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Duality between QFT and SM

The reformulation of Quantum Field Theory in Euclidean time
allows to establish a correspondence between QFT quantities
and Statistical Mechanics quantities

QFT SM
Path integral ⇔ Partition Function

Vacuum ⇔ Equilibrium State
Mass gap ⇔ (Inverse) Correlation Length
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Recovering the continuum theory

Lattice Gauge Theories aim at describing the continuum QFTs
The lattice action of a theory must reproduce the
continuum action (naive continuum limit)
All lattice n−point functions must go to their continuum
counterpart in the limit for the lattice spacing a→ 0

if L is the lattice size, m a physical mass and a is the lattice
spacing, the correct continuum physics is explored if

a≪ m−1 ≪ L

A continuum quantum field theory is realised near the
second order phase transition points of the lattice theory

In QCD-like theories, the correctness of the continuum limit is a
non-trivial consequence of asymptotic freedom
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SU(N ) Lattice Gauge Theories

Link variables Uµ(i) = eig0aAµ(i)

Plaquettes Uµν(i) =
∏

Uµ∈Pµν
Uµ

Wilson action β = (2N)/g20

S = β
∑

i,µ,ν

(
1− 1

2N
Tr
(
Uµν(i) + U †

µν(i)
))

Path integral Z =
∫
(DU)e−S

Invariance under SU(N ) gauge transformations
Ũµ(i) = G†(i)Uµ(i)G(i+ µ̂)
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Lattice action for QCD-like theories

Path integral

Z =

∫
(DUµ(i)) (detM(Uµ))

Nf e−S(Uµν(i))

with

Uµ(i) = Pexp

(
ig0

∫ i+aµ̂

i
Aµ(x)dx

)

and

Uµν(i) = Uµ(i)Uν(i+ µ̂)U †
µ(i+ ν̂)U †

ν (i)

Gauge part

S = β
∑

i,µ

(
1− 1

N
Re Tr(Uµν(i))

)
, with β = 2N/g20
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Fermions on the lattice

Naive discretisation of the fermionic field gives rise to fermion
doubling (16 species of fermions in (3 + 1) dimensions)

No-go theorem (Nielsen-Ninomiya): no lattice formulation of
fermions can be at the same time ultra-local, chirally symmetric
and avoid fermion doubling

Solutions:
1 Wilson fermions← give up chirality
2 Staggered fermions← put up with doubling
3 Domain wall and overlap fermions← couple all sites

For SU(N ) gauge theories at large N Wilson fermions have
been used
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Why Wilson fermions?

Different fermion formulations must give the same results, but a
discretisation can provide some advantages

In our case, the Wilson formulation has been chosen because
1 Unlike non-local chiral fermions, Wilson fermions are

cheap to simulate
2 Unlike the staggered fermions, a generic number of

flavours can be simulated
3 Chiral symmetry can be recovered by tuning the hopping

parameter
4 New technical breakthroughs allow to go close enough to

the chiral limit (onset of χPT just around the corner?)
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Wilson fermions

Take the naive Dirac fermions and add an irrelevant term that
goes like the Laplacian

Mαβ(ij) = (M + 4r)δijδαβ

− 1

2

[
(r − γµ)αβ Uµ(i)δi,j+µ + (r + γµ)αβ U

†
µ(j)δi,i−µ

]

This formulation breaks explicitly chiral symmetry

Define the hopping parameter

κ =
1

2(m+ 4r)

Chiral symmetry recovered in the limit κ→ κc (κc to be
determined numerically)
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Quenched approximation

For an observable O

⟨O⟩ =
∫
(DUµ(i)) (detM(Uµ))

Nf f(M)e−Sg(Uµν(i))

∫
(DUµ(i)) (detM(Uµ))Nf e−Sg(Uµν(i))

Assume detM(Uµ) ≃ 1 i.e. fermions loops are removed from
the action

The approximation is exact in the m→∞ and N →∞ limit
(g2N is fixed)
↪→ the large N spectrum is quenched for m ̸= 0

As N increases, unquenching effects are expected for smaller
quark masses
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Monte Carlo methods for Lattice Field Theories

An evaluation of the path integral requires performing an
integral in O(4N2V ) dimensions
Monte Carlo methods allow us to evaluate integrals in an
high number of dimensions more efficiently than grid
methods
Underpinning concepts: Markov chains plus dynamics
leading to the Boltzmann distribution
In numerical simulations one obtains a sufficient number
(generally of order 100-1000) of configurations distributed
according to e−S that allow to stochastically evaluate the
path integral
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Analysis of numerical data

Monte Carlo methods are importance sample methods⇒
expectation values of observables are given by simple
averages of the numerical results

Due to the finiteness of the sampling, each observable carries
a statistical error

Monte Carlo dynamics produces data that are correlated⇒
Gaussian statistics does not apply straightforwardly

Correct data analysis keeps into account correlations in both
averages (through binning) and fits (using correlated fits)

Bias in observables are dealt with methods such as bootstrap
or jack-knife
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Masses of states from correlators

Masses of states extracted from two-point functions
(correlators) of operators with the right quantum numbers
Starting from links, we can built those operators via

Blocking

⇒

Fast increase of the size of the operators
Smearing

⇒

Finer resolution
More modern approach: Wilson flow
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Correlation matrix

Numerical signal improves considerably using the full
correlation matrix

Cij(t) = ⟨0|Φi(t) (Φj(0))
† |0⟩

= ⟨0|eHtΦi(0)e
−Ht (Φj(0))

† |0⟩
=

∑

n

⟨0|eHtΦi(0)e
−Ht|n⟩⟨n| (Φj(0))

† |0⟩

=
∑

n

e−∆Ent⟨0|Φi(0)|n⟩⟨n| (Φj(0))
† |0⟩

=
∑

n

c∗incjne
−∆Ent

After diagonalisation

Cij(t) = δij
∑

n

|cin|2e−amnt →
t→∞

δij |ci1|2e−am1t
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Variational principle

1 Find the eigenvector v that minimises

am1(td) = −
1

td
log

v∗iCij(td)vj
v∗iCij(0)vj

for some td
2 Fit v(t) with the law Ae−m1t to extract m1

3 Find the complement to the space generated by v(t)
4 Repeat 1-3 to extract m2, . . . ,mn

Need a good overlap with the state of interest
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Correlator functions vs. Euclidean time

Example: fermionic bilinear with 0−+ quantum numbers

0 10 20 30
t

1e-06

0.0001

0.01

1
C

Γ,
Γ(t)

k=0.161
k=0.160
k=0.159
k=0.1575
k=0.156

Expected behaviour: C(T ) = A cosh(m(T −Nt/2))
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Effective mass
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t

0
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1

am
0(t)

k=0.161
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meff (T ) = acosh
(
C(T − 1) + C(T + 1)

2C(T + 1)

)
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The QCD Spectrum
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Figure 3: The light hadron spectrum of QCD. Horizontal lines and bands are the experimental
values with their decay widths. Our results are shown by solid circles. Vertical error bars
represent our combined statistical (SEM) and systematic error estimates. π, K and Ξ have no
error bars, because they are used to set the light quark mass, the strange quark mass and the
overall scale, respectively.

10

(S. Durr et al, (BMW Collaboration), Science 347 (2015)
1452-1455 [arXiv:1406.4088])
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Unitarity of the CKM matrix

Tests of the Standard Model

5

Different tensions in the            plane:
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Experimental and theoretical control of these quantities 
is of crucial importance to solve the issue
Experimental

• improve predictions of radiative corrections 
and isospin-breaking effects

theoretical

• new measurements (e.g. at NA62) 
(recent proposal in  [V.Cirigliano et al., 2208.11707]:              )
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Kµ3/Kµ2

(Credits: M. Di Carlo)
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The muon g − 2
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Figure 83: Summary of the current SM prediction for aµ in comparison to experiment (red band and data points). The final WP25 prediction is
denoted in black and via the blue band, it derives from the LO HVP result defined by the lattice-QCD “Avg. 1” shown in blue, see Eq. (3.37). The
gray band indicates the WP20 result, based on the e+e→ experiments above the first dashed line. These experimental ranges, as well as the ones for
SND20 and CMD-3 that appeared after WP20, are produced as in Fig. 27; they are meant to illustrate the current situation, but cannot be interpreted
as uncertainties with a proper statistical meaning. The ω point refers to Eq. (2.23), the numerical results are collected in Table 5. In all cases except
for the gray WP20 band the LO HVP results are combined with WP25 values for the remaining contributions, as summarized in Table 1.

obtain
aHLbL
µ = 112.6(9.6) ↑ 10→11 , (9.2)

where the uncertainty includes a scale factor S = 1.5. With this average, the NLO contribution in Eq. (5.70) slightly
changes to aHLbL, NLO

µ = 2.8(6) ↑ 10→11, and the total HLbL contribution becomes

aHLbL
µ + aHLbL, NLO

µ = 115.5(9.9) ↑ 10→11 . (9.3)

Combining Eqs. (9.1) and (9.3) with the QED and EW contributions from Eqs. (7.27) and (8.12), we obtain for the
final SM prediction

aSM
µ = 116 592 033(62) ↑ 10→11 , (9.4)

which can be compared to the current experimental average [5–7, 9–12]

aexp
µ = 116 592 059(22) ↑ 10→11 . (9.5)

At the current level of precision there is no tension between the SM prediction and the experimental world average:

∆aµ ↓ aexp
µ → aSM

µ = 26(66) ↑ 10→11 . (9.6)

This marks a significant shift from the conclusions of WP20, which is driven by the developments relating to the HVP
LO contribution, as can be seen in Table 33 and Fig. 83.

By comparing the uncertainties of Eq. (9.5) and Eq. (9.4) it is apparent that the precision of the SM prediction must
be improved by at least a factor of two to match the precision of the current experimental average, which will soon be
augmented by the imminent release of the result based on the final statistics of the E989 experiment at Fermilab. We
expect progress on both data-driven and lattice methods applied to the hadronic contributions in the next few years.
Resolving the tensions in the data-driven estimations of the HVP contribution is particularly important, and additional
experimental results combined with further scrutiny of theory input such as from event generators should provide a

172

(gµ − 2 white paper, arXiv:2505.21476)
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The ’t Hooft’s large-N limit

The Conjecture
In the limit N → ∞ and g → 0 with λ = g2N fixed, physical quantities in SU(N ) gauge
theories can be expressed as functions of 1/N (if Nf fermions in the fundamental
representations are present) or 1/N2 (in the Yang-Mills case), with a finite large-N limit
and a convergent series expansion about that limit down to some N = N⋆

Relevance
Explanation of observed QCD features (OZI rules, stability of particles, . . . )

Potential for analytic calculations

Connection with gauge-string dualities

Support
Large-N extrapolation of lattice results

[For a review, see B. Lucini and M. Panero, Phys. Rept. 526 (2013) 93]
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Large-N limit on the lattice

The lattice approach allows us to go beyond perturbative and
diagrammatic arguments. In SU(N ) YM, for a given observable

1 Continuum extrapolation

Determine its value at fixed a and N
Extrapolate to the continuum limit
Extrapolate to N →∞ using a power series in 1/N2

2 Fixed lattice spacing

Choose a in such a way that its value in physical units is
common to the various N
Determine the value of the observable for that a at any N
Extrapolate to N →∞ using a power series in 1/N2

Study performed for various observables both at zero and finite
temperature for 2 ≤ N ≤ 8 (and N = 17!)
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(k)-string tensions (closed string channel)

Confining potential: V (R) = σR

V (R) can be extracted from Wilson loops (open string channel)
or from Polyakov loops (closed string channel)

In the closed string channel

CRR(t) =
〈(
PR(0)

)†
PR(t)

〉
=

∑

j

|cRR
j |2e−amR

j t →
t→∞
|cRR
l |2e−amR

l t

PR(t) =
1

dR

∑

k̂,n⃗⊥
TrR

l∏

j=0

Uk(n⃗+ jk̂, t) , amR
l ≃ a2σRl − cR

π(D − 2)

6l

B. Lucini Lattce Gauge Theories



Confining flux tubes
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Fig. 5. Ground state energy of a flux loop winding around a spatial torus of length

l, in SU(6) and D = 3 + 1.

apparent from the plot that we do indeed have the (approximately) linear
increase with l that indicates linear confinement. So that you can judge
what is the length l in physical units, I have used the value of a

√
σ from

our fits to translate the lattice size l = aL into physical units using l
√

σ =
aL

√
σ = L × a

√
σ. Since we expect the intrinsic width of a flux tube to be

O(1/
√

σ) we can see that our largest values of l are indeed large compared
to the flux tube width and it is reasonable to infer that what we are seeing
is the onset of an asymptotic linear behaviour.

The dashed line shown on the plot represents a linear piece modified by
the Luscher correction term

m(l) = σl − π

3l
. (20)

This O(1/l) correction is universal and the value used here corresponds to
the universality class of a simple bosonic string where the only massless
modes are those of the transverse oscillations. We can see from Fig. 5 that
this correction captures the bulk of the observed deviation from linearity.
(One of course expects further corrections that are higher powers of 1/l.)
So we have good evidence not only that linear confinement persists at large
N , but that it remains in the same universality class as has been established
by previous work for SU(2) and SU(3).

[H. Meyer and M. Teper, JHEP 0412 (2004) 031]
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Deconfinement phase transition

Temperature T introduced by taking a lattice Ns ×Nt,
Ns ≫ Nt [T = (Nta(β))

−1]
A critical temperature Tc exists above which quarks and
gluons are deconfined
The phase transition can be seen as a change of
symmetry in the ground state
The relevant symmetry is Z(N), under which the ground
state is not invariant above Tc
The order parameter is the Polyakov loop

L =
1

N

∑

n⃗

Tr
Nt−1∏

j=0

U4(n⃗, j)
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SU(7) near Tc

[BL, A. Rago, E. Rinaldi, Phys. Lett. B712 (2012) 279]
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Order parameter near Tc
4 Ns = 14

Figure 10: Observables measured on 600000 configurations obtained after thermalisation and every
compound sweep (each compound is 1 heatbath update and 4 overrelaxation steps). Analysis used
jackknife blocks 3 times bigger than the integrated autocorrelation time. The temporal polyakov histories
show O(10) times tunnelling between the symmetric and the broken phase.

8

SU(7) theory, Nt = 7, Ns = 14
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History and histogram of L near Tc

Figure 11: (Upper panel): histories of the temporal polyakov loop absolute value. The � values of
these histories are near the critical one. The high number of tunnelling is clearly visible. (Lower panel):
histograms of the above histories. The distributions are the one choosen for the reweighting procedure.
They are both in the broken and in the symmetric phase.

Figure 12: Multi–histogram reweight of the temporal polyakov loop susceptibility. 6 di↵erent � points
were used.

9

SU(7) theory, Nt = 7, Ns = 14
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Susceptibility of L near Tc
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β
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s
=14, N

t
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6-points reweight

SU(7) theory, Nt = 7, Ns = 14
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Error analysis of χ

Figure 13: Maximum of the temporal polyakov loop susceptibility extracted from each reweighted boot-
strap sample. The � value of the maximum is determined just by looking at each point in the boostrap
sample (see Fig. 12). To improve this result we could fit each boostrap sample separately and then
estimate the error on the location of the maximum.

10

SU(7) theory, Nt = 7, Ns = 14
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Infinite volume extrapolation of βc
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Deconfinement temperature

0 0.05 0.1 0.15 0.2 0.25

1/N
c
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0.4
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0.7


T

c

√

σ

fit: 0.5949(17) + 0.458(18)/N
c

2

Tc√
σ

= 0.5949(17) +
0.458(18)

N2

[See also B. Lucini, M. Teper and U. Wenger, JHEP 0401 (2004) 061]
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Extrapolation to the continuum limit

Example
Glueball masses in SU(4)
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Glueball masses at large N

[B. Lucini, M. Teper and U. Wenger, JHEP 0406 (2004) 012]
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Masses at N =∞

0++ m√
σ
= 3.28(8) +

2.1(1.1)

N2

0++∗ m√
σ
= 5.93(17)− 2.7(2.0)

N2

2++ m√
σ
= 4.78(14) +

0.3(1.7)

N2

Accurate N =∞ value, small O(1/N2) correction
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0++ excitations
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1/N2
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Figure 10: Extrapolation to N → ∞ of the states in the A++
1 channel.
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Figure 11: Extrapolation to N → ∞ of the states in the A−+
1 channel. We denote the less reliable states

with open symbols.
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Lattice spacing fixed by requiring aTc = 1/6
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Spectrum at aTc = 1/6
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[Lucini,Teper,Wenger 2004]
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Figure 20: The spectrum at N = ∞. The yellow boxes represent the large N extrapolation of masses

obtained in ref. [38].
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Figure 21: Chew-Frautschi plot of the glueball spectrum
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[B. Lucini, A. Rago and E. Rinaldi, JHEP 1008 (2010) 119]
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Fermionic operators (flavour triplet)

Meson masses extracted from large time behaviour of mesonic
correlators

Particle Bilinear JPC

a0 I, ψ̄1ψ2 0++

π ψ̄1γ5ψ2, ψ̄1γ0γ5ψ2 0−+

ρ ψ̄1γiψ2, ψ̄1γ0γiψ2 1−−

a1 ψ̄1γ5γiψ2 1++

b1 ψ̄1γiγjψ2 1+−
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Fixing the bare parameter

β fixed by imposing that aTc = 1/5

Another measured quantity (e.g. σ) could be used⇒
differences are O(1/N2)

Bare quark mass fixed (a posteriori!) by κ

Strategy
Study masses at fixed lattice spacing and various κ and fit to
the expected behaviour to compare various N

B. Lucini Lattce Gauge Theories



mρ vs. m2
π
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At small mπ

mρ = Am2
π +B
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A vs. 1/N2
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B vs. 1/N2
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mρ vs. m2
π at N =∞
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[L. Del Debbio, B. Lucini, A. Patella and C. Pica, JHEP 0803
(2008) 062]
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Chiral extrapolation of mπ - fixing σ

statistical errors. So for the ρ we simply use the results from our largest volumes. Simi-

larly, at larger masses it is not necessary to include finite-volume effects since they will be

smaller than our statistical errors, for both the π and the ρ.

We note that our chiral extrapolations, described below, are not very sensitive to the

details of our finite-volume corrections. This is because the chiral fits are mostly controlled

by the data at higher mass values, which have significantly smaller errors, and are much

less sensitive to potential finite-volume corrections.

3.3 Determination of the critical hopping parameter

3.3.1 κc at finite N

 0

 

 0.1

 

 0.2

 

 0.3

 

 6.3  6.4  6.5  6.6  6.7  6.8  6.9

(a
 m

!)
2

"-1

SU(6)
SU(4)
SU(3)
SU(2)

Figure 3: (amπ)2 as a function of 1/κ, eq. (3.3).

The Wilson action quark mass undergoes an additive renormalization (2aκc)
−1, see

eq. (2.3). Thus we expect that the pion mass will be related to κ (up to quenched chiral

logs) by,

(amπ)2 = A

(
1

κ
− 1

κc

)
. (3.3)

By fitting to this equation we can extract κc for each N . We obtain good fits for each N ,

which we display in figure 3. Note also that the pion masses are horizontally aligned across

the different N -values, indicating that we have succeeded to approximately match the κ-

values to lines of constant physics, thus eliminating another possible source of systematic

bias. The values of κc that we obtain are shown in table 6. We note that while the lattice

– 8 –

[G. Bali and F. Bursa, JHEP 0809 (2008) 110]
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mπ vs. mρ - fixing σ

table 6 to the form,

κc = κc(N = ∞) +
c

N2
. (3.5)

After including the systematic uncertainties from the chiral extrapolation we obtain values

κc(∞) = 0.1596(2) and c = −0.028(3). Some of the systematics will be correlated and we

obtain a rather small χ2/n ≈ 0.27. We display the 1/N2 extrapolation of κc in figure 4. We

also include the 1/N2 extrapolation of the lattice ’t Hooft coupling at fixed string tension.

Note that this extrapolates to the value λ(N = ∞) = 2.780(4).

3.4 The ρ meson mass

3.4.1 mρ at finite N

 1.6

 1.8
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 2.4
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 0  1  2  3  4  5  6  7

m
!/
"

1/
2
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2/"

SU(2)
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SU(6)

Figure 5: Fits of mρ/
√

σ as functions of m2
π/σ, eq. (3.6), at different N .

In chiral perturbation theory, as well as in
N mρ(0)/

√
σ B χ2/n

2 1.60(5) 0.182(10) 0.2

3 1.63(4) 0.184( 9) 1.0

4 1.70(3) 0.174( 6) 0.5

6 1.64(3) 0.185( 4) 0.6

Table 7: The fit parameters of eq. (3.6)

for each N , with the reduced χ2-values.

the heavy quark limit, mρ depends linearly on the

quark mass mq. Within our range of pion masses

mπ/
√

σ ≈ 1.3 . . . 2.6 we find m2
π to linearly de-

pend on κ−1 and therefore to be proportional to

the quark mass. Hence, we can fit our ρ masses to

the parametrization,

mρ√
σ

=
mρ(0)√

σ
+ B

m2
π

σ
, (3.6)

– 10 –

[G. Bali and F. Bursa, JHEP 0809 (2008) 110]
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Approaching N =∞ – The isotriplet spectrum

[G. Bali, F. Bursa, L. Castagnini, S. Collins, L. Del Debbio, B.
Lucini and M. Panero, JHEP 1306 (2013) 071]
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Comparison with QCD
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Finite a corrections – SU(7)
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Spectrum in a model for Higgs Compositeness
31

PS V T AV AT S ps v t av at s

1.0

1.5

2.0

2.5

3.0

3.5

m̂

Meson spectrum

M1

M2

M3

M4

M5

FIG. 20: Meson spectrum in all the ensembles (summarised in Tab. I), for both fundamental and antisymmet-

ric representation fermions, found through spectral densities fitting analysis. For each channel, a tower of masses,

m̂ → w0 · m (in Wilson flow units), corresponding to ground, first and (where available) second excited states is

shown. The vertical midpoint of each colorblock is the numerical result, whereas the heights are comprehensive of

statistical and systematic errors summed in quadrature. Horizontal o!sets distinguish di!erent ensembles. Di!erent

shadings of the same colors di!erentiate ensembles that di!er in time extents (Nt = 48, 64 and 96 for ensembles

M1, M2 and M3), whereas no filling color and patterns are used to indicate ensembles that di!er also in bare pa-

rameters (ensembles M4 and M5). Progressively smaller uncertainties are obtained in the results for M1, M2 and

M3. Six colors distinguish the di!erent meson channels, and the colors match where two di!erent representations–

fundamental and antisymmetric–are used to study meson operators built with the same gamma-matrix structure.

reconstruction requires minimizing a functional, W [ωg], defined in Eq. (48). This procedure depends on two

unphysical parameters, ε and ϑ. We identify a range of ε ↑ O(10) for which the smeared spectral densities do

not depend on the parameters ε and ϑ within the statistical error, which is nonetheless not substantial.

• In this work, we were able to a!ord values of the smearing radius, ϖ, in the range 0.18 m0 ↓ ϖ ↓ 0.35 m0, where

m0 is the mass of the ground state appearing in the two-point correlation functions used as input data.

• Under the conditions identified at the previous points, our fit results are independent of the specific choice of

smearing kernel. We illustrate this point by repeating our analysis with both Gaussian and Cauchy kernel, and

demonstrating that the results of the two processes are compatible with one another.

• APE and Wuppertal smearings are essential in the production of correlation functions to be analyzed. APE

smearing is necessary in order to explore the high-energy behavior of the spectral density. Wuppertal smearing

must be tuned so that contributions to the spectral density of all states of interest have comparable amplitudes.

• A critical quantity for spectral density reconstruction, in particular in reference to the identification of excited

states, is the time extent of the lattice, Nt. We illustrate its impact on the results of the physical analysis, by

comparing lattices with Nt = 48, Nt = 64, and Nt = 96, while keeping all other parameters fixed. For the

longest time extent, it is possible to reconstruct reliably the ground state, first and second excited states.

A concept that is worth discussing when testing a method for spectroscopy is the one of near-degenerate states.

(E. Bennett, BL et al., (the TELOS collaboration), Phys.Rev.D
110 (2024) 7, 074509, [arXiv:2405.01388])
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