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 Image from 
Togootogtokh, E., & Amartuvshin, A. (2018). Deep Learning Approach for Very Similar Objects Recognition Application on Chihuahua and Muffin Problem. ArXiv, abs/1801.09573.
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Machine learning for classification

- In a classifier, an input is mapped to a specific class.
- Supervised training phase: the network compares its current output with the desired 

output. The difference between these two values is corrected using backpropagation.
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● Rise of real-time ML
○ ML is now used in latency-critical domains: HEP, robotics, autonomous systems, IoT.

● The need for fast and efficient inference
○ Low-latency, low-power inference.

● Why FPGAs?
○ Highly parallel and reconfigurable, tuned for latency and energy efficiency.
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● Rise of real-time ML
○ ML is now used in latency-critical domains: HEP, robotics, autonomous systems, IoT.

● The need for fast and efficient inference
○ Low-latency, low-power inference.

● Why FPGAs?
○ Highly parallel and reconfigurable, tuned for latency and energy efficiency.

● The challenge
○ ML models are software-native.
○ Hardware mapping is complex and manual.
○ Needs automation and abstraction.
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ML and model compression techniques 

● Compression, in the context of Machine Learning, involves techniques aiming to 
reduce the size of models or datasets while preserving performance.

○ Model Compression: Reducing the size of machine learning models (such as 
neural networks) without significantly affecting their accuracy.

○ Data compression: Reducing the size of the data used for training, validation, 
and testing. Example: Autoencoders.

Romina Soledad Molina | Mar del Plata - Argentina | 2025



ML and model compression techniques 

● Trade-off Between Compression and Accuracy

○ Balance between reducing the size of the 
model or data and maintaining its 
performance.
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ML and model compression techniques 

● Problem: 
○ Very large models → high memory consumption and inference time.

The most accurate models are large and expensive in terms of memory and processing 
time.
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ML and model compression techniques 

The most accurate models (such as deep neural networks) are large and expensive in terms 
of memory and processing time.

Model Parameters (millions)     Disk size (MB)
ResNet-50 ~25.6M ~98 MB
BERT-base ~110M ~440 MB
BERT-large ~340M ~1.3 GB
VGG-16 ~138M ~528 MB
VGG-19 ~144M ~548 MB
YOLOv3 ~62M ~236 MB
SpineNet-49S (small) ~11M ~45 MB
MobileNetV3-Large ~5.4M ~20 MB
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ML and model compression techniques 

● Problem: 
○ Very large models → high memory consumption and inference time.

● Solution: 
○ Compression
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ML and model compression techniques 

Distilled versions

Model Parameters (millions) Disk size (MB) Accuracy

DistilBERT 66M  (↓40%) ~250 MB  97% of BERT
SqueezeNet 1.2M (↓99%) ~4.8 MB (↓99%) Similar to VGG-16
YOLOv8-Nano 3.2M (↓92%) ~8 MB (↓90%) Good trade-off  with YOLOv8-L
YOLO-Fastest 0.2M (↓99.5%) ~1 MB (↓99%) Lower accuracy 
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Pruning Quantization Knowledge distillation

Remove neurons and 
connections.

Selection of the number of 
bits to represent the weights 

and bias.

Transfers the knowledge 
from a teacher network to a 

smaller and faster target 
network. 

Fully on-chip deployment

ML and model compression techniques 
for reconfigurable hardware accelerators

Ensemble of compression techniques - Exploration of the interplay between:
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How do we combine compression techniques?
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Pruning

Deploy the optimized model
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Deploy the optimized model Deploy the optimized model

Start with a pre-trained 
model

Pruning process
. Identify low-importance weights

. Prune them
. Fine-tune the model

Quantization process
. Convert high-precision weights

. Apply post-training or QAT
. Optimize inference performance

P + Q

Deploy the optimized model
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An end-to-end workflow
to efficiently compress and deploy DNN 

on SoC/FPGA



Dataset DNN model Compression

A- DNN training and compression

Available at https://github.com/RomiSolMolina/workflowCompressionML

Publication:
Molina, R. S., Morales, I. R., Crespo, M. L., Costa, V. G., Carrato, S., & Ramponi, G. (2023). “An end-to-end workflow to efficiently compress and deploy DNN classifiers on SoC/FPGA”. IEEE 
Embedded Systems Letters, 16(3), 255-258.

End-to-end workflow
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Dataset DNN model Compression

A- DNN training and compression

B- Integration with a hardware synthesis  tool for ML

Hardware synthesis tool 
for ML

Available at https://github.com/RomiSolMolina/workflowCompressionML

Publication:
Molina, R. S., Morales, I. R., Crespo, M. L., Costa, V. G., Carrato, S., & Ramponi, G. (2023). “An end-to-end workflow to efficiently compress and deploy DNN classifiers on SoC/FPGA”. IEEE 
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Dataset DNN model Compression

Inference 
hardware

Final 
hardware

Bitstream Application

A- DNN training and compression

B- Integration with a hardware synthesis  tool for ML

C- Hardware assessment framework

Hardware synthesis tool 
for ML

Available at https://github.com/RomiSolMolina/workflowCompressionML

Publication:
Molina, R. S., Morales, I. R., Crespo, M. L., Costa, V. G., Carrato, S., & Ramponi, G. (2023). “An end-to-end workflow to efficiently compress and deploy DNN classifiers on SoC/FPGA”. IEEE 
Embedded Systems Letters, 16(3), 255-258.

End-to-end workflow

https://github.com/RomiSolMolina/workflowCompressionML


A. DNN training and compression



DNN training and compression
Stage 1 - Teacher training

Untrained 
teacher network

Dataset
Train model teacherFP trained

Hyperparameters
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DNN training and compression
Stage 2 - Student training

Untrained student 
network

Dataset Train model 
through QAP and KD

studentKDQP trained

Target sparsity 
(P) and number of 

bits (Q)

teacherFP trained

Hyperparameters

Train model 



B. Integration with a hardware synthesis  
tool for ML
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Integration with a hardware synthesis tool for ML

Model

https://github.com/fastmachinelearning/
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Model Compressed 
model

https://github.com/fastmachinelearning/
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conversion
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Romina Soledad Molina | Doha - Qatar | 2024

https://github.com/fastmachinelearning/


Integration with a hardware synthesis tool for ML

Model Compressed 
model

HLS 
conversion

HLS 
project

Tune
configuration

https://github.com/fastmachinelearning/

Romina Soledad Molina | Doha - Qatar | 2024

https://github.com/fastmachinelearning/


Integration with a hardware synthesis tool for ML

Model Compressed 
model

HLS 
conversion

HLS 
project

Tune
configuration

Custom 
firmware/kernel

https://github.com/fastmachinelearning/
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Without optimization, HLS tool will look to minimize latency and improve concurrency.

Integration with a hardware synthesis tool for ML
High-level synthesis

● High-Level Synthesis
● It provides the facility  to  create  RTL  from  a  high  level  of  abstraction.
● Several implementations are possible from the same source description.
● Implements the design based on defaults and user applied directives.
● It allows the optimization of the input code using directives to:

- Reduce latency.
- Improve performance and throughput.
- Reduce resource utilization.



HLS Component Development Flow

https://docs.amd.com/r/en-US/ug1399-vitis-hls/Introduction-to-Vitis-HLS-Components
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Integration with a hardware synthesis tool for ML
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ML framework support:

● (Q)Keras
● PyTorch
● (Q)ONNX 

[hls4ml] https://fastmachinelearning.org/hls4ml/

https://fastmachinelearning.org/hls4ml/


Integration with a hardware synthesis tool for ML

Romina Soledad Molina | Doha - Qatar | 2024

ML framework support:

● (Q)Keras
● PyTorch
● (Q)ONNX 

Neural networks architectures:

● Fully Connected NN 
● Convolutional NN
● Recurrent NN
● Graph NN

[hls4ml] https://fastmachinelearning.org/hls4ml/

https://fastmachinelearning.org/hls4ml/


Integration with a hardware synthesis tool for ML

Romina Soledad Molina | Doha - Qatar | 2024

ML framework support:

● (Q)Keras
● PyTorch
● (Q)ONNX 

Neural networks architectures:

● Fully Connected NN 
● Convolutional NN
● Recurrent NN
● Graph NN

HLS backends:

● Vivado HLS 
● Intel HLS
● Vitis HLS 
● Catapult HLS
● oneAPI (experimental)

[hls4ml] https://fastmachinelearning.org/hls4ml/

https://fastmachinelearning.org/hls4ml/


High-Level Synthesis for Machine Learning 

hls4ml is tested on the following platforms:

Vivado HLS versions 2018.2 to 2020.1
Intel HLS versions 20.1 to 21.4. Versions > 21.4 have not been tested.
Vitis HLS versions 2022.2 to 2024.1. Versions <= 2022.1 are known not to work.
Catapult HLS versions 2024.1_1 to 2024.2
oneAPI versions 2024.1 to 2025.0

[hls4ml] https://fastmachinelearning.org/hls4ml/

https://fastmachinelearning.org/hls4ml/


How does it work?

With hls4ml, each layer of output values is calculated 
independently in sequence, using pipelining to speed up 
the process by accepting new inputs after an initiation 
interval. The activations, if nontrivial, are precomputed.
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How does it work?

With hls4ml, each layer of output values is calculated 
independently in sequence, using pipelining to speed up 
the process by accepting new inputs after an initiation 
interval. The activations, if nontrivial, are precomputed.

Simplifying the input network must be done before using 
hls4ml to generate HLS code, for optimal compression to 
provide a sizable speedup.

[hls4ml] https://fastmachinelearning.org/hls4ml/
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Trade-off between latency and FPGA resource usage determined by the parallelization of the 
calculations in each layer.
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Trade-off between latency and FPGA resource usage determined by the parallelization of the 
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Reuse factor: number of times a multiplier is used to do a computation.
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Trade-off between latency and FPGA resource usage determined by the parallelization of the 
calculations in each layer.

Reuse factor: number of times a multiplier is used to do a computation.

Fewer resources,
Lower throughput,
Higher latency

More resources,
Higher throughput,
Lower latency
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I/O types: supports multiple styles for handling data transfer to/from the network and between 
layers.
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I/O types: supports multiple styles for handling data transfer to/from the network and between 
layers.

io_parallel 

io_stream
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I/O types: supports multiple styles for handling data transfer to/from the network and between layers.

io_parallel 

Data is passed in parallel between the layers.

This style allows for maximum parallelism and is well suited for MLP networks and small CNNs which 
aim for lowest latency.

[hls4ml] https://fastmachinelearning.org/hls4ml/
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I/O types: supports multiple styles for handling data transfer to/from the network and between layers.

io_stream

Data is passed one “pixel” at a time.

Each pixel is an array of channels, which are always sent in parallel. This method for sending data 
between layers is recommended for larger CNN and RNN networks.

[hls4ml] https://fastmachinelearning.org/hls4ml/

https://fastmachinelearning.org/hls4ml/


Strategy: the implementation of core matrix-vector multiplication routine, which can be 
latency-oriented, resource-saving oriented, or specialized. 

Different strategies will have an impact on overall latency and resource consumption of each 
layer, and users are advised to choose based on their design goals.

[hls4ml] https://fastmachinelearning.org/hls4ml/

https://fastmachinelearning.org/hls4ml/


Activations - Implementation parameter

● latency: Good latency, high resource usage. It does not work well if there are many output classes.

● stable: Slower but with better accuracy, useful in scenarios where higher accuracy is needed.

● legacy: An older implementation with poor accuracy, but good performance. Usually the latency 
implementation is preferred.

● argmax: If you don’t care about normalized outputs and only care about which one has the highest 
value, using argmax saves a lot of resources. This sets the highest value to 1, the others to 0.

[hls4ml] https://fastmachinelearning.org/hls4ml/

https://fastmachinelearning.org/hls4ml/


Profiling

● The tools in hls4ml.model.profiling can help to choose the right precision for the model.
● hls4ml.model.profiling.numerical method with three objects: a Keras model object, test data, and an 

HLSModel.

Image from https://fastmachinelearning.org/hls4ml/api/PROFILING.html[hls4ml] https://fastmachinelearning.org/hls4ml/

https://fastmachinelearning.org/hls4ml/
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Integration with a hardware synthesis tool for ML

Python integration
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QKeras for quantization-aware training (QAT)

Integration with a hardware synthesis tool for ML
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High-level synthesis project generated with hls4ml

Integration with a hardware synthesis tool for ML
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C. Hardware assessment 
framework
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Hardware assessment framework
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Hardware assessment framework
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Hardware assessment framework
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Machine Learning and SoC-based FPGA 
for real-case applications
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Machine Learning and SoC-based FPGA for real-case applications

● Gamma/Neutron discrimination.

● Gamma/Neutron discrimination for diamond detector.

● Pest classification in fruit crops.

● Pulse shape discriminator for cosmic rays studies.

● Volcanic seismic event detection.

● Water quality monitoring applied to Dunav river.

● Object detection for adverse weather conditions, particularly haze and fog.
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Gamma/Neutron
discrimination
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Gamma/neutron 
discrimination

Machine Learning and SoC-based FPGA for real-case applications

● Tagged dataset of gamma and neutron events from 

Deuterium-Deuterium (DD) and Deuterium-Tritium (DT) generators. 

● The dataset was recorded at the Neutron Science Facility (NSF) of the 

Nuclear Science and Instrumentation Laboratory (NSIL), IAEA. 

● The total gamma and neutron events in this dataset are 10,913 and 

27,696, respectively.

Romina Soledad Molina | Doha - Qatar | 2024

https://www.iaea.org/publications/15101/nuclear-science-and-instrumentation-newsletter-no-3-february-2022


Gamma/neutron 
discrimination

Morales, I. R., Crespo, M. L., Bogovac, M., Cicuttin, A., Kanaki, K., & Carrato, S. (2023). Gamma/neutron classification with SiPM CLYC detectors 
using frequency-domain analysis for embedded real-time applications. Nuclear Engineering and Technology.

Dataset from https://doi.org/10.5281/zenodo.8037059

Machine Learning and SoC-based FPGA for real-case applications



Gamma/neutron 
discrimination

Publication:
Morales, I. R., Molina, R. S., Bogovac, M., Jovalekic, et al. (2024). Gamma/neutron online discrimination based on 
machine learning with CLYC detectors. IEEE Transactions on Nuclear Science.

Machine Learning and SoC-based FPGA for real-case applications



Gamma/neutron 
discrimination

Publication:
Morales, I. R., Molina, R. S., Bogovac, M., Jovalekic, et al. (2024). Gamma/neutron online discrimination based on 
machine learning with CLYC detectors. IEEE Transactions on Nuclear Science.
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Gamma/neutron 
discrimination

Input size reduction: 
35 samples of the leading edge of 

the pulse.

Teacher architecture with 2,623
parameters distributed in 6 hidden 

layers (MLP). 

Compressed architecture with 217 
parameters, distributed in 6 

hidden layers (MLP).

Publication:
Morales, I. R., Molina, R. S., Bogovac, M., Jovalekic, et al. (2024). Gamma/neutron online discrimination based on 
machine learning with CLYC detectors. IEEE Transactions on Nuclear Science.

Machine Learning and SoC-based FPGA for real-case applications



Gamma/neutron 
discrimination

● Overall accuracy
○ Teacher architecture (original): 99.00%
○ Student architecture (compressed):  98.20%

Publication:
Morales, I. R., Molina, R. S., Bogovac, M., Jovalekic, et al. (2024). Gamma/neutron online discrimination based on 
machine learning with CLYC detectors. IEEE Transactions on Nuclear Science.

Machine Learning and SoC-based FPGA for real-case applications



Gamma/neutron 
discrimination

● SoC memory footprint in terms of resource utilization @200MHz
○ Artix-7 platform: below 35%

● Overall accuracy
○ Teacher architecture (original): 99.00%
○ Student architecture (compressed):  98.20%

Publication:
Morales, I. R., Molina, R. S., Bogovac, M., Jovalekic, et al. (2024). Gamma/neutron online discrimination based on 
machine learning with CLYC detectors. IEEE Transactions on Nuclear Science.

Machine Learning and SoC-based FPGA for real-case applications



● SoC latency
○ Zedboard platform:  45 clk cycles (@200MHz)

Gamma/neutron 
discrimination

● SoC memory footprint in terms of resource utilization @200MHz
○ Artix-7 platform: below 35%

● Overall accuracy
○ Teacher architecture (original): 99.00%
○ Student architecture (compressed):  98.20%

Publication:
Morales, I. R., Molina, R. S., Bogovac, M., Jovalekic, et al. (2024). Gamma/neutron online discrimination based on 
machine learning with CLYC detectors. IEEE Transactions on Nuclear Science.

Machine Learning and SoC-based FPGA for real-case applications



Volcanic seismic event detection

Romina Soledad Molina | Doha - Qatar | 2024



Machine Learning and SoC-based FPGA for real-case applications

Copahue volcano 
seismic event 

detection

Romina Soledad Molina | Doha - Qatar | 2024

Image from 
https://news.sky.com/story/chile-volcano-red-alert-issued-for-copahue-10444642

Publication:
Sosa, Y. M., Molina, R. S., Spagnotto, S., Melchor, I., Nuñez Manquez, A., Crespo, M. L., ... & Petrino, R. (2024). Seismic event detection 
in the copahue volcano based on machine learning: towards an on-the-edge implementation. Electronics, 13(3), 622.
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Between December 2017 and March 
2018, the National University of Río 
Negro deployed a temporary network 
(called CP) of six broad-band and 
two-short period seismic stations.

CP covered an area of 12 km in the 
East-West (E-W) direction and 14 km 
in the North-South (N-S) direction in 
Caldera del Agrio. 

Copahue Volcano - Geological setting and data
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Copahue Volcano - Geological setting and data

*The signals used in this research were obtained from Montenegro's Ph.D. thesis, and were provided by "Laboratorio de Estudios y Seguimientos de Volcanes Activos’ (LESVA), Universidad Nacional de Rio Negro.

Raw data* acquired from sensors installed at different stations that formed the CP 
network.  Each station generates signals in three channels: vertical, eastern, and 
northern. These files have MSEED format and each is 24h long.
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Copahue Volcano - Geological setting and data

Seismic traces recorded at the HIGI station.
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Workflow for ML training
Copahue 
volcano 
dataset

Feature 
extraction K-means Labeled 

dataset

Dataset based 
on the trimmed 

signals 

MLP-R 
model

Dataset based 
on features

MLP-F
model

Compression 
and embedded 
implementation
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Model compression

ML-model with features as input
● Quantization - 8 bits
● Pruning (30 % sparsity)
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Model deployment



Final remarks

● The proposed workflow successfully generates compressed models, leading to a fully on-chip 
memory-mapped implementation on the FPGA. 

● The integration of KD into the ensemble of compression techniques contributes to achieving a 
balanced student model in terms of size, computational efficiency, and accuracy. 

● The workflow addresses the entire development cycle: from the ML-based architecture training to the 
hardware deployment, overcoming the limitations outlined in previous works. 



                   Romina Soledad Molina, Ph.D.
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