

Secretaría Nacional de Ciencia y Tecnología

High Event-Rate Online Discrimination on Mixed Radiation Fields with ML

Iván René Morales

1st Mesoamerican Workshop on Reconfigurable X-ray and Scientific Instrumentation for Cultural Heritage

Summary

- Mixed radiation fields
- Event detection and discrimination
- High event-rate challenges
- Case study gamma/neutron
- Hardware setup
- Data collection and analysis
- Real-time event processing with ML
- Results and conclusions

Mixed radiation fields

Distribution of the energy deposited in the active volume of the Timepix3 Radiation Monitor by the particles composing a mixed radiation field at an LHC experiment [1].

Mixed radiation fields

- Ionizing radiation
- Chargeless and charged particles

Per-pixel energy deposited by various particles in a mixed radiation field measured using a Minipix Timepix detector with Silicone sensor [2].

Event detection

Captured trace from NaI(TI) detector placed nearby a gamma source [3].

Detector technologies

- Indirect charge collection
- Light detectors (with scintillators)
- Solid-state detectors
- Gas detectors

* digital domain starts at this stage in modern digital pulse processing (DPP) systems

Detection mechanisms

- Cross-level trigger (CLT)
- Constant fraction discriminator (CFD)
- Other advanced methods

- Different particle interactions -> different pulse shapes
- Real-time hardware deployment

Pulse shape discrimination (PSD) and frequency-based discrimination (FCI)

Pulse shape discrimination (PSD) and frequency-based discrimination (FCI)

12

Feature extraction + machine learning

Feature extraction [6]

High-event rate challenges

Simulated pile-up events at high SNR

High-event rate challenges

- Pile-up distortion
- Baseline shifting
- Pulse shape for PSD or FCI distorted

Severe pile-up distortion and shifted baseline [5]

Pile-up rejection

- Severe pile-up:
 - Events discarded
 - Live-time reduced

- Detectors on current mode:
 - No discrimination

High-event rate + event discrimination

- Pulse shape analysis
- Feature extraction
- Machine learning model
- ML model compression
- Real-time deployment in hardware

Eight piled-up events from gamma/neutron detector [5]

Case study: γ / n discrimination

Gamma/neutron discrimination featuring novel frequency-based approach [8].

Why γ /n discrimination?

- Gamma radiation associated to neutron presence
- Several neutron applications in industry, medicine, energy, security, etc.

Hardware setup

Render of custom DAQ board for low-SWaP radiation monitoring system

Hardware setup

- IAEA/NSIL low-SWaP DAQ board
- Off-the-shelf CLYC detector

CLYC scintillator

- Triple-mode scintillator
 - Gamma spectroscopy
 - Better resolution than Nal(TI)
 - Similar sensitivity to Nal(Tl)
 - Thermal neutron detection
 - Enriched with Li-6 (neutron capture)
 - Fast neutron spectroscopy
 - Cl-35 neutron scattering
 - Optimized for gamma/neutron discrimination

Mixed radiation detector based on CLYC

- Integrated detector: compensated bias, output preamplifier
 - CLYC crystal: gamma rays, thermal neutrons, fast neutrons
 - SiPM sensor array: low SWaP (size, weight, power), magnetic field tolerance, robustness
- Higher output capacitance: challenging signal processing
- Reduced SNR and higher dead-time
 - Pulse length/duration: ~ 30 μs

Custom DAQ board

Custom DAQ board

- Low SWaP for portable applications
- FPGA for real-time signal processing
- Microcontroller (MCU) for peripherals
- 14-bit ADC @ 250 Msps
- Analog front-end (AFE)
- Programmable bias supply for SiPM
- Non-volatile flash: FPGA bitstream + detector data
- GNSS/GPS, RF interface, SiPM temp.

Data collection and analysis

Simulation of gamma/neutron discrimination using FFT with plastic scintillator [5].

Data collection

- Aiming to train supervised ML model
- Data recorded at NSF, IAEA with CLYC detector.
 - \circ AmBe source
 - Deuterium-deuterium gen.
- ~10^6 individual events recorded

Data wrangling

- Data curation with simplified correlation [8].
- Removed piled-up pulses
- Identified low-energy events

Data features after wrangling

- Slight pulse shape differences between gamma/neutron
- Diverse baseline shifts
- Sampled at 4 Gsps
 - Further downsampled for real-time processing
- No pile-up distortion

Data tagging

- Frequency-based event discrimination [9].
- Two labels: gamma/neutron

Pile-up synthesis for ML training

- Exponential distribution of "clean" piled-up pulses
- Event rate at 200 kHz (max 400 kHz)
- Validated event time distance with R² ~ 1.00

Real-time event processing with ML

Simulation of gamma/neutron discrimination using FFT with plastic scintillator [5].

FPGA system architecture

- Low/high-power domains: 100/200 MHz
- Real-time processing pipeline: II = 995 ns, latency < 2.5 µs

Real-time feature extraction

- Pulse leading edge
- First 350 ns (pulse 30 µs)
- No time alignment required
- 2nd derivative trigger (SSD)
 - IIR bandpass differentiator
- Python model
- VHDL real-time module

Real-time feature extraction

Machine learning workflow

Online machine learning classification

- Multilayer perceptron (MLP): binary classifier.
- Compression workflow from [9].
- Distillation + quantization-aware pruning
- 8-bit FP quantization with 30% sparsity.
- 217 parameters in 6 hidden layers.
- Overall accuracy 98.2%.

Results

Results: performance

- Count-rate (CR)
- Inverse of dead-time (1/DT)
- Pile-up recovery/rejection (PuP)
- Accuracy (Acc)

Work	Overall perf.		
This work	1.0		
Michels et al.	0.89		
Wen et al.	0.12		
Cruz et al.	0.01		
Astrain et al.	0.01		

Highest values are the best

Results: low SWaP

SWaP comparison Thermo Fisher Scientific https://www.thermofisher.com/order/catalo g/product/4250631 P (W) Hardgrove et al. doi:10.1109/MAES.2019.2950747 Mesick et al. W (kg) https://digitalcommons.usu.edu/smallsat/20 20/all2020/118/ Thermofisher Zhao et al. Hardgrove doi:10.1088/1748-0221/18/09/P09043 Mesick S (L) Zhao Huang Huang et al. This work doi:10.2139/ssrn.4717223 3 12 15 6 9 0

Lowest values are the best

Results: FPGA utilization

- Low-end Artix-7 35T FPGA
 - LUT: 30.4%
 - Registers: 17.4%
 - BRAMs: 24.0%
 - DSPs: 17.8%

Validation with γ +n events

- Recorded pulses from CLYC plugged into AFE
 - (a) Gamma events
 - (b) Neutron events
- Runs
 - (i) Gamma-only events
 - (ii) AmBe + Cs-137 sources
 - (iii) DD neutron gen. + Cs-137
- Neutron false alarms < 2.5%
- Accuracy: 98.2%

Validation with other detectors

- Nal(Tl) detector sensing γ events from Co-60 source
 - Accuracy 99.1%
- Synthetic γ events of fast plastic scintillator
 - Absolute max. countrate:
 ~1.01 Mcps
 - Lowest deadtime: 995 ns
 - 129 ppm (missing events)

Conclusions

Experimental gamma/neutron dataset after discrimination with frequency-based analysis for ML training

Conclusions and FW

- FPGA enables a flexible mixed-radiation detection and measurement platform
- Reliable event discrimination under pile-up distortion on mixed radiation fields has been achieved
- Low-SWaP instrument with benchtop performance enabled by ML
- Multi-detector systems might be deployed leveraging existing system architecture
- Targets include portable instruments in nuclear security, radiation monitoring, and HEP experiments.

References

[1] Homola, P., Beznosko, D., Bhatta, G., Bibrzycki, Ł., Borczyńska, M., Bratek, Ł., ... & Woźniak, K. W. (2020). Cosmic-ray extremely distributed observatory. *Symmetry*, *12*(11), 1835. <u>https://doi.org/10.3390/sym12111835</u>

[2] Prelipcean, D., Lerner, G., Slipukhin, I., Lucsanyi, D., Sandberg, H., Storey, J., ... & García Alía, R. (2024). Towards a Timepix3 Radiation Monitor for the Accelerator Mixed Radiation Field: Characterisation with Protons and Alphas from 0.6 MeV to 5.6 MeV. *Applied Sciences*, *14*(2), 624. <u>https://doi.org/10.3390/app14020624</u>

[3] Morales, I. R., Crespo, M. L., & Carrato, S. (2023). Open source remote diagnostics platform for custom instrumentation in nuclear applications. In *International Conference on Applications in Electronics Pervading Industry, Environment and Society* (pp. 424-430). Cham: Springer Nature Switzerland. <u>https://doi.org/10.1007/978-3-031-48121-5_61</u>

[4] Physics Open Lab (2016). PMT pulse processing. Available at: <u>https://physicsopenlab.org/2016/04/21/pmt-pulse-processing/</u>

[5] Morales Argueta, I. R. (2025). Embedded instrumentation platform on SoC/FPGA for mixed radiation fields. *Università degli Studi di Trieste*. PhD Thesis. <u>https://hdl.handle.net/11368/3105900</u>

[6] Morales, I. R., Molina, R. S., Bogovac, M., Jovalekic, N., Crespo, M. L., Kanaki, K., ... & Carrato, S. (2024). Gamma/neutron online discrimination based on machine learning with CLYC detectors. *IEEE Transactions on Nuclear Science*.

https://doi.org/10.1109/TNS.2024.3498321

[7] Lee, M., Lee, D., Ko, E., Park, K., Kim, J., Ko, K., ... & Cho, G. (2020). Pulse pileup correction method for gamma-ray spectroscopy in high radiation fields. *Nuclear Engineering and Technology*, *52*(5), 1029-1035. <u>https://doi.org/10.1016/j.net.2019.12.003</u>

[8] Morales, I. R., Crespo, M. L., Bogovac, M., Cicuttin, A., Kanaki, K., & Carrato, S. (2024). Gamma/neutron classification with SiPM CLYC detectors using frequency-domain analysis for embedded real-time applications. *Nuclear Engineering and Technology*, *56*(2), 745-752. <u>https://doi.org/10.1016/j.net.2023.11.013</u>

[9] Cicuttin, A., Morales, I. R., Crespo, M. L., Carrato, S., García, L. G., Molina, R. S., ... & Folla Kamdem, J. (2022). A simplified correlation index for fast real-time pulse shape recognition. *Sensors*, 22(20), 7697. <u>https://doi.org/10.3390/s22207697</u>

[10] Molina, R. S., Morales, I. R., Crespo, M. L., Costa, V. G., Carrato, S., & Ramponi, G. (2023). An end-to-end workflow to efficiently compress and deploy DNN classifiers on SoC/FPGA. *IEEE Embedded Systems Letters*, *16*(3), 255-258. https://doi.org/10.1109/LES.2023.3343030

Thanks for your attention

MLab, ICTP (Italy)

ECFM, USAC (Guatemala)

Backup slides

SWaP comparison

Work	S (L)	W (kg)	P (W)	SaW	WaP
This work	0.56	0.41	1.5	0.13	1.00
Huang 153	4.08	4.9	8.8	0.00	0.01
Zhao [18]	3.34	-	3.5	-	-
¹ Mesick [221]	-	7.0	14	-	0.01
¹ Hardgrove [106]	-	3.4	9.6	-	0.02
Thermofischer [105]	0.18	0.16	-	1.00	-

Table 5.2: SWaP comparison of recent CLYC-based γ/n discrimination systems, including SaW and WaP scores

PSD vs FCI: gamma-only dataset

Dataset FOM for ML training

Related applications

Remote diagnostics

