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Objectives

« Learn how to deploy ML-based models on SoC-FPGA platforms.

o Learn and understand the workflow to compress ML-based model
for resource constrained devices.

« Acquire knowledge of hls4ml package.

« Perform the generation and instantiation of the HLS-based ML IP
core previously designed through Vitis HLS tool.

. Integrate and verify the complete hardware design.
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Bridging Machine Learning and FPGAs
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End-to-end workflow

A- DNN training and compression

Dataset DNN model Compression

B- Integration with a hardware synthesis tool for ML

Hardware synthesis tool
for ML

C- Hardware assessment framework

hardware hardware Bitstream

Inference Final }

Available at https://github.com/RomiSolMolina/workflowCompressionML
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Case study:
Gamma/neutron discrimination
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Case study: Gamma/neutron discrimination

e The experimental data for this project were collected at the Neutron Science Facility, IAEA
Laboratories, in Seibersdorf, Austria.

e The image below depicts the gammal/neutron distribution obtained using the method
described in [GN], employed to generate the labeled dataset, consisting of two classes:
class 0 corresponding to gamma and class 1 to neutron.

- Gamma
- Neutron
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[GN] Morales, I. R., Crespo, M. L., Bogovac, M., Cicuttin, A., Kanaki, K., & Carrato, S. (2023). Gamma/neutron classification with SiPM CLYC detectors using frequency-domain analysis for embedded
real-time applications. Nuclear Engineering and Technology. Dataset from https://doi.org/10.5281/zenodo.8037059
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Case study: Gamma/neutron discrimination

e The primary information in these types of signals is concentrated in the leading edge.
e The image below displays some of the original signal traces, along with the corresponding
window that highlights the portion of the signal being cropped.
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Case study: Gamma/neutron discrimination

e For this project, the signals used will
consist of 161 samples, extracted
specifically from the leading edge.

e Samples of the final gamma and
neutron traces are shown in the
following figures.

e \With this information, a dataset was
generated to be used for the E
training, validation, and testing of
the ML-based model.
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A. Model training and compression
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Machine learning
Training - General steps Keras+TensorFlow

Hyperparameters definition
Model training

Model definition

Model evaluation

Model summary

e Save model
Model compilation
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Machine learning

e Teacher training Start with a pre-trained Start with a pre-trained

model or new model

e Compression

o Pruning ( Enable QAT A
N .. Pruning process . Simulate low-precision
o Quantization-aware training (QAT) . Identify low-importance L arithmetic )
o Knowledge distillation (KD) weights/neurons v
. Prune them e ™
m Student model * Train model with QAT
. Adjust weights and activations
© KD+ QAT e ~ for quantized inference
Fine-tune the model . Ensure minimal accuracy
L AN degradation )
4 i ~N ( * ™
Deploy the optimized model Deploy the optimized model
\_ ) & J
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Teacher architecture
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Student architecture
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B. Integration with a hardware synthesis
tool for ML
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Integration with a hardware synthesis tool for ML

his 4 ml

Compressed HLS HLS Custom

model conversion project firmware/kernel

PYTHRCH
@ ONNX Tune

TensorFlow https://github.com/fastmachinelearning/

configuration
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C. Hardware assessment
framework
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Hardware assessment framework
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Hardware assessment framework
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Machine learning
Training - General steps Keras+TensorFlow

General overview

® The first two steps focus on defining the hyperparameters and configuring the machine

learning architecture. Afterward, a model summary provides an overview of how the
model was constructed.

® Once the model is created, parameters such as the optimizer, loss function, and metrics
are configured using the model.compile() function.

e Finally, training is performed with the model.fit() function, where the dataset, batch size,
number of epochs, and callbacks, among other settings, are specified.
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Machine learning
Training - General steps Keras+TensorFlow

model= Sequential (

Flatten(input shape=(w, h)),

Dense (256, activation='relu'),
Dense(64, activation='relu'),
Dense(32, activation='relu'),

P Model definition

Dense(n classes, activation='softmax'

model.summary ()

P Model summary
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Machine learning
Training - General steps Keras+TensorFlow

learningRate = 0.001

optimizer = Adam(learningRate) Defining some of the
Epochs = 32 hyperparameters
Batch = 16
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Machine learning
Training - General steps Keras+TensorFlow

model.compile(loss="'sparse crossentropy’, optimizer=op, metrics=

Model compile

Loss: A metric that measures how far the model’s predictions are from the actual
values.

Optimizer: An algorithm that adjusts the weights of the neural network to minimize the
loss function.
Learning Rate: A hyperparameter that controls the size of the adjustments the optimizer
makes to the model's weights during each iteration.
Metrics: Additional values monitored during training to evaluate the model's
performance. For example, accuracy (used in classification).
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Machine learning
Training - General steps Keras+TensorFlow

history = model.fit(x train norm, y train, epochs= 32, batch size = 50, validation split=0.2)

Model fit
x_train_norm: normalized dataset obtained by applying a transformation to x_train.

y_train: labels (or expected values) corresponding to the training data.
batch: number of samples processed before updating the model's weights.
epochs: number of times the model will go through the entire training dataset.

validation_split: percentage of the training dataset (x_train, y_train) reserved for validation.
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Machine learning
Training - General steps Keras+TensorFlow

Plot the Accuracy and Loss from the history variable during training

Accuracy during training Loss during training

—— Train Loss
—— Validation Loss
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