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Wannier functions in isolated bands

—

Let us assume that we have isolated bands FE,,(k) meaning that
they never touch the bands below or above them

—

We can assume that £, (k) are smooth, continuous
and periodic functions in % in the 3D reciprocal space
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Wannier functions in isolated bands

Let us assume that we have isolated bands E, (k) meaning that
they never touch the bands below or above them

We can assume that E, (k) are smooth, continuous
and periodic functions in % in the 3D reciprocal space

Then, it is natural to consider its Fourier transform in real space

ik-R
e EnR

If F, (A) is smooth in k space, we can expect to be large only for a few
lattice vectors [ near the origin, and decay rapidly with increasing |R\




Wannier functions in isolated bands

Isolated:
and 2 :

Energy (eV)

We can choose a smooth and periodic gauge for the Bloch functions |l/)n,;;>
associated with each band

The Fourier-transform partners of the Bloch functions are
known as Wannier functions associated with band »

- —
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—

As long as l/)n,;(F) is a smooth function of k ,then w_

R
decays rapidly with ‘ﬁ‘ for a given 7-.




Wannier functions in isolated bands

Isolated:
and 2 :

Energy (eV)

We can choose a smooth and periodic gauge for the Bloch functions |l/)n,;;>
associated with each band

The Fourier-transform partners of the Bloch functions are
known as Wannier functions associated with band »

_ Vcell / _Z ik-R
|wnR> N (277')3 7 n i € |wnR>

FFT e

This is an special case of an unitary transformation

We can view the Bloch and Wannier functions as providing
two different basis sets describing the same manifold of
states associated with the electron band in question




Wannier functions in isolated bands

The Fourier-transform partners of the Bloch
functions are known as Wannier functions

Isolated
Band 2

Isolated
Band 1
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Properties of the Wannier functions
in the single band case

1. They are localized functions in real space

‘U)n}?{*(F) — O as 7?— é‘ gets large

Each Wannier function wnﬁ(F) is a localized function centered near R :
so it is more natural to describe the situaton by saying thatw E(F) decays
rapidly with |7 _ R|




Properties of the Wannier functions
in the single band case

2. The Wannier functions are translational images of one another

Or more formally

nR) = Tx|n0)

Tﬁ is the operator that translates the system by a lattice vector [}




Properties of the Wannier functions
in the single band case

3. The Wannier functions form an orthonormal set

Single band case

(w,5lw,7) = 0z




Properties of the Wannier functions
in the single band case

4. The Wannier functions span the same subspace of the Hilbert space as
is spanned by the Bloch functions from which they are constructed

Single band case

Letpn be the projector operator on band » then this can be expressed as

Vel :
Pp= 2 | | Mzl = o, s (w5
(27"> B

—

R

From this it follows that the total charge density pn(F) in band n
is the same when computed in every representation

A oli T:_ex/;ell
() = = (P,I7) = —e 2




Properties of the Wannier functions
in the single band case

Example in 1D

Exponentially localized

Normalized

Neighboring Wannier functions are periodic images of one another

They are shown as having a negative lobe so that (wno|wna> vanish as a
result of the cancellation between contributions of opposite sign in the
integral over XU




The Hamiltonian matrix elements between Wannier
functions are band-diagonal

<"wm§]H\wn§,> = ( if n -+ m

In the previous example

(w, 5| H|wyp) = 0

Isolated
Band 2

The Wanniér functions
associated to these

bands DO NOT talk to
each other

Isolated
Band 1




The diagonal elements of the Hamiltonian matrix elements
between Wannier functions are the coefficients in the Fourier

expansion of the band energy

(w5 H|w,5) = E, 5

where

V 11 D ‘
E z=— e " NE - &’k
BZ "

nR (27r)3

From the knowledge of:
the band structure
- The k-point mesh

- The unit cell volumen
We get the values of the Hamiltonian matrix written in a basis of Wannier functions




Outline

Definition

Basic properties

Potential uses

Maximally Localized Wannier Functions

Wannierization in SIESTA




The Wannier functions provide an exact tight-binding
representation of the dispersion £ ; of band

The Fourier components of the energy can be considered as the
on-site and hopping elements of a tight-binding Hamiltonian

The hoppings
correspond to
Here we show
three periodic
replicas and their Lo ty — Ena
corresponding tie — Enava
Wannier centers

tl — En,c_il

E sis the on-site energy

The tight-binding equations are nothing else that the expression
of the inverse Fourier transform for the energy terms

— i
S R RH(R) Z et Ep = F
B B

And, by construction, it reproduces exactly the band dispersion




Wannier interpolation: approach of keeping
only a few hoppings

Since the Wannier functions are localized,
the hopping matrix elements decay rapidly with distances,
so that a few hoppings are tipically retained

~ 2: k- R
Enk’N € EnR

—

R
| B[ <R

If these are the dominant hoppings, this simple model may be expected to
provide a good approximation to the full band structure.

But the model is guaranteed to become more and more accurate as
farther—neighbor hoppings are added




Relationship between Wannier centers and
Berry phase polarization (isolated bands)

The electronic contribution to the polarization is determined entirely by
the Wannier centers of the occupied bands
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Wannier functions are not unique

- Many different gauge transformations to chose the phases of the Bloch
functions are possible

As a result, the Wannier functions may change shape,
becoming somewhat more or less localized




Maximally localized Wannier function

How to chose a sensible gauge for the computation of the Wannier functions

Criterion of maximal localization:
minimize the sum of spreads of the Wannier functions in one unit cell

J

Depread = D [{wg|r?wng) = [Fal]
n=1

I

Mean square variation of the Wannier
electron density away from its mean position

N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997)

This is the criterion followed in WANNIER90
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Interface between SIESTA and WANNIER90

http://[www.wannier.org

J. Phys.: Condens. Matter 32 (2020) 165902 (25pp) https://doi.org/10.1088/1361-648X/ab51ff

Wannier90 as a community code: new
features and applications

Giovanni Pizzi'-**3®, Valerio Vitale>*?°®, Ryotaro Arita*>®,

Stefan Bliigel®®, Frank Freimuth®®, Guillaume Géranton®®,

Marco Gibertini'"”’®, Dominik Gresch®®, Charles Johnson’®,

Takashi Koretsune!®!'®, Julen Ibafiez-Azpiroz'>®, Hyungjun Lee'>'*®,
Jae-Mo Lihm'>®, Daniel Marchand!®®, Antimo Marrazzo!®,

Yuriy Mokrousov®!’®, Jamal | Mustafa'®®, Yoshiro Nohara!°®,

Yusuke Nomura*®, Lorenzo Paulatto?’®, Samuel Poncé?'®,

Thomas Ponweiser?>®, Junfeng Qiao>*®, Florian Thoéle*®,

Stepan S Tsirkin!>>®, Matgorzata Wierzbowska?*®, Nicola Marzari!:>°®,
David Vanderbilt?”->°®, lvo Souza!?2%2°®, Arash A Mostofi>*°

and Jonathan R Yates?!-?°

Can be run as:
- Postprocessing tool
- As a library within SIESTA (coming son).




Requirements to feed WANNIER90 from SIESTA

SIESTA must compute:

The overlap of the periodic part of the wave functions at
neighbour k-points

mn

(k,b) __ _ L , is the vector which connect a
M o <umk ’unk+b>

given [ with its neighbours

The overlap of the Bloch states |¢m,;;> onto trial localised orbitals |gn

AR = (=] gn)

The eigenvalues of the Hamiltonian in grid of k-points




Exercise 1: Wannierize the top of the valence band
and the bottom of the conduction band of SrTiO;

Top of valence band Bottom of conduction band

O 2p in character Ti ty4 in character




Exercise 2: Wannierize the bands of Graphene
(disentanglement)

©t bonding o bonding




Exercise 3: Plotting the Fermi Surface
of doped SrTiO,

Doping with electrons Doping with holes




