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Wannier functions in isolated bands

Let us assume that we have isolated bands meaning that
they never touch the bands below or above them

We can assume that are smooth, continuous
and periodic functions in       in the 3D reciprocal space
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Wannier functions in isolated bands

Let us assume that we have isolated bands meaning that
they never touch the bands below or above them

We can assume that are smooth, continuous
and periodic functions in       in the 3D reciprocal space

Then, it is natural to consider its Fourier transform in real space

FFT

If is smooth in      space, we can expect to be large only for a few
lattice vectors near the origin, and decay rapidly with increasing



Wannier functions in isolated bands

We can choose a smooth and periodic gauge for the Bloch functions
associated with each band

The Fourier-transform partners of the Bloch functions are 
known as Wannier functions associated with band n

As long as                 is a smooth function of , then
decays rapidly with for a given .        

FFT
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Wannier functions in isolated bands

We can choose a smooth and periodic gauge for the Bloch functions
associated with each band

FFT
This is an special case of an unitary transformation

We can view the Bloch and Wannier functions as providing
two different basis sets describing the same manifold of 

states associated with the electron band in question

Isolated
Band 1

Isolated
Band 2

The Fourier-transform partners of the Bloch functions are 
known as Wannier functions associated with band n



Wannier functions in isolated bands

The Fourier-transform partners of the Bloch
functions are known as Wannier functions

Isolated
Band 1

Isolated
Band 2
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Properties of the Wannier functions
in the single band case

1. They are localized functions in real space

as                        gets large

Each Wannier function is a localized function centered near ,   
so it is more natural to describe the situaton by saying that decays

rapidly with



2. The Wannier functions are translational images of one another

Or more formally

is the operator that translates the system by a lattice vector 

Properties of the Wannier functions
in the single band case



3. The Wannier functions form an orthonormal set

Single band case

Properties of the Wannier functions
in the single band case



4. The Wannier functions span the same subspace of the Hilbert space as 
is spanned by the Bloch functions from which they are constructed

Let be the projector operator on band n then this can be expressed as 

From this it follows that the total charge density in band n       
is the same when computed in every representation

Single band case

Properties of the Wannier functions
in the single band case



Properties of the Wannier functions
in the single band case
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Figure 3.14 Sketch of three adjacent Wannier functions wnR(x) for band
n in a 1D crystal of lattice constant a. The Wannier center assigned to the
home unit cell R=0 is shown as the full curve; dotted and dashed curves
represent those in cells at �a and a respectively. The Wannier functions are
mutually orthonormal at the same time that they are translational images
of one another.

5. The Hamiltonian matrix elements between Wannier functions are band-
diagonal, and these diagonal elements are nothing other than the coe�-
cients EnR in the Fourier expansion of the band energy:

hwn0|H|wnRi = EnR . (3.87)

6. The position matrix elements between Wannier functions are

hwn0|r|wnRi = AnR . (3.88)

In this last equation the AnR are the Fourier transform coe�cients of the
Berry connection An(k) defined in Eq. (3.63). That is, they are related in
complete analogy with Eq. (3.74) or (3.77) by

AnR =
Vcell

(2⇡)3

Z

BZ
e
�ik·RAn(k) d

3
k , (3.89a)

m FT

An(k) =
X

R

e
ik·RAnR . (3.89b)

To derive Eq. (3.87), consider the Hamiltonian acting on a Wannier func-
tion,

H |wnRi =
Vcell

(2⇡)3

Z

BZ
e
�ik·R

H| nki d
3
k , (3.90)

and then multiply on the left by hwn0|. Since H| nki has the form of a Bloch

• Exponentially localized
• Normalized
• Neighboring Wannier functions are periodic images of one another
• They are shown as having a negative lobe so that vanish as a 

result of the cancellation between contributions of opposite sign in the
integral over

Example in 1D



The Hamiltonian matrix elements between Wannier
functions are band-diagonal

In the previous example

Isolated
Band 1

Isolated
Band 2

The Wannier functions
associated to these

bands DO NOT talk to 
each other



The diagonal elements of the Hamiltonian matrix elements
between Wannier functions are the coefficients in the Fourier 
expansion of the band energy

where

From the knowledge of:
- the band structure
- The k-point mesh
- The unit cell volumen
We get the values of the Hamiltonian matrix written in a basis of Wannier functions
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The Wannier functions provide an exact tight-binding
representation of the dispersion of band   

The Fourier components of the energy can be considered as the
on-site and hopping elements of a tight-binding Hamiltonian

Here we show 
three periodic

replicas and their
corresponding

Wannier centers

The hoppings
correspond to

is the on-site energy
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116 Berry phases and curvatures

t1 

t 2 

t12 

rn 

a1 

a2 
− 

Figure 3.15 Sketch of four of the infinite lattice of Wannier functions (ir-
regular blobs) for the single band n in 2D with lattice vectors a1 and a2.
Crosses mark the Wannier centers located at r̄n +R; dashed lines indicate
the nearest-neighbor hoppings t1 = hwn0|H|wna1i, t2 = hwn0|H|wna2i, and
t12 = hwn0|H|wn,a1+a2i of the corresponding tight-binding model.

Eq. (3.82) to obtain

hwn0|r|wnRi =
Vcell

(2⇡)3

Z

BZ
e
�ik·R

hunk|R+ irk|unki d
3
k . (3.97)

The term involving R yields R �0,R = 0 and can be discarded, yielding the
important result

hwn0|r|wnRi =
Vcell

(2⇡)3

Z

BZ
e
�ik·R

hunk|irkunki d
3
k . (3.98)

We recognize the right-hand side as AnR from Eq. (3.89a), giving Eq. (3.88)
as claimed.
To summarize, we have arrived at a view in which an electron band in a

solid is represented by a lattice of Wannier functions, each a periodic replica
of a representative one in the home unit cell, as sketched for a 2D crystal
in Fig. 3.15. The position r̄n of the home-cell Wannier center, shown as the
lower-left-hand cross in the figure, is given by Eq. (3.92), or equivalently,
Eq. (3.93). Three periodic replicas and their corresponding Wannier centers
are also shown. The Hamiltonian matrix elements between Wannier func-
tions, defined in Eq. (3.87) and obtainable via Eq. (3.91), are indicated as
the dashed hoppings in the figure. In the notation of Eq. (3.87), the hoppings
t1, t2, and t12 correspond to En,a1

, En,a2
, and En,a1+a2

, respectively, while
En0 (not shown) is the on-site energy of the Wannier function. If these are
the dominant hoppings, this simple tight-binding model may be expected to
provide a good approximation to the full band structure, but in any case the
model is guaranteed to become more and more accurate as further-neighbor
hoppings are added.

And, by construction, it reproduces exactly the band dispersion

The tight-binding equations are nothing else that the expression
of the inverse Fourier transform for the energy terms



Wannier interpolation: approach of keeping
only a few hoppings

Since the Wannier functions are localized,            
the hopping matrix elements decay rapidly with distances, 

so that a few hoppings are tipically retained

If these are the dominant hoppings, this simple model may be expected to 
provide a good approximation to the full band structure.

But the model is guaranteed to become more and more accurate as 
farther–neighbor hoppings are added



The electronic contribution to the polarization is determined entirely by
the Wannier centers of the occupied bands
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162 Electric polarization

(a) (b)

Figure 4.9 Mapping of the true crystalline charge density of an insulator,
sketched in (a), onto a point-charge model, as in (b). Contours indicate
electronic charge clouds of the real system; ‘+’ symbols denote nuclei car-
rying charge +2e; and ‘�’ symbols indicate integer charges �e located at
the Wannier center positions.

as will be shown in Ex. ??, and comparing with Eq. (4.45) it follows that
Eq. (4.63) still holds.
Equation (4.64) has a remarkably simple interpretation. Recall that in

Sec. 1.1.4 we considered a fictitious physics in which both the positive and
negative charges making up a crystal come packaged as point charges car-
rying an integer multiple of the charge quantum e. For such a system,
we argued that we could define the polarization via Eq. (1.18), namely
P = (e/Vcell)

P
j
Zj⌧j , where j runs over the charges eZj located at ⌧j

in the unit cell. Since each ⌧j is only well defined modulo a lattice vector,
this definition of P is only well defined modulo P, as it should be. But
Eq. (4.64) takes exactly this form, with the nuclei (or pseudo ions) appear-
ing as positive charges Zj > 0, and the electrons appearing as point charges
with Zj = �1 located at the Wannier centers.
This provides an insightful way to think about the Berry-phase theory of

polarization. The true physical charge distribution in an insulating crystal
is sketched in Fig. 4.9(a); the nuclei can be treated as integer point charges,9

but the electrons form smeared-out charge distributions whose probability
distribution is given by the Schrödinger equation. It is this latter fact that
causes all the trouble, but now we see a way out! We set up a mapping from
the true quantum system to one in which the nuclei continue to appear
as point charges, but the distributed electron charge clouds are replaced
by �e point charges located at the Wannier centers. We then define the

9 The size scale of nuclei (⇠1 fm) is negligible here. In pseudopotential calculations, the nuclear
point charges are replaced by spherically symmetric core charges residing inside
nonoverlapping core spheres; by Gauss’ law, they too can be treated as though they were
point charges.

Relationship between Wannier centers and        
Berry phase polarization (isolated bands)
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Wannier functions are not unique

- Many different gauge transformations to chose the phases of the Bloch
functions are possible

As a result, the Wannier functions may change shape, 
becoming somewhat more or less localized

FFT



Maximally localized Wannier function

How to chose a sensible gauge for the computation of the Wannier functions

Criterion of maximal localization: 
minimize the sum of spreads of the Wannier functions in one unit cell

Mean square variation of the Wannier
electron density away from its mean position 

This is the criterion followed in WANNIER90

N. Marzari and D. Vanderbilt, Phys. Rev. B  56, 12847 (1997)
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Interface between SIESTA and WANNIER90
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Can be run as:
- Postprocessing tool
- As a library within SIESTA (coming son). 



Requirements to feed WANNIER90 from SIESTA

SIESTA must compute:

The overlap of the periodic part of the wave functions at 
neighbour k-points

is the vector which connect a 
given with its neighbours

The overlap of the Bloch states onto trial localised orbitals

The eigenvalues of the Hamiltonian in grid of k-points



Exercise 1: Wannierize the top of the valence band 
and the bottom of the conduction band of SrTiO3

Top of valence band Bottom of conduction band

O 2p in character Ti t2g in character



Exercise 2: Wannierize the bands of Graphene 
(disentanglement)

𝞂 bonding𝝿 bonding



Exercise 3: Plotting the Fermi Surface 
of doped SrTiO3

Doping with electrons Doping with holes


