FreeRTOS Operating system
and IwlIP for SoC

'UP4P

Centenary
YEARS 1922 - 2022

Atoms for Peace and Development

Ciencia

1st Mesoamerican Workshop on

Reconfigurable X-ray
Scientific Instrumentation for

Cultural Heritage

Luis Guillermo Garcia Ordodnez

The Abdus Salom
International Centre
(CTP) for Theoretical Physics

1st Mesoamerican Workshop on Reconfigurable X-ray and Scientific Instrumentation for Cultural
Heritage | (smr 4078)

Outline

Firmware development for microcontrollers

o Bare Metal,

o 0.S. Based Embedded Systems

FreeRTOS

o Motivation for using FreeRTOS

FreeRTOS in the Zyng

o Integration of FreeRTOS on Xilinx hardware
What is IWIP

Practical applications (UDMA)

Firmware development for microcontrollers

The Bare-metal approach:

int main() {
init_system();

_ While (1) {
Meet the superloop: S;ﬁ’i;tﬁ?," do. a();
e Forever loop that sequences the T do_b () ;
set of tasks do_c () ;
e Polled or interrupt-based I/0 ’)
e Typical in standalone [k // You'l never get here
implementations }
f Task 3 ISR
Pros: Time > (Foreground)
° Simple Infinite | :< G
e No OS overhead Loop -
Cons: v — Nested ISR
o /e Foreground
e Difficult to scale up (low number | i [o
of tasks) | L | SR
e Difficult to balance time and tasks : : ISR
priorities e b

Firmware development for microcontrollers

0.S. Based Embedded Systems

Multi-threaded: multiple threads
spawn to carry out multiple tasks
concurrently
Each task has different priority
and timing requirements
The operating system provides
some hardware abstraction layer
Extra services, such as a
filesystem, network stack, ...
Pros:
o More modular architecture
o Tasks can be pre-empted.
Avoid priority inversion
Cons:
o More complex and extra
overhead
o Higher memory requirements
o Thread execution is difficult
to test
o Usually not Determinist.....
But

Application
RTOS
Networking File Other
Protocols System Components
C/C++ Support POSIX
Libraries Support
Device Debugging Device
Drivers Facilities I/0
BSP

Target Hardware

O.S. vs Real Time
0.S. (RTOS):

AW B Y A Simple OS has a
——— non-deterministic
response time to external
Free RTOS events, RTOS however
replies to all the
external activities in
minimal and

e Born in 2003 and initially conceived for microcontrollers
o Really light
o Platform-Independent, Modular and Simple
o Minimal processing overhead
m FreeRTOS IRQ dispatch 10-50 cycles aprox.*
m Embedded Linux IRQ dispatch = 100 cycles aprox.
m Ported to a large number of architectures (e.g. ARM, AVR, RISC-V, and MicroBlaze)
e Currently is Amazon the company that stewards the development of the O.S.
e Open Source MIT license
e More information at

*For ARM Cortex-M, it may vary depending of the architecture

http://www.freertos.org

Motivation of FreeRTOS

Which I should choose?

Bare Metal

An application that does not require
task/thread preemption

Where real-time deadline is not a
requirement

(deterministic behavior)

Low-level applications which do not
have large memory to fulfill the
need of an operating system.
When you don’t want to use
third-party firmware and drivers to
interfere with your application

A low-cost application which can
access all the registers of the
hardware.

RTOS

An application that needs task
preemption and where interrupts
and tasks need to be prioritized .i.e.
hard real-time deadline requirement
High-level application where the
computing cost of the project is not
a big deal.

High memory usage and efficient
processing are required.
Applications in which modularity is
an important point to be followed
and code redundancy should be
minimum.

Motivation of FreeRTOS

FreeRTOS ecosystem of products:

Amazon FreeRTOS for IoT devices
Network communication stack
Command Line Interface

SSL/TLS security

File systems (e.g. FAT32)

J.
¢\

FreeRTOS & Zynq

FreeRTOS in Xilinx tools

FreeRTOS completely integrated in
Xilinx Software Development Flow
Provided as a BSP:
e Extension of the standalone
BSP
o All low level drivers can be
directly used
e Includes the O.S. runtime
Optional extensions:
e Filesystem
e Network
o

Application

lwIP

FreeRTOS

FreeRTOS & Zynq

FreeRTOS Design Flow

Vivado : :
Architectural design
This information will be used for the gen-
Platform export eratio[n of the appropriate drivers for{h[e
peripherals
Vitis

Platform generation

It includes the standalone drivers plus the
FreeRTOS BSP generation extra libraries selected

L Based on the FreeRTOS API plus the
FreeRTOS application peripheral drivers

 Through a header file: FreeRTOSConfig.h

#define
#define
#define
#define
#define
#define
#define
#define

gdefine

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

configUSE PREEMPTION 1 g—

configUSE MUTEXES 1
INCLUDE xSemaphoreGetMutexHolder 1

configUSE RECURSIVE MUTEXES 1

configUSE COUNTING SEMAPHORES 1 o

configUSE TIMERS 1 /

configUSE IDLE HOOK ©
-

configUSE TICK HOOK ©

configUSE DAEMON TASK STARTUP HOOK ©

configUSE TICKLESS IDLE ©
configTASK RETURN ADDRESS NULL
INCLUDE vTaskPrioritySet

INCLUDE uxTaskPriorityGet

INCLUDE vTaskDelete

INCLUDE vTaskCleanUpResources
INCLUDE vTaskSuspend

INCLUDE vTaskDelayuntil

INCLUDE vTaskDelay

INCLUDE eTaskGetState

INCLUDE xTimerPendFunctionCall
INCLUDE pcTaskGetTaskName
configMAX API CALL INTERRUPT PRIORITY (18)

N S el

Tasks can be interrupted by others
with higher priority

This will include a timer service task

Hooks are used to trigger the execution
of functions upon the happening of cer-
tain events

Some functionality can be optionally in-
8usded.--“excluded from the core of the

FreeRTOS Configuration

Xilinx configuration is through the mss file in

the FreeRTOS BSP generated in Vitis

3+ Application Project Settings Active build configuration: Debug v 5

General Options

Project name: dpp_part2 View current BSP settings, or configure settings like STDIO peripheral selection,
compiler flags, SW intrusive profiling, add/remove libraries, assign drivers to

Platform: dpp_part_2_wrapper

peripherals, change versions of OS/libraries/drivers etc.

Runtime: cpp Navigate to BSP Settings
Domain: freertos10_xilinx_ps7_cortexa9 0

CPU: ps7_cortexa9 0

OS: freertos10_xilinx

Hardware Specification: View processors, memory ranges and peripherals.

11

FreeRTOS Configuration

Xilinx configuration is through the mss file in

the FreeRTOS BSP generated in Vitis

v [dpp_part_2_wrapper

View current BSP settings, or configure settings like STDIO peripheral selectior

~ [& freertos10_xilinx_ps7_cortexad_0 A BSP settings file is generated with the user options selected in the settings d

General B Board Support Package settings, click the below link. This operation clears any existing modifications d¢
changes are applied on top of the loaded settings.
Project name: dpp_t Load BSP settings from file D peripheral selection,
Operating System s, assign drivers to

Platform: dpp_t
Name: freertos10_xilinx

Runtime: cpp Version: 1.12

Description: This Xilinx FreeRTOS port is based on FreeRTOS kernel versic

Documentation: -

Domain: free
Drivers Libraries
CPU: ps7_
Name Driver Documentation
OS: free comblock_0 comblock =
ps7_afi_0 generic -
Hardware Specificatic ps7_afi_1 generic -
ps7_afi_2 generic -
ps7_afi_3 generic -
ps7_coresight_comp_0 coresightps_dcc Documentation Link
ps7_ddr_0 ddrps Documentation Link

ps7_ddrc_0

generic -

v { } ps7_cortexa9_0 intrusive profiling, add/remove libraries, assign drivers to peripherals, change v
. . . d i F .
3¢ Application Proj¢ - & zynq_fshl e e iration: Debug >
B Board Support Package Modify BSP Settings.., Reset BSP Sources

12

FreeRTOS @ -)

Board Support Package Settings

Control various settings of your Board Support Package.

L L]
XI | I I l 4 _ Configuration for OS: freertos10_xilinx

v freertos10_xilinx

the F

3 Application

General

Project name:

Platform: (

Runtime:
Domain:
CPU:

OS:

Hardware Speci

Name Value
clocking false
hypervisor_guest false
stdin ps7_uart_1
stdout ps7_uart_1
xil_interrupt false

> e e event_trace false

» hook_functions
v kernel_behavior J
idle_yield true

max_api_call_interrupt 18
max_priorities 8

max_task_name_len 10
minimal_stack_size 200

tick_rate 100
total_heap_size 262144
use_port_optimized_t: true
use_preemption true
use_timeslicing true

» kernel_features t

» software_timers true

» tick_setup true

Default

false
false
none
none
false
false
true
true
true
18

10
200
100
65536
true
true
true
true
true
true

Type
boolean
boolean
peripheral
peripheral
boolean
boolean
boolean
boolean
boolean
integer
integer
integer
integer
integer
integer
boolean
boolean
boolean
boolean
boolean
boolean

Description

Enable clocking support

Enable hypervisor guest support for A53 64bit EL1 Non-Secure. If hypervisor_guest is
stdin peripheral

stdout peripheral

Enable xilinx interrupt wrapper APl support

Enable event tracing through System Trace Macrocell available on Zynq MPSoC. This i
Include or exclude application defined hook (callback) functions. Callback functions m
Parameters relating to the kernel behavior

Set to true if the Idle task should yield if another idle priority task is able to run, or fa
The maximum interrupt priority from which interrupt safe FreeRTOS API calls can be 1
The number of task priorities that will be available. Priorities can be assigned from ze
The maximum number of characters that can be in the name of a task.

The size of the stack allocated to the Idle task. Also used by standard demo and test t
Number of RTOS ticks per sec

Sets the amount of RAM reserved for use by FreeRTOS - used when tasks, queues, se
When true task selection will be faster at the cost of limiting the maximum number ol
Set to true to use the preemptive scheduler, or false to use the cooperative schedule
When true equal priority ready tasks will share CPU time with a context switch on eac
Include or exclude kernel features

Options relating to the software timers functionality

Configuration for enabling tick timer

Cancel

n: Debug v

pheral selection,
gn drivers to

13

FreeRTOS Tasks

FreeRTOS Tasks

What our code looks like

Entry Point (main())

l

Setup
Interrupt Service
Routine (ISR)
Y
Task A Task B Task C

https://www.digikey.com/en/maker/projects/introduction-to-rtos-solution-to-part-3-task-scheduling

FreeRTOS Tasks

FreeRTOS Tasks

What actually happens*

*assuming single-core processor

“preemptive scheduling”
ISR
(H/W)

Priority
(S/W)

1 Task B Task C Task C

0 Task A Task A

<0 0 = 00 10|

“tick”
1ms

Task A Task A

- — -
- - —— —— —

- -
— o —
- -
- -
- — -
- — -
- -

time

https://www.digikey.com/en/maker/projects/introduction-to-rtos-solution-to-part-3-task-scheduling

FreeRTOS tasks

FreeRTOS tasks

e Every thread of execution is a task

e Tasks are independent between them. They have their own execution context
(memory)

e Tasks are never called from the program

e Tasks are executed by the FreeRTOS scheduler depending on their priorities and as
a response to events

e Only one task active at the same time

e Tasks never return o 2: ﬁ 5 3¢

e There's a special IDLE task vControlTask = — —
o No need to create it KeyHandlerTask e | b -
U 2 B W B Time 617 1810

:'/
:"/
."'/

ﬁ = Key Press Event S = Timer Event

FreeRTOS tasks

A typical FreeRTOS application will look like
this

void main ()

{
xTaskCreate (Task_A, ...);
xTaskCreate (Task_A, ...);
xTaskCreate (Task_A, ...);
xTaskStartScheduler ();

}
void Task_A () void Task_B () void Task_C ()
: Init_A(); { Init B() ; { Fnit CH) ;
while (1) while (1) while (1)
{ do_A(); { do_B () ; { do_C();

} } h
} } }

FreeRTOS tasks

FreeRTOS task

Suspended

vTaskSuspend()

vTaskSuspend() called

called

vTaskResume()
called

vTaskSuspend()
called Event Blocking API

function called

Blocked

model

Tasks can be in different states of execution

Ready:

« When the task can be selected for execution, but is
kept waiting since the CPU is busy with another task
(depends on priority — next slide)

Running :

« Really executing the code
Blocked:

« Waiting for something:

- An event. (e.g. a message has been received in a
queue)

- EESSEThas been called so a certain time must
pass.

Suspended:

- After calling
- Can later be resumed using

FreeRTOS tasks

FreeRTOS priorities

e Tasks have priorities, used to the scheduler to select the most urgent one
e The range of different priorities is configurable in [EEESStEtrE

e Tasks can change their own priority, as well as the priority of other tasks.
e The IDLE task is the one with the lowest priority [

UBaseType t 0U

e The FreeRTOS scheduler is preemptive:
o If a task with a higher priority that the actual one is READY, then the RUNNING
one will be evicted and moved to the READY state, while the former will start the
execution

FreeRTOS tasks

FreeRTOS tasks creation

Tasks are modelled after normal C functions e.g.

My Task/(*myParameters);

e Void return:
o And remember in fact they should never return
e Vvoid pointer for arguments. Can be later casted to the right type

Since not called, they must be registered (created) into the scheduler
e The IDLE task is created automatically (special case)

Can also be destroyed at run-time
Some related functions:

e XxtaskCreate()
e xtaskDelete()

FreeRTOS tasks

Task creation

In order to create a Task:

Type t xTaskCreate (TaskFunction t pxTaskCode,

UBaseType t uxPriority,

TaskHandle t * const pxCreatedTask]

pxTaskCode: pointer to the function that really implements the task
pcName: name assigned, mainly used for debug purposes
usStackDepth: refers to the local memory assigned to the task
e The configMINIMAL_STACK_SIZE parameter set in the RaaStterls et
pvParameters: since no parameters are sent to the task
uxPriority: priority assigned to the task. _
e This constant is defined as the minimum possible priority Task creation
e The lowest the number, the lowest the priority
pxCreatedTask: task handler
® From my paSt slide: EErEr——— My Task (void *myParameters);

configuration file

xTaskCreate (My Task Code,

st char *) const “My Task Name”,

configMINIMAL STACK SIZE,

&myParameters,

tskIDLE PRIORIRTY,

&My Task

FreeRTOS tasks

Hello World

3. Once the scheduler is started, functions————

will be executed depending on the schedul-
Ing policy

1. main function is normally used to~
create at least one task

2. The scheduler is a never-ending loop, so
the program should never get to this point

#define TASK NAME "HelloTask"
#define TASK STACKDEPTH 10600
#define TASK PRIORITY 1
#define TASK PARAMFTFR NUILI
#define TASK HANDLE NULL

A void sayHello(void *pvParamcters)

{
while (1) {
printf(“hello\n");
vTaskDelay(100€ / por LTICK RATE MS);

}
}

_yrint main(void)

xTaskCreate(saykello, TASK NAME, TASK STACKDEPTH,
TASK_PARAMETER, TASK PRIORITY, TASK HANDLE):

T~ vTaskStartScheduler();

L print?("Something wrong\n");

return O;
}

FreeRTOS Hello World

“'sayHello” task activation:

#define TASK NAME "HelloTask
#define TASK STACKDEPTH 1006
#define TASK PRIORITY 1
#define TASK PARAMETER
:’1$‘le¢* TA >K "‘w‘«lijlg ,i Ll
id sayHello(void *pvParameters)
while (1) {

}

{

printf(“"hello\n");
vTaskDelay (1000 / portTICK RATE MS);
}

t main(void)

xTaskCreate(sayHello, TASK NAME, TASK STACKDEPTH,

TASK PARAMETER, TASK PRIORITY, TASK HANDLE);

vTaskStartScheduler();

printf("Something wrong\n");
return 8;

Once the scheduler is started, the task
becomes ready

Since it's the only task apart from the IDLE one
(always present) it will be scheduled to RUN.

There are no other tasks but the IDLE one,
with lower priority, so the task is always
chosen to RUN.

But when the task executes vTaskDelay to
force a waiting time, it becomes BLOCKED,
waiting for the time to pass

Once the time has passed,

« The task will be moved to the READY state
« The IDLE task (priority 0) will be evicted
 The sayHello task will move to RUN

FreeRTOS Tasks

FreeRTOS Task Communication

Global variables and their risks
e The global variable is shared by all tasks
e Access control should be managed by the

Two mechanisms:
e Global variables which can be read from all tasks

e Queues as the main mechanism for inter-task communic programmer
o Since processes can be evicted, the state

Queues: can be inconsistent

e Asynchronous model of communication based on a FIFO E.g.:

e Data can written to both the head and tail of the queue One process writes and another reads: Ok

e Arbitrary size and depth, but defined at compile time Two processes write

e Items are passed by value — not zero copy o You may assume wrong states

[J

Access can be blocking or non-blocking o Need for explicit synchronization

Task A
Queue
\\
m | <
P E % Task B
1 (2|3
First in, first out (FIFO)
Task C https://www.digikey.com/en/maker/projects/int

roduction-to-rtos-solution-to-part-5-freertos-que
ue-example/72d2b361f7b94e0691d947c7c29a0
20

FreeRTOS queues

FreeRTOS queues

Queue creation:

uxQueuelength,

l

uxItemSize)

Queue data insertion at the back of the queue:

xQueue,

* pvlIitemToQueue,

|

xTicksToWait)

If is 0 it will return immediately if full otherwise it will wait

Data insertion at the front of the queue:

xQueue,

* pvlitemToQueue,

|

xTicksToWait)

Data extraction:

xQueueReceive (xQueue,

* pvBuffer,

xTicksToWait)

FreeRTOS queues

The producer-consumer example

xQueueHandle queue; 44—

——— Queue declaration
void producer(void *pvParameters) {

int value = 0;

while (1) { . . . :
xQueueSendToBack (queue, &value, 0); g If the queue is full, it will return im-
value++; mediately
vTaskDelay (1000 / portTICK RATE MS);

}

}

void consumer(void *pvParameters){
int value; e
__ Blocking read
while (1) { o
xQueueReceive(queue, &value, portMAX DELAY); -&—
printf("value received: %d\n", value);
vTaskDelay (1000 / portTICK RATE MS);
}
}

int main(void) { o Queue creation with limited size
queue = xQueueCreate(100, sizeof(int)); %

xTaskCreate(producer, P TASK NAME, TASK STACKDEPTH, TASK PARAMETER,

TASK PRIORITY;=«FASK_HANDLE);
xTaskCreate(consumer, C TASK NAME, TASK-STACKDEPTH, TASK_PARAMETER,

TASK_PRIORITY, TASK HANDLE); TE——— Be careful with priorities
vTaskStartScheduler(); T d '

}

FreeRTOS, Examples

Another Exampl

Vitis Implementation

int main()

i

sys_thread_new("main_thrd", (void(*)(void*))main_thread, O,

THREAD_STACKSIZE,
DEFAULT_THREAD_PRIO);
vTaskStartScheduler();
while(1);
return O;

> void network_thread(void *p)
int main_thread()
{

#if LWIP_DHCP==

#endif

lwip_init();

sys_thread_new(”Nw;THRD", network_thread, NULL,V
THREAD _STACKSIZE,
DEFAULT _THREAD_ PRIO);

> #1f LWIP_DHCP==
#endif
vTaskDelete(NULL);
return O;

27

FreeRTOS, Examples

Another Exampl

Vitis Implementation

int main()

i

sys_thread_new("main_thrd", (void(*)(void*))main_thread, O,

THREAD_STACKSIZE,
DEFAULT_THREAD_PRIO);
vTaskStartScheduler();
while(1);
return O;

> void network_thread(void *p)
int main_thread()
{

#if LWIP_DHCP==

#endif

lwip_init();

sys_thread_new(”Nw;THRD", network_thread, NULL,V
THREAD _STACKSIZE,
DEFAULT _THREAD_ PRIO);

> #1f LWIP_DHCP==
#endif
vTaskDelete(NULL);
return O;

28

int main()
FreeRTOS, Examples {

sys_thread_new("main_thrd", (void(*)(void*))main_thread, O,

THREAD_STACKSIZE,
Another Exampl DEFAULT THREAD. PRIO):
vTaskStartScheduler();
MNnlementatian while(1);

sys_thread_t sys_thread_new(const char *pcName, void(*pxThread)(void *pvParameters), void *pvArg, int iStackSize, int iPriority)
{

faskHandle xCreatedTask;

or tBASE_TYPE xResult;

sys_thread_t xReturn;

xResult = xTaskCreate(pxThread, const char * const) pcName, iStackSize, pvArg, iPriority, &xCreatedTask);
if(xResult == pdPASS)
{
xReturn = xCreatedTask;
}
else
{
L
XReturn =
}

return xReturn;

vTaskDelete(NULL);
return O;

29

FreeRTOS, Examples

Another Exampl

Vitis Implementation

Wait, what is this, Network?

int main()

i

sys_thread_new("main_thrd", (void(*)(void*))main_thread, O,

THREAD_STACKSIZE,
DEFAULT_THREAD_PRIO);
vTaskStartScheduler();
while(1);
return O;

i
> void network_thread(void *p)
int main_thread()
{
#if LWIP_DHCP==

#endif

lwip_init();

sys_thread_new(”Nw;THRD", network_thread, NULL,V
THREAD _STACKSIZE,
DEFAULT _THREAD_ PRIO);

> #1f LWIP_DHCP==
#endif
vTaskDelete(NULL);
return O;

30

FreeRTOS, Examples

void network_thread(void *p)

Another Examplecjspmes

- . unsigned char mac_ethernet_address[] = { 0x00, Ox0a, 0x35, 0x00, 0x01, 0x02 };
Vitis Implementation ip_addr_t ipaddr, netmask, gw;

#if LWIP_DHCP==
#endif
netif = &server_netif;

UDMA? X%l_pr%ntf("\r\n\r\n");
xil_printf(" UDMA Server

LWIP_DHCP==0
IP ADDRESS? initialize IP addresses to be use
I ADDR(&ipaddr, 192, 168, 1, 10);
ADDR(&netmask, 255, 255, 255, 0);
4_ADDR(&gw, 192, 168, 1, 1);

A7
4

1

P
#endif

#1if LWIP_DHCP==0
print_ip_settings(&ipaddr, &netmask, &gw);

#endif

#if LWIP_DHCP==1

#endif

31

IWIP (lightweight IP)

32

Lightweight IP (IWIP)

e Full scale TCP protocol stack
e small memory footprint (for

embedded systems, uC) Application | | oy rrp || prp |[TELNET|| DNS || SNMP | eee | DHCP
e Open Source (C Code) g
Supports a large number of protocols .
e TCP Transport Control Protocol
e UDP User Datagram Protocol [1IGMP | [1ICMP |
e IP Internet Protocol N‘l";:”;:'k P
e ICMP Internet Control Message Protocol y
e ARP Address Resolution Protocol Data-link
e DHCP Dynamic Host Configuration layer Underlying LAN or WAN
Protocol Physical technology

e Raw API and Berkeley sockets layer

(requires an multitasking O.S.)

Included in Xilinx Vitis . _
The network design is organized as a layer stack.

Application level e Each layer provides a set of services to the upper layer

e HTTP(S) server, SNTP client, SMTP(S) and requires services from the lower layer.
client, ping, TFTP, ...

IwIP

BSD Sockets

BSD Sockets (Berkeley sockets | POSIX sockets)
e de facto standard API

e Basic abstraction for network programming

e Combination of IP address + port

e Inter-process communication use ,,LWIP Soc)
Lwip_socket(AF_INET, SOCK_STREAM, ©)

.' ener client server
13

Aplication D D D process process
3

Bytes — read
— Byles write

< (Destinalion port number
Transport Data L selects the process

E Destination IP address
selects the server
Data

IwIP

Integration with
freeRTOS

It is easier to understand with an
example:

Start a task (e.g. IR TE)

1. Initializes Iwip
Configures a network interface

task

Install any other network tasks

a. (In this example:
bana_application thread)

Finally the start up task deletes

itself.

2.
3. Start the interface and a reception
4

After initialization two threads are active:
e Reception task

e UDMA application

sys_thread_new("NW_THRD", network_thread, NULL,
THREAD _STACKSIZE,
DEFAULT_THREAD PRIO);

void network_thread(void *p)

netif = &server_netif;

xil_printf("\r\n\r\n");
xil_printf(" UDMA Server

LWIP_DHCP==0
* initialize IP addresses to be usec
IP4_ADDR(&ipaddr, 192, 168, 1, 10);
IP4_ADDR(&netmask, 255, 255, 255, 0);
IP4_ADDR(&gw, e, 168, 1, 1)
#endif

#1f LWIP_DHCP==0
print_ip_settings(&ipaddr, &netmask, &gw);
orint all application headers

#endif

> #if LWIP_DHCP==1
#endif

1EEamlNiS (s 1t as defau

~ Add network interface to the and set 1t ¢ efault
if (!xemac_add(netif, &ipaddr, &netmask, &gw, mac_ethernet_address, PLATFORM_EMAC_BASEADDR)) {

netif_set_default(netif);
netif_set_up(netif);

sys_thread_new("xemacif_input_thread", (void(*)(void*))xemacif_input_thread, netif,
THREAD_STACKSIZE,
DEFAULT_THREAD_PRIO);

> #if LWIP_DHCP==1
#else
xil_printf("\r\n");
xil_printf("%20s %6s %s\r\n", "Server", "Port", "Connect With..")
xil_printf("%20s %6s %s\r\n", " O LA

print_app_header();
xil_printf("\r\n");
sys_thread_new("udmad", udma_application_thread, O,
THREAD_STACKSIZE, 35
DEFAULT_THREAD_PRIO);
vTaskDelete(NULL);
#endit

UDMA

And what is UDMA?

The Universal Direct Memory Access (UDMA) is a remote control suite developed at ICTP-MLAB for interfacing a PC with
custom logic in a SoC-FPGA. It was tested inside FreeRTOS on top of IwlIP.

The communication with the FPGA is done through the

o~ Yr Star | O % Forks | O

U UDMA &

-0-120 Commits ¥ 8 Branches ¢ 0 Tags [21.1MiB Project Storage

Fixed error in print of read_ram and write_ram. Fixed read_mem and write_mem... [ss.
_ _ R 43482b3e | [
Luis Garcia authored 2 weeks ago

master v udma / | + v History Find file Edit v G v

~ Clone with SSH

git@gitlab.com:ictp-mlab/udma.g | [}

""""""""""""""" : Clone with HTTPS

Name Last commit https://gitlab.com/ictp-mlab/ud | [&

https://gitlab.com/rodrigomelo9/core-comblock/
https://gitlab.com/ictp-mlab/udma

Time critical external

UDMA

SoC-FPGA of the experimental hardware

platform.

SoC FPGA Device

hardware
|

FPGA Fabric

External

> | hardware

controller

ComBlock
== Registers
< Registers

Core
FPGA D
design FIFo
— FIFO
<—>| | TDPRAM

g | e |

Microprocessor

> UDMA
Firmware
Application
:|l> specific

software

TCP/IP

> UDMA CLI

S—

Board communication

connect Create the connect command to allow communication with the board via Ethernet Communication protocol
log Starts serial logging to debug the transmission and processing of the messages o . .
The communication between the PC and the board relies over Ethernet TCP/IP. Using sockets you can connect to the board from
udma Create the x_udma command to pass the UDMA instruction to the specified LRA any program. To send comands you must follow the following structure:
Note: UDMA function is not completely implemented and must not be used unless specified in the release notes 31 0
command type Reserved 0-9
Comblock Read —_——
parameters: one word each Type dep.
data: only if required by the command 2
x_read_fifo Create the x_read_fifo command to allow reading the FIFO of the Comblock ! e e e e e l e e e e e e e

Read register: reg
Write register: reg, data

x_read_mem Create the x_read_ram command to allow reading the RAM of the Comblock Read FIFO: N
Write FIFO: N, data
x_read_ram Create the x_read_ram command to allow reading the RAM of the Comblock Read RAM: addr, N, inc
Write RAM: addr, data, N, inc
x_read_reg Create the x_read_reg command to allow reading registers from the Comblock
The board will always answer with a response with the error flag of the command, data count and data if required.
Comblock Write
31 0

error code

x_write_fifo Create the x_write_fifo command to allow writing the FIFO of the Comblock —

N: data count
X_write_mem Create the x_write_ram command to allow writing the RAM of the Comblock +

data: only if data count > 0

X_write_ram Create the x_write_ram command to allow writing the RAM of the Comblock

X_write_reg Create the x_write_reg command to allow writing the registers of the Comblock

UDMA

UDMA implementation on Jupyter Notebook

@ Lab3_NB.ipynb ® m -
smr-3983 > Labs > Lab3_UDMA > scripts > @ Lab3_NB.ipynb > ms Lab 3 - UDMA > ms Interfacing with hardware via UDMA > ms Connecting to ZedBoard > % connectionStatus =0
-+ Code - Markdown | [» RunAll O Restart | Variables = Outline :-- B Python 3.8.12
]“C[‘/(‘/l"‘f u,ﬂ}‘m
from struct import pack, unpack

from time import sleep

Python
Interfacing with hardware via UDMA
Setting up UDMA and ZedBoard parameters
1. Set the IP address and port of your ZedBoard development board to match the settings specified in the main. c file of your Vitis project.
IP_ADDRESS = '192.168.1.10"
IP_PORT = 7
Python
2. The UDMA class instance is being initialized with the provided IP settings. In this step, a UDMA object is created and assigned the name zedBoard . This name can be chosen arbitrarily.
2= zedBoard = udma.UDMA_CLASS(IP_ADDRESS, IP_PORT)
Python

39

Questions?

Atoms for Peace and Development

1st Mesoamerican Workshop on

Reconfigurable X-ray
Scientific Instrumentation for

Cultural Heritage

Centena - -
VEARS 1923 - 2022 for Theoretical Physics

~OA 1 CA
.;v,\‘\k‘\t 3 Ol//
IUPAP NG
By w SN 4 RS The Abdus Salam
£) 3 :
S = (CTP International Centre
K >
ecretaria 2\ S
e O &
Gy &

UDP

Unreliable protocol
= No error control

= corrupted packets are ignored » UDP socket Programming flow p_— —
= No flow control (Speed) [socket(l] [socket ()]
BUt: x - :void echo application thread() bind() -bojl;tr:miio(n)al
= Extremely simple (minimum overhead) (.)
| int sock, new sd;
» the fastest way (lowest |atency) s struct sockaddr_in address, remote; [tecvirom() |
i int size;

Blocks until data
received

int RECV BUF SIZE = 2048;

Data(request)
char recv_buf[RECV_BUF_SIZE]; [sendto() |
int n, nwrote; |
j if ((sock = lwip socket(AF INET, SOCK DG 0)) < 0) j Deeswiyl o
3 return; [sendto() | { recvirom() |
' address.sin family = AF_INET;
address.sin port = htons(echo po [close() | [close() |

address.sin addr.s addr = INAD

if (lwip_bind(sock, (stru
return;

sockaddr *)&address, sizeof (address)) < 0)

; if ((n = read(sock,”recv _buf, RECV BUF SIZE)) < 0) {
[xil printf("%s: error reading from socket %d, closing socket\r\n",
__FUNCTION , sock);

Used in applications where loss of some part of the information can be
tolerated, example Video Streaming/conference

TCP

= Connection-oriented protocol
= Reliable, Error free (correction)
= Retransmission of lost or corrupted packets

= Complex protocol with multiple phases
* higher latency, lower throughput
= Connection control

Server

|sockec()|
bind() |

Client
listen()| | socket () |
accept ()

block Connection
until establiskment
there are . [connect
connection L—————::::IE:]
from
client
Data (request)
read() k { write () I
Process
request
Data (reply)
write() | 4 read()

close () | I close () |

Used when loosing information can’t be tolerated.
Example: HTTP, E-mail, binary Data, ...

vold echo_application _thread()

/
v

{

int sock, new sd;
struct sockaddr in address, remote;
int size;

if ((sock = lwip socket(AF INET, SOCK STREAM, 0)) < 0)
return;

address.sin_family = AF_INET;
address.sin_port = htons(echo port);
address.sin_addr.s_addr = INADDR_ANY;

if (lwip_bind(sock, (struct sockaddr *)&address, sizeof (address)) < 0)
return;

lwip listen(sock, 0);
size = sizeof(remote);

while (1) {
if ((new_sd = lwip_accept(sock, (struct sockaddr *)&remote, (socklen t *)&size)) > ¢
sys thread new("echos", process echo request,
(void*)new_sd,
THREAD STACKSIZE,
DEFAULT_THREAD PRIO);

}

* thread spawned for each connection */
oid process echo request(void *p)

int sd = (int)p;
int RECV BUF SIZE = 2048;
char recv buf[RECV_BUF_SIZE];

int n, nwrote;

while (1) {
/* read a max of RECV BUF SIZE bytes from socket */
if ((n = read(sd, recv_buf, RECV_BUF SIZE)) < 0) {

xil_printf("%s: error reading from socket %d, closing socket\r\n", __ FUNCTION__, sd);
break;

}

/* break if client closed connection */

if (n <= 0)
break;

/* handle request */
if ((nwrote = write(sd, recv_buf, n)) < 0) {
xil printf("%s: ERROR responding to client echo request. received = %d, written = %d\r\n",
__FUNCTION__, n, nwrote);
xil printf("Closing socket %d\r\n", sd);

break;
}
}
/* close connection */
close(sd);
vTaskDelete(NULL);
}

pAmp board

A

ADC 8 BITS
500 MHZ

HV DC/DC

CONVERTER |

HVIBNI

External Core
Hardware FPGA FRCAUP
X COMBLOCK
Controller Design
ZYNQ SoC
HlSTOvGRAM Axi_Bus) [SEEEEEEEE |
R x GENERATOR o SZASRTS)M
”|DECIMATION I e
BLOCK v
uP
OSCILOSCOPE
ComBlock_0

A

Temp/Press
Sensors

I

PTP i
Synchronization | -
and Local CLK |
Manager Block

ComBlock 1

| Connection

UDMA_CLI

1IC BUS

) 5 5 5 5t 5 5 6 5 5 5 6

O 50 0 0 D Y Y) Y 0 E25) 25 e

AR R

+1...I[71
A= B

ADC500_CFGuvi
GET_FIFO.vi
GULvi

a HV_SET.vi

B R

=] B Histogram.viib

HISTO_CLEAN.vi
HISTO_ENABLE.vi
HISTO_IS_DONE.vi
HISTO_READ.vi
HISTO_READ_COUNT.vi
HISTO_SET N.vi
pAmp_HISTO_GEN.vi
pAmp_HISTO_GET.vi
MY _VlLvi

OSCILO.vi

PAS_CFGui
SET_DEC.vi
SET_POT.vi
SPECTROwi
UDMA_READ_FIFO.vi
UDMA_READ_RAM.vi
UDMA_READ_REG.vi
UDMA_WRITE_RAM.vi
UDMA_WRITE_REG.vi
Dependencies

Buik Specifications

