
 Romina Soledad Molina, Ph.D.

Lab 5: ML on SoC-FPGA

1st Mesoamerican Workshop on
Reconfigurable X-ray Scientific
Instrumentation for Cultural Heritage

Antigua Guatemala, June 2025

● Learn how to deploy ML-based models on SoC-FPGA platforms.
● Learn and understand the workflow to compress ML-based model

for resource constrained devices.
● Acquire knowledge of hls4ml package.
● Perform the generation and instantiation of the HLS-based ML IP

core previously designed through Vitis HLS tool.
● Integrate and verify the complete hardware design.

Objectives

Bridging Machine Learning and FPGAs

Dataset DNN model Compression

Inference
hardware

Final
hardware Bitstream Application

End-to-end workflow

A- DNN training and compression

B- Integration with a hardware synthesis tool for ML

C- Hardware assessment framework

Hardware synthesis tool
for ML

Available at https://github.com/RomiSolMolina/workflowCompressionML

https://github.com/RomiSolMolina/workflowCompressionML

Case study:
Gamma/neutron discrimination

Case study: Gamma/neutron discrimination
● The experimental data for this project were collected at the Neutron Science Facility, IAEA

Laboratories, in Seibersdorf, Austria.
● The image below depicts the gamma/neutron distribution obtained using the method

described in [GN], employed to generate the labeled dataset, consisting of two classes:
class 0 corresponding to gamma and class 1 to neutron.

[GN] Morales, I. R., Crespo, M. L., Bogovac, M., Cicuttin, A., Kanaki, K., & Carrato, S. (2023). Gamma/neutron classification with SiPM CLYC detectors using frequency-domain analysis for embedded
real-time applications. Nuclear Engineering and Technology. Dataset from https://doi.org/10.5281/zenodo.8037059

Case study: Gamma/neutron discrimination

● The primary information in these types of signals is concentrated in the leading edge.
● The image below displays some of the original signal traces, along with the corresponding

window that highlights the portion of the signal being cropped.

Case study: Gamma/neutron discrimination

● For this project, the signals used will
consist of 161 samples, extracted
specifically from the leading edge.

● Samples of the final gamma and
neutron traces are shown in the
following figures.

● With this information, a dataset was
generated to be used for the
training, validation, and testing of
the ML-based model.

A. Model training and compression

Machine learning
Training - General steps Keras+TensorFlow

Hyperparameters definition

Model definition

Model summary

Model compilation

Model training

Model evaluation

Save model

● Teacher training

● Compression
○ Pruning
○ Quantization-aware training (QAT)
○ Knowledge distillation (KD)

■ Student model
○ KD + QAT

Machine learning
Compression

Start with a pre-trained
model

Pruning process
. Identify low-importance

weights/neurons
. Prune them

Fine-tune the model

Pruning

Start with a pre-trained
or new model

Enable QAT
. Simulate low-precision

arithmetic

Train model with QAT
. Adjust weights and activations

for quantized inference
. Ensure minimal accuracy

degradation

QAT

Deploy the optimized model Deploy the optimized model

Teacher architecture

Student architecture

B. Integration with a hardware synthesis
tool for ML

Integration with a hardware synthesis tool for ML

Model Compressed
model

HLS
conversion

HLS
project

Tune
configuration

Custom
firmware/kernel

https://github.com/fastmachinelearning/

https://github.com/fastmachinelearning/

C. Hardware assessment
framework

Hardware assessment framework

DNN
hardware

C
om

B
lo

ck

Soft- or
hard-core
processor

Memory

FPGA Processing
system

Input stream

Output
value

Control

Data

Hardware assessment framework

 Romina Soledad Molina, Ph.D.

Lab 5: ML on SoC-FPGA

1st Mesoamerican Workshop on
Reconfigurable X-ray Scientific
Instrumentation for Cultural Heritage

Antigua Guatemala, June 2025

General overview

● The first two steps focus on defining the hyperparameters and configuring the machine
learning architecture. Afterward, a model summary provides an overview of how the
model was constructed.

● Once the model is created, parameters such as the optimizer, loss function, and metrics
are configured using the model.compile() function.

● Finally, training is performed with the model.fit() function, where the dataset, batch size,
number of epochs, and callbacks, among other settings, are specified.

Machine learning
Training - General steps Keras+TensorFlow

Model definition

Model summary

Machine learning
Training - General steps Keras+TensorFlow

Defining some of the
hyperparameters

Machine learning
Training - General steps Keras+TensorFlow

Model compile

Loss: A metric that measures how far the model’s predictions are from the actual
values.
Optimizer: An algorithm that adjusts the weights of the neural network to minimize the
loss function.
Learning Rate: A hyperparameter that controls the size of the adjustments the optimizer
makes to the model's weights during each iteration.
Metrics: Additional values monitored during training to evaluate the model's
performance. For example, accuracy (used in classification).

Machine learning
Training - General steps Keras+TensorFlow

Model fit
x_train_norm: normalized dataset obtained by applying a transformation to x_train.

y_train: labels (or expected values) corresponding to the training data.

batch: number of samples processed before updating the model's weights.

epochs: number of times the model will go through the entire training dataset.

validation_split: percentage of the training dataset (x_train, y_train) reserved for validation.

Machine learning
Training - General steps Keras+TensorFlow

Plot the Accuracy and Loss from the history variable during training

Machine learning
Training - General steps Keras+TensorFlow

