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● Learn how to deploy ML-based models on SoC-FPGA platforms.
● Learn and understand the workflow to compress ML-based model 

for resource constrained devices.
● Acquire knowledge of hls4ml package.
● Perform the generation and instantiation of the HLS-based ML IP 

core previously designed through Vitis HLS tool.
● Integrate and verify the complete hardware design.

Objectives



Bridging Machine Learning and FPGAs
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End-to-end workflow

A- DNN training and compression

B- Integration with a hardware synthesis  tool for ML

C- Hardware assessment framework

Hardware synthesis tool 
for ML

Available at https://github.com/RomiSolMolina/workflowCompressionML

https://github.com/RomiSolMolina/workflowCompressionML


Case study: 
Gamma/neutron discrimination



Case study: Gamma/neutron discrimination
● The experimental data for this project were collected at the Neutron Science Facility, IAEA 

Laboratories, in Seibersdorf, Austria. 
● The image below depicts the gamma/neutron distribution obtained using the method 

described in [GN], employed to generate the labeled dataset, consisting of two classes: 
class 0 corresponding to gamma and class 1 to neutron.

[GN] Morales, I. R., Crespo, M. L., Bogovac, M., Cicuttin, A., Kanaki, K., & Carrato, S. (2023). Gamma/neutron classification with SiPM CLYC detectors using frequency-domain analysis for embedded 
real-time applications. Nuclear Engineering and Technology.  Dataset from https://doi.org/10.5281/zenodo.8037059



Case study: Gamma/neutron discrimination

● The primary information in these types of signals is concentrated in the leading edge. 
● The image below displays some of the original signal traces, along with the corresponding 

window that highlights the portion of the signal being cropped. 



Case study: Gamma/neutron discrimination

● For this project, the signals used will 
consist of 161 samples, extracted 
specifically from the leading edge.

● Samples of the final gamma and 
neutron traces are shown in the 
following figures. 

● With this information, a dataset was 
generated to be used for the 
training, validation, and testing of 
the ML-based model.



A. Model training and compression



Machine learning
Training - General steps Keras+TensorFlow

Hyperparameters definition

Model definition

Model summary

Model compilation

Model training
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● Teacher training 

● Compression
○ Pruning
○ Quantization-aware training (QAT) 
○ Knowledge distillation (KD)

■ Student model 
○ KD + QAT

Machine learning
Compression

Start with a pre-trained 
model

Pruning process
. Identify low-importance 

weights/neurons
. Prune them

Fine-tune the model

Pruning

Start with a pre-trained 
or new model

Enable QAT
. Simulate low-precision 

arithmetic

Train model with QAT
. Adjust weights and activations 

for quantized inference
. Ensure minimal accuracy 

degradation

QAT

Deploy the optimized model Deploy the optimized model



Teacher architecture



Student architecture



B. Integration with a hardware synthesis  
tool for ML



Integration with a hardware synthesis tool for ML
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https://github.com/fastmachinelearning/

https://github.com/fastmachinelearning/


C. Hardware assessment 
framework



Hardware assessment framework
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Hardware assessment framework
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General overview

● The first two steps focus on defining the hyperparameters and configuring the machine 
learning architecture. Afterward, a model summary provides an overview of how the 
model was constructed.

● Once the model is created, parameters such as the optimizer, loss function, and metrics 
are configured using the model.compile() function.

● Finally, training is performed with the model.fit() function, where the dataset, batch size, 
number of epochs, and callbacks, among other settings, are specified.

Machine learning
Training - General steps Keras+TensorFlow



Model definition

Model summary

Machine learning
Training - General steps Keras+TensorFlow



Defining some of the 
hyperparameters

Machine learning
Training - General steps Keras+TensorFlow



Model compile

Loss: A metric that measures how far the model’s predictions are from the actual 
values.
Optimizer: An algorithm that adjusts the weights of the neural network to minimize the 
loss function.
Learning Rate: A hyperparameter that controls the size of the adjustments the optimizer 
makes to the model's weights during each iteration.
Metrics: Additional values monitored during training to evaluate the model's 
performance. For example, accuracy (used in classification).

Machine learning
Training - General steps Keras+TensorFlow



Model fit
x_train_norm: normalized dataset obtained by applying a transformation to x_train.

y_train: labels (or expected values) corresponding to the training data.

batch: number of samples processed before updating the model's weights.

epochs: number of times the model will go through the entire training dataset.

validation_split: percentage of the training dataset (x_train, y_train) reserved for validation.

Machine learning
Training - General steps Keras+TensorFlow



Plot the Accuracy and Loss from the history variable during training

Machine learning
Training - General steps Keras+TensorFlow


