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Duality between QFT and SM

The reformulation of Quantum Field Theory in Euclidean time
allows to establish a correspondence between QFT quantities
and Statistical Mechanics quantities

QFT SM
Path integral < Partition Function
Vacuum & Equilibrium State

Massgap < (Inverse) Correlation Length
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Recovering the continuum theory

Lattice Gauge Theories aim at describing the continuum QFTs

@ The lattice action of a theory must reproduce the
continuum action (naive continuum limit)

@ All lattice n—point functions must go to their continuum
counterpart in the limit for the lattice spacing a — 0

e if L is the lattice size, m a physical mass and « is the lattice
spacing, the correct continuum physics is explored if

a<m <L

@ A continuum quantum field theory is realised near the
second order phase transition points of the lattice theory

In QCD-like theories, the correctness of the continuum limit is a
non-trivial consequence of asymptotic freedom
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SU(N) Lattice Gauge Theories

o Link variables U () = €900 4u(®)
® Plaquettes qu( ) =1lv,ep,, Un
@ Wilson action B=(2N)/g3

S=83" <1 - %Tr (V@) + U,L(i)))

L1V

@ Pathintegral Z = [ (DU)e*
@ Invariance under SU(XN) gauge transformations
U,(i) = G (0)U () G(i + i)
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Lattice action for QCD-like theories

Path integral
Z = / (DU, (7)) (det M(UM))Nfe*S(UMy(i))
with
it+aj
U,(i) = Pexp (igo/ Au(l‘)daj>
and

U (8) = Uu())U, (i + QYU (i + 2) U (3)

Gauge part

S=8>" (1 — %Re Tr(U,w(i))) . with 8=2N/g}
("
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Fermions on the lattice

Naive discretisation of the fermionic field gives rise to fermion
doubling (16 species of fermions in (3 4 1) dimensions)

No-go theorem (Nielsen-Ninomiya): no lattice formulation of
fermions can be at the same time ultra-local, chirally symmetric
and avoid fermion doubling

Solutions:
@ Wilson fermions <« give up chirality
© Staggered fermions « put up with doubling
© Domain wall and overlap fermions < couple all sites

For SU(NV) gauge theories at large N Wilson fermions have
been used
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Why Wilson fermions?

Different fermion formulations must give the same results, but a
discretisation can provide some advantages

In our case, the Wilson formulation has been chosen because

@ Unlike non-local chiral fermions, Wilson fermions are
cheap to simulate

@ Unlike the staggered fermions, a generic number of
flavours can be simulated

© Chiral symmetry can be recovered by tuning the hopping
parameter

© New technical breakthroughs allow to go close enough to
the chiral limit (onset of xPT just around the corner?)
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Wilson fermions

Take the naive Dirac fermions and add an irrelevant term that
goes like the Laplacian

Maﬁ(ij) = (M -+ 47’)51']‘5&/3
1 ‘ .
- 3 (r— Vi) g Un ()05 + (r+ V)ap Ug(])&,i—u
This formulation breaks explicitly chiral symmetry

Define the hopping parameter

1
2(m + 4r)

Chiral symmetry recovered in the limit k — k. (k. to be
determined numerically)
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Quenched approximation

For an observable O

[ (DUL()) (det M (U,))N? f(M)e=Ss Ui (0)

= [ (DU,(3)) (det M (U,,))Ns e~ (U (@)

Assume det M (U,) ~ 1 i.e. fermions loops are removed from
the action

The approximation is exact in the m — oo and N — oo limit
(¢%N is fixed)
— the large N spectrum is quenched for m # 0

As N increases, unquenching effects are expected for smaller
quark masses
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Monte Carlo methods for Lattice Field Theories

@ An evaluation of the path integral requires performing an
integral in O(4N2V) dimensions

@ Monte Carlo methods allow us to evaluate integrals in an
high number of dimensions more efficiently than grid
methods

@ Underpinning concepts: Markov chains plus dynamics
leading to the Boltzmann distribution

@ In numerical simulations one obtains a sufficient number
(generally of order 100-1000) of configurations distributed
according to e~ that allow to stochastically evaluate the
path integral
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Analysis of numerical data

Monte Carlo methods are importance sample methods =
expectation values of observables are given by simple
averages of the numerical results

Due to the finiteness of the sampling, each observable carries
a statistical error

Monte Carlo dynamics produces data that are correlated =
Gaussian statistics does not apply straightforwardly

Correct data analysis keeps into account correlations in both
averages (through binning) and fits (using correlated fits)

Bias in observables are dealt with methods such as bootstrap
or jack-knife
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Masses of states from correlators

Masses of states extracted from two-point functions
(correlators) of operators with the right quantum numbers
Starting from links, we can built those operators via

@ Blocking

! =S

| ‘ ' il 2
Fast increase of the size of the operators
@ Smearing

Finer resolution
More modern approach: Wilson flow
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Correlation matrix

Numerical signal improves considerably using the full
correlation matrix

Cij(t) = (0]@i(t) (®;(0))']0)
= (0left®;(0)e~H (®;(0))" |0)
= > (0lef ®;(0)e = |n)(n] (8,(0))" |0)

= > e AE0[;(0)|n) (n] (©;(0))" [0)
n
= Z Cj;anne_AEnt
After diagonalisation

Cig(t) =655 Y |cin|e™n o dijlen |Peemt

n
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Variational principle

@ Find the eigenvector v that minimises

amy(tg) = 1 log 71};0”(%)%
ta ;
for some ¢,
@ Fit v(¢) with the law Ae~"! to extract m
© Find the complement to the space generated by v(t)
©Q Repeat 1-3 to extract mo, ..., m,

Need a good overlap with the state of interest
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Correlator functions vs. Euclidean time

Example: fermionic bilinear with 0=+ quantum numbers

Crrl)

E\
N /"
X 9
r x ¥
0.0001 A% 1
A% ¥ |+ k=0.161
N /" |==k=0160
he e +—+k=0159 | |
\ / A4 k=0.1575| 3
AN /' v k=0.156 | ]
£ 3 ]
| Yoo | |
1606 5 =

Expected behaviour: C(T') = Acosh(m(T — N;/2))
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Effective mass

mes;(T) = acosh (C(T — 1)) = @00 - 1))

20(T + 1)

B. Lucini Lattce Gauge Theories



The QCD Spectrum

2000~

] +0
1500 Egz%i

% J

= 1000 | N
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500; K —— experiment
1 == width
] o input
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0

(S. Durr et al, (BMW Collaboration), Science 347 (2015)
1452-1455 [arXiv:1406.4088])
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Unitarity of the CKM matrix

FIRG2021
0228 Different tensions in the V,,s-V,q plane:
[Vul2y —1 =280
0.226 u O N
Va2 —1=5.60 Vul?_ —1=330
0.224 Ul . Ulpm .
1%)
3
2 — 2
> s [Vu? —1=310 Val?g-1=17c
[0 lattice results for £, (0), Ny=2+1+1
B lattice results for fis/fy+ +1+1
0.220 :a:twce resu::s ;ur ;‘ (0), S +11
T Iattice resuls for Ny= 3 &1+ 1 combined Experimental and theoretical control of these quantities
[ lattice results for Ny=2 + 1 combined
W nuclear g decay, PDG 20 H H H H
0218 P B ey oo is of crucial importance to solve the issue
0.955 0.960 0.965 0.970 0.975 0.980

Vig ® new measurements (e.g. at NA62)
Y (recent proposal in [V.Cirigliano et al., 2208.11707]: K3/ K,.2)

e improve predictions of radiative corrections
and isospin-breaking effects

(Credits: M. Di Carlo)

ttce Gauge Theories



The muon g — 2
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(9, — 2 white paper, arXiv:2505.21476)
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The 't Hooft’s large-N limit

The Conjecture

In the limit N — oo and g — 0 with A = g2 N fixed, physical quantities in SU(N) gauge
theories can be expressed as functions of 1/N (if N fermions in the fundamental
representations are present) or 1/N2 (in the Yang-Mills case), with a finite large-N limit
and a convergent series expansion about that limit down to some N = N*

Relevance
@ Explanation of observed QCD features (OZI rules, stability of particles, . ..)
@ Potential for analytic calculations
@ Connection with gauge-string dualities

Support
Large-N extrapolation of lattice results
[For a review, see B. Lucini and M. Panero, Phys. Rept. 526 (2013) 93]
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Large-N limit on the lattice

The lattice approach allows us to go beyond perturbative and
diagrammatic arguments. In SU(N) YM, for a given observable

@ Continuum extrapolation

e Determine its value at fixed a and N
e Extrapolate to the continuum limit
e Extrapolate to N — oo using a power series in 1/N?

Q@ Fixed lattice spacing

e Choose a in such a way that its value in physical units is
common to the various N

e Determine the value of the observable for that a at any NV

e Extrapolate to N — co using a power series in 1/N?2

Study performed for various observables both at zero and finite
temperature for2 < N <8 (and N = 17!)
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(k)-string tensions (closed string channel)

Confining potential: V(R) = oR

V(R) can be extracted from Wilson loops (open string channel)
or from Polyakov loops (closed string channel)

In the closed string channel

CRR(t) = <(PR(O))T PR(t)> = Z \C;ERF@_‘”“;% e |clRR\2e_“mFt
J

(D —2)

ZTrRHUkn—i-jkt ,aml ~a’orl — cr Gl

knJ_ Jj=0
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Confining flux tubes

1.5 T T T T
"-"
am(l) 1F 1 T
0.5 =3 s
o L I I I I
1 2 3 4 5 6

[H. Meyer and M. Teper, JHEP 0412 (2004) 031]
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Deconfinement phase transition

@ Temperature T introduced by taking a lattice Ns x N,
Ny > Ny [T = (Nea(8)) ']

@ A critical temperature T, exists above which quarks and
gluons are deconfined

@ The phase transition can be seen as a change of
symmetry in the ground state

@ The relevant symmetry is Z(N), under which the ground
state is not invariant above T,

@ The order parameter is the Polyakov loop

N¢—1

L= %ZTr H Uy(, )
[ 7=0
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SU(7) near T,

SU(7), N =11, N=7, p=34.250 SU(7), N =11, N=7, =34.479
T T T 0. T T T
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[BL, A. Rago, E. Rinaldi, Phys. Lett. B712 (2012) 279]
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Order parameter near 7,
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SU(7) theory, N, =7, N, = 14
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History and histogram of L near T.
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SU(7) theory, N, =7, N, = 14
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Susceptibility of L near T,
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Error analysis of x
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SU(7) theory, Ny =7, N, = 14
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Infinite volume extrapolation of j.

SU(7) finite size scaling
[ " e BNN-7)dam |
@ B, from N;=5 scaling
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SU(7) theory, N, = 7, various N,
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Deconfinement temperature

%o.e— ,,-»ﬁ’mﬁw -
T, 0.458(18)
= 0.5949(17) + ————=

[See also B. Lucini, M. Teper and U. Wenger, JHEP 0401 (2004) 061]
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Extrapolation to the continuum limit

Example
Glueball masses in SU(4)
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Glueball masses at large NV
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[B. Lucini, M. Teper and U. Wenger, JHEP 0406 (2004) 012]
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. m 2.1(1.1)
0 75 =3BO+ T
. m 2.7(2.0)

0 T =593 - =
o+ mo_y 0.3(1.7)
5 = 4T + =

Accurate N = o value, small O(1/N?) correction
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0" excitations
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Lattice spacing fixed by requiring a7, = 1/6
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Spectrum at a7, = 1/6

[B. Lucini, A. Rago and E. Rinaldi, JHEP 1008 (2010) 119]
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Fermionic operators (flavour triplet)

Meson masses extracted from large time behaviour of mesonic
correlators

Particle Bilinear JFC

ao I, 192 0t
m Y1592, Pryovse | 07F
P Y1yive, Yiyovive | 177
a1 V17572 IR
by Y177 Y2 1+
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Fixing the bare parameter

B fixed by imposing that a7, = 1/5

Another measured quantity (e.g. o) could be used =
differences are O(1/N?)

Bare quark mass fixed (a posteriori!) by

Strategy

Study masses at fixed lattice spacing and various « and fit to
the expected behaviour to compare various N
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my VS. m

2
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At small m,

m, = Am2 + B
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Fit with an O(1/N?) correction only
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Intercept
o
&

Fit with an O(1/N?) correction only
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[L. Del Debbio, B. Lucini, A. Patella and C. Pica, JHEP 0803
(2008) 062]
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Chiral extrapolation of m, - fixing o

6.3 6.4 65 6_.16 6.7 6.8 6.9
K

[G. Bali and F. Bursa, JHEP 0809 (2008) 110]
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my VS. m,, - fixing o

0 1 2 3,4 5 6 7
m_/o

[G. Bali and F. Bursa, JHEP 0809 (2008) 110]
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Approaching N = oo — The isotriplet spectrum

[G. Bali, F. Bursa, L. Castagnini, S. Collins, L. Del Debbio, B.
Lucini and M. Panero, JHEP 1306 (2013) 071]
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Comparison with QCD

q ud
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Finite a corrections — SU(7)

X/Va
I
»
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Spectrum in a model for Higgs Compositeness

Meson spectrum
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(E. Bennett, BL et al., (the TELOS collaboration), Phys.Rev.D
110 (2024) 7, 074509, [arXiv:2405.01388])
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