one,
with lower priority, so the task is always
chosen to RUN.
But when the task executes vTaskDelay to
force a waiting time, it becomes BLOCKED,
waiting for the time to pass
Once the time has passed,

• The task will be moved to the READY state
• The IDLE task (priority 0) will be evicted
• The sayHello task will move to RUN

FreeRTOS Hello World

“sayHello” task activation:

24

FreeRTOS Task Communication
FreeRTOS Tasks

Two mechanisms:
● Global variables which can be read from all tasks
● Queues as the main mechanism for inter-task communication

Queues:
● Asynchronous model of communication based on a FIFO
● Data can written to both the head and tail of the queue
● Arbitrary size and depth, but defined at compile time
● Items are passed by value → not zero copy
● Access can be blocking or non-blocking

Global variables and their risks
● The global variable is shared by all tasks
● Access control should be managed by the

programmer
○ Since processes can be evicted, the state

can be inconsistent
● E.g.:
● One process writes and another reads: Ok
● Two processes write

○ You may assume wrong states
○ Need for explicit synchronization

mechanisms such as locks

https://www.digikey.com/en/maker/projects/int
roduction-to-rtos-solution-to-part-5-freertos-que
ue-example/72d2b361f7b94e0691d947c7c29a0
3c9

25

FreeRTOS queues
FreeRTOS queues

Queue creation:
xQueueHandle xQueueCreate (unsigned portBASE_TYPE uxQueueLength,

 unsigned portBASE_TYPE uxItemSize)

Queue data insertion at the back of the queue:
portBASE_TYPE xQueueSendToBack (xQueueHandle xQueue,

 const void * pvItemToQueue,

 portTickType xTicksToWait)

If xTicksToWait is 0 it will return immediately if full otherwise it will wait

Data insertion at the front of the queue:
portBASE_TYPE xQueueSendToFront (xQueueHandle xQueue,

 const void * pvItemToQueue,

 portTickType xTicksToWait)

Data extraction:
portBASE_TYPE xQueueReceive (xQueueHandle xQueue,

 void * pvBuffer,

 portTickType xTicksToWait)

26

The producer-consumer example
FreeRTOS queues

27

Another Example
Vitis Implementation

FreeRTOS, Examples

28

Another Example
Vitis Implementation

FreeRTOS, Examples

29

Another Example
Vitis Implementation

FreeRTOS, Examples

30

Another Example
Vitis Implementation

FreeRTOS, Examples

Wait, what is this, Network?

31

Another Example
Vitis Implementation

FreeRTOS, Examples

UDMA?

IP ADDRESS?

32

lwIP (lightweight IP)

33

● Full scale TCP protocol stack
● small memory footprint (for

embedded systems, µC)
● Open Source (C Code)

Supports a large number of protocols
and APIs
• TCP Transport Control Protocol
• UDP User Datagram Protocol
• IP Internet Protocol
• ICMP Internet Control Message Protocol
• ARP Address Resolution Protocol
• DHCP Dynamic Host Configuration
Protocol
 • Raw API and Berkeley sockets
(requires an multitasking O.S.)

Included in Xilinx Vitis

Application level

• HTTP(S) server, SNTP client, SMTP(S)
client, ping, TFTP, …

Lightweight IP (lwIP)

The network design is organized as a layer stack.
● Each layer provides a set of services to the upper layer
and requires services from the lower layer.

34

BSD Sockets
lwIP

BSD Sockets (Berkeley sockets | POSIX sockets)
• de facto standard API
• Basic abstraction for network programming
• Combination of IP address + port
• Inter-process communication use „LwIP Socket API“

35

lwIP

Integration with
freeRTOS

It is easier to understand with an
example:
Start a task (e.g. network_thread)

1. Initializes lwip
2. Configures a network interface
3. Start the interface and a reception

task
4. Install any other network tasks

a. (In this example:
udma_application_thread)

5. Finally the start up task deletes
itself.

After initialization two threads are active:

• Reception task

• UDMA application

36

And what is UDMA?
UDMA

The Universal Direct Memory Access (UDMA) is a remote control suite developed at ICTP-MLAB for interfacing a PC with
custom logic in a SoC-FPGA. It was tested inside FreeRTOS on top of lwIP.

The communication with the FPGA is done through the ComBlock.

https://gitlab.com/ictp-mlab/udma

https://gitlab.com/rodrigomelo9/core-comblock/
https://gitlab.com/ictp-mlab/udma

37

SoC-FPGA of the experimental hardware
platform.

UDMA

39

UDMA implementation on Jupyter Notebook
UDMA

Questions?

