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Outline

*Forces and the Hellman-Feynman Theorem
*Stress (v. briefly)

*Techniques for minimizing a function
*Geometric optimization using forces



Calculation of forces from first principles

-) Model consists of atomic nuclei and
electrons

-) Atomic nuclei follow classical
mechanics

-) Electrons are quantum particles

-) Adiabatic approximation - during
motion, electrons are always in the

instantaneous ground state
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Forces

* Need for geometry optimization and molecular dynamics.
« Can also use to get phonons.

« Could get as finite differences of total energy - too
expensive!

« Use force (Hellmann-Feynman) theorem.
* Richard Feynman’s Senior Thesis! (when he was 21...)
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Forces in Molecules

E. P. FEvsMax
Massachusetin Tnntdtate of Tackusdopy, Combeedze, Massachaneits

[Festeived June 22, 19309

Formulas have been developed o caleulate the lorces in o molecolar syestem directly, mther
than indirectly throngh the agency of energy, This permits an independent caleulation of the
slope of the corves of energy wi, position of the noeled, and may thos inceeass the accuzasy, ar
derrense the ebor involved in the mbeulacion of these curves, The foree on a nuclcus in an
atoniic system is showit 1o be just the classical electrostatic force that woub] be exected on this
nucleus by other nuclel and by the electrons’ charge distribotion, Qualitative implications of
this are discnssed.




Hellmann-Feynman Theorem

» Want to calculate force on ion I:

F; = —4(¥|H|T)

* (et three terms:

Fi = —(VIAEIT) — (REIH|Y) — (VIHIGE)

« When |¥; is an eigenstate,

H|U) = E| WD)

-Substitute this...



Hellmann-Feynman Theorem (contd.)

* The force is now given by

JdH o o

F = — (¥ — E{——| ¥} — E{(¥|—

I ( IHRII ) {dRI ) — E{ IE}R!}
= (Y| ¥) - E——mm

”R ' HR T ’

 Note that we can now calculate the force from a calculation
at ONE configuration alone — huge savings in time.

+ [f the basis depends on ionic positions (not true for plane
waves), would have extra terms = Pulay forces.

» |f |®) is not an exact eigenstate (electronic calculation not
well converged), may get big errors in forces calculated
using this prescription!



Using H-F Theorem
in a (plane-wave) DFT calculation

* Force on ion / given by:

F— f?,E{R} . (Ilr"l.lIfR lf}HH“{R} 1',." )

" IR, | ] IR, { 'l.
¢/ VPH{ r) r'-‘E‘h,r[' R

r’__J”“"} R, "R,

where
Vr(r) =(pseudo)potential due to ion cores

and En(R) =interaction of ions with each other.



Hellmann-Feynman forces

In the Born-Oppenheimer approximation the total energy E[R3Y,p(R?")]is a function
of ionic coordinates R and defines a 3N-dimensional hyper-surface, called
Potential Energy Surface (PES).

The forces acting on the ions are given by (minus) the gradient of the total energy.
Using Hellmann-Feynman theorem:
dHpo(R)

p——t® R
I (?R.r B ( ) (?R!r

) (R)>

{'}VR(I') (.“)EN(R)
F‘.rjﬂk(l') (?er dr— (?R‘,r

where the electron-nucleus interaction and the electrostatic iun ion interaction,

7 e° | }’ZI
= — En(R)=

depend only on the ionic positions



Hellmann-Feynman forces

~dVg(r) JE N(R)
F;——fn.ﬂ(r) IR, dr— 7R,

The evaluation of forces is then a cheap byproduct of the electronic structure
calculation.

The quality of forces depends on the quality of the electronic structure calculation!

From the forces:

* structural optimization. Equilibrium condition given by

L JER)
= {}Rf -

» molecular dynamics

* higher-order derivatives (phonons, ...)



Stress

Strain:  r. — (6.5 + €aa)1T5

Stress: o = —fG3.

Stress Theorem (Nielsen & Martin, 1985) —
as for forces, can calculate at a single configuration.

What if the primitive lattice vectors (specifying unit cell)
are not optimal?
- Forces on atoms may =0
(e.g., an FCC crystal with wrong lattice constant)
- Stress will not be zero, however.
< 0 — cell would like to expand.
> (0 — cell would like to contract.



Use of forces (and stresses)

Forces can be used for 2 main applications

1) To study the dynamics of the system
(molecular dynamics, phonons)

2) To identify the energy minima in the space of
possible atomic configurations and geometries
(relaxation)



Geometric Optimization

« Want to move the atomic positions around until the
lowest-energy equilibrium configuration is obtained.

» At equilibrium,

=0 | foralll.

JE(R)
IR,

F__JE -

« We are searching for a minimum in a 3N~dim space.



Minimization in 1-D using gradients

» Consider a function f{x); we want

to find x,, the value of x where the

function has its minimum value.

* |terative methods: successive
approximations x!, x?, x*,...x"...x,
« (Can take several small downhill

steps, in the direction opposite the

gradient /(x").

‘xnﬂ I _ﬂ(n)fm(xn)

« Might take a long time to

Note: need first derivatives

converge.




Structural optimizations

Several algorithms for searching an equilibrium configuration,
close to the initial ionic configuration (a local minimum of the PES). For example:

— ' oz SS\\ Steepest Descent optimisation
2D Potential Enerqy Surface

Y - B i@f”

nitial ionic configuratior:

gradient unitary vector



Quasi-Newton ionic relaxation
the Broyden Fletcher Goldfarb Shanno algorithm

Taylor expansion of the energy around a
stationary point (X, .,):

S = Xk'—|—l — X}: Hessian matrix

. /

1
E(Xps1) — BE(X) = g(Xk) - sp + stHksk

/'

gradient vector



Quasi-Newton ionic relaxation
the Broyden Fletcher Goldfarb Shanno algorithm

Equivalently, for the gradient vector we have:

9(Xkt+1) — 9(Xi) = Hpsy,

Stationary condition: Newton-Raphson step:

19(Xks1) oo =0 > i B = —H g,




Quasi-Newton ionic relaxation
the Broyden Fletcher Goldfarb Shanno algorithm

trust radius NR H_l
S = — I
;oSN — k9
Xk;_|_1 — Xk + Tk ‘SNR|
k

The inverse Hessian matrix is updated using the BFGS scheme:

et ot (g e sk (s ' Hy s
k+1 — 7k T T T st~ T A,
k Tk 5k Tk

3. Tk

Tk = Gk+1 — Gk



Back to the Problem of lonic Relaxation

Function f to be minimized is total energy £, .

Foints x in 3N-d space correspond to set of ionic
coordinates (xla Y13 215 X35 Vs 2p5+« X pNp Vi zﬁw’s)‘

Gradients V{{x) correspond to set of 3 components of
forces on the N, ions.

Forces can be computed using Hellmann-Feynman
theorem.

Now use a minimization scheme to find the ionic

positons that give the lowest value of £, ,, which is also
when the forces on all ions are (close to) zero.



An Outer Loop: lonic Relaxation
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lonic Relaxation in PWscf

*Tell the program to carry out ionic relaxation, and
say which method to use to find minimum

&control
calculation = ‘relax’

ion _dynamics = ‘bfgs’
o

h-.‘



lonic Relaxation in PWscf (contd.)

*Say which atoms are to be moved & in which directions.

*e.g., for a four-layer Al(001) slab:

ATOMIC POSITIONS

Al

Al
Al
Al

0.000 0.000 2.828
0.500 0.500 2.121
0.000 0.000 1.414
0.500 0.500 0.707

Allow these
_ atoms to move
only along z

~ Fix these atoms



Equilibrium Geometries

* In some cases, there are lots of equilibrium
geometries (corresponding to local minima in the
energy landscape).

* Finding the global minimum can be challenging!
e.q., NO adsorbed on a 5-atom Rh cluster:

O
R E
Rhﬂﬁ m %

Ghosh, Pushpa, de Gironcoli & Narasimhan




Calculation of forces from
first principles

THE END
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