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NO exactly periodic systems in Nature
(periodicity broken at the boundary)

Periodic systems are  idealizations of real systems
Conceptual problems

BUT
- Condensed systems (solids, liquids, amorphous) and 
systems of lower dimensionalities (surfaces, wires, dots) 
are macroscopic objects constituted by a huge number of 
atoms (NA=6´1023). In fact they can be treated as infinity

- The great majority of the physical quantities are unaffected 
by the existence of a border. In other words, they are
independent of the truncation of the sample’s surface. We 
should expect that the bulk properties to be unaffected by 
the presence of its surface.



Crystalline solids: an ordered state of matter in which the 
position of the nuclei are repeated periodically in space

Periodic repetition of a given unit

Rules that describe the repetition 
(translations)

Single atoms

Groups of atoms

Molecules

Ions

Specified by the types and 
positions of the nuclei in 
one repeated unit cell

Crystal structure = Bravais lattice + basis

(Ordered state of matter)



Periodic repetition of a given unit

Single atom

Groups of atoms

Molecules

Ions

Bravais lattice

Crystalline solids: an ordered state of matter in which the 
position of the nuclei are repeated periodically in space



There are infinitely many ways of characterizing a 
crystalline solid

Periodic repetition of a given unit

Infinite number of 
choices for the 

primitive translation 
vectors



Examples of two dimensional periodic systems:
square and triangular lattices

CuO2 planes Graphene
(Single plane of graphite)

Square lattice
Three atoms per unit cell

Triangular lattice
Two atoms per unit cell



1. In a periodic solid:

¥ Number of atoms 

¥ Number and electrons

ß

¥ Number of wave functions ??

Bloch theorem will rescue us!! 

2. Wave function will be extended over the entire solid

Periodic systems are  idealizations of real systems
Computational problems



A periodic potential commensurate with the lattice. 
The Bloch theorem

Bloch Theorem: The eigenstates of the one-electron Hamiltonian in a 

periodic potential can be chosen to have the form of a plane wave times a 

function with the periodicity of the Bravais lattice.

Periodicity in reciprocal space
ºReciprocal lattice vector



Both the Bloch wave functions and the eigenvalues are 
periodic functions in reciprocal space 

The wave vector      appearing in Bloch’s theorem can always be 
confined to the first Brillouin zone 

Any vector       not in the first Brillouin zone can be written as 

where      is a reciprocal lattice vector and      lie in the first Brillouin zone



Concept of Brillouin zone
• Wigner-Seitz cell in reciprocal space.

e.g., 1st BZ for FCC
lattice ®

(www.iue.tuwien.ac.at)

(Or could choose to use 
parallelepiped defined by 
b1, b2, b3)



The wave vector k and the band index n allow us to label 
each electron (good quantum numbers) 

The Bloch theorem changes the problem

Instead of computing an infinite
number of electronic wave functions

Finite number of wave functions at an 
infinite number of k-points in the 1BZ



Many magnitudes require integration of Bloch functions 
over Brillouin zone (1BZ)

Charge density

In practice: electronic wave functions at k-points that are very close 
together will be almost identical Þ

It is possible to represent electronic wave functions over a region of    
k-space by the wave function at a single k-point.

Band structure energy

In principle: we should know the eigenvalues and/or eigenvectors 
at all the k-points in the first BZ

Brillouin zone 
sampling



Brillouin zone sampling

In practice, sum over a finite number: BZ “sampling”

For computational reasons, we want the number of k’s to be small 
Number needed depends on band structure

Need to test convergence with respect to the k-point sampling
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Irreducible Brillouin zone
• Smallest wedge of the 1st BZ such that any 

wave-vector k in the 1st BZ can be obtained 
from a wave-vector k in the IBZ by performing 
symmetry operations of the crystal structure. 

e.g., for FCC
lattice

This wedge is the
Irreducible Brillouin zone.

k

k
k

cst-www.nrl.navy.mil



Using the Irreducible BZ: 
Weights

Need not sum over k’s in entire BZ; 
can restrict to Irreducible BZ, with appropriate weights

k

k
k

e.g., for FCC

Count this only once.

Count this 8 x ½ = 4 times.

Count this 48 times.
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Recipes to compute sets of spetial k-points for the different 
symmetries to accelate the convergence of BZ integrations 

Using just one k-point
Baldereschi   and the “mean value point”

Phys. Rev. B 7 5212 (1973)
A few k-points chosen  to give optimally fast convergence

Chadi and Cohen 
Phys. Rev. B 8 5747 (1973)

Monkhorst-Pack 
Phys. Rev. B 13 5188 (1976)

The magnitude of the error introduced by sampling the Brillouin zone with a 
finite number of k-points can always be reduced by using a denser set of points
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Monkhorst-Pack k-points

Uniformly spaced grid of nk1 ´ nk2 ´ nk3 points in 1st BZ

nk1=nk2=3 nk1=nk2=4

Note: This is slightly different from way grid defined in original paper 
[Phys. Rev. B 13 5188 (1976)] 

where odd/even grids include/don’t include the zone center  G

b1

b2

b1

b2
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Unshifted & Shifted Grids

Can choose to shift grid so that it is not centered at G
Can get comparable accuracy with fewer k-points in IBZ

For some Bravais lattice types, shifted grid may not hav full symmetry 

unshifted shifted

b1

b2

b1

b2



Why it might be better 
to use a shifted grid

Unshifted

10 pts in IBZ

Shifted

6 pts in IBZ



11 papers published in APS journals since 1893 with >1000 citations in 
APS journals (~5 times as many references in all science journals) 

From Physics Today, June, 2005

The number of citations allow us to gauge the 
importance of the works on DFT
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Choosing grid divisions

Space grid in a way (approximately) commensurate with length of 
primitive reciprocal lattice vectors b’s.

Remember that dimensions in reciprocal space are the inverse of 
the dimensions in real space!

x
y

kx

ky



Convergence with respect to BZ sampling

Note: Differences in energy usually converge faster than 
absolute value of total energy because of error cancellation 

(if supercells & k-points are identical or commensurate).

Madhura Marathe



Comparing energies of structures having different 
symmetries: take care of BZ samplings

The BZ sampling of all the structures must be sampled with the same accuracy

Since for unit cells of different shapes it is not possible to choose exactly 
the same k-point sampling, a usual strategy is to try and maintain the  

same density of k-points
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Ghosh, Narasimhan, Jenkins, and King, J. Chem. Phys. 126 244701 (2007).

Adsorption energy of CO on Ir(100):

Convergence with respect to BZ sampling



Small systems

Real space «Reciprocal space

Metals Magnetic systems

Good description of the Bloch 
states at the Fermi level

Even in same insulators:
Perovskite oxides

When the sampling in k is essential?



The one-particle eigenstates are filled following the 
“Aufbau” principle: from lower to higher energies

Occupation numbers

The ground state has one (or two if spin independent) 
in each of the orbitals with the lowest eigenvalues



Fermi surface sampling for metallic systems

The determination of the Fermi level might be delicate for metallic systems

Slightly different choices of k-points can lead to bands 
entering or exiting the sum, depending if a given 

eigenvalue is above or below the Fermi level.

Band structure of bulk Al

For this k-point, three 
bands are occupied

For this k-point, two 
bands are occupied

For this k-point, one 
band is occupied

For a sufficiently dense Brillouin zone sampling, this should not be a problem
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Problems with metals

Recall:

For metals, at T=0, this corresponds to (for  highest band) 
an integral over all wave-vectors contained within the 
Fermi surface, i.e., for highest band, sharp discontinuity in 
k-space between occupied and unoccupied states…need 
many k-points to reproduce this accurately.
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Fermi Surface of Cu
iramis.cea.fr
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The basic problem is that anything with sharp edges or features can’t be 
reproduced well if it is sampled coarsely…

…So smear out the quantity we are sampling into something that can be 
sampled coarsely…
but of course…

the procedure of smearing out may lead to errors…

Problems with metals
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The Free Energy

• When occupying with a finite T distribution, 
what is variational (minimal) w.r.t. 
wavefunctions and occupations is not E but 
F=E-TS

• What we actually want is E (s®0)
• E(s®0) = ½ (F+E)   (deviation  O(T3))
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Mermin, Phys. Rev. 137 A1441 (1965).
Gillan, J. Phys. Condens. Matter 1 689 (1989).



For the k-points close to the Fermi surface, the 
highest occupied bands can enter or exit the sums 
from one iterative step to the next, just because the 

adjustement of the Fermi energy

Difficulties in the convergence of the self-consistence 
procedure with metals: smearing the Fermi surface

ß

Instability of the self-consistent procedure

Solution 1: Use small self-consistent mixing coefficients

Solution 2: Smear the Fermi surface introducing a distribution of occupation number 
The occupations are not any longer 1 (if below EF) or 0 (if above EF)
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A Smear Campaign!

• Problems arise because of sharp 
discontinuity at Fermi surface / 
Fermi energy.

• “Smear” this out using a smooth 
operator!

• Will now converge faster w.r.t. 
number of k-points (but not 
necessarily to the right answer!)

• The larger the smearing, the 
quicker the convergence w.r.t. 
number of k-points, but the greater 
the error introduced.

PhD Comics



For the k-points close to the Fermi surface, the 
highest occupied bands can enter or exit the sums 
from one iterative step to the next, just because the 

adjustement of the Fermi energy

Difficulties in the convergence of the self-consistence 
procedure with metals: smearing the Fermi surface

ß

Instability of the self-consistent procedure

Solution 1: Use small self-consistent mixing coefficients

Solution 2: Smear the Fermi surface introducing a distribution of occupation number 
The occupations are not any longer 1 (if below EF) or 0 (if above EF)

Gaussians

Fermi functions

C. –L. Fu and K. –M. Ho, Phys. Rev. B 28, 5480 (1989)



Smearing the Fermi surface: 
the Electronic Temperature

is a broadening energy parameter that is adjusted to avoid 
instabilities in the convergence of the self-consistent procedure. 
It is a technical issue. Due to its analogy with the Fermi 
distribution, this parameter is called the Electronic Temperature

For a finite     , the BZ integrals converge faster but to incorrect values. 
After self-consistency has been obtained for a relatively large value of      , 
this has to be reduced until the energy becomes independent of it.
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• Now have a generalized free energy …E-TS,
where S is a generalized entropy term.

• Converges faster (w.r.t. k-mesh) than Fermi-
Dirac.

• Problem: need not converge to the right value, 
can get errors in forces. 

• Want: fast convergence w.r.t. k-mesh to right
answer!
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Gaussian Smearing

• Think of the step function as an integral of d-fn.
• Replace sharp d-fn. by smooth gaussian….

(this is what you get if you 
integrate a Gaussian)
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Convergence with respect to grid and smearing

Gaussian smearing

Madhura Marathe
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Better Smearing Functions

Methfessel & Paxton:
Methfessel & Paxton, Phys. Rev. B 40  3616 (1989)

Can have a successive series of better (but smooth) 
approximations to the step function.

E converges fast [with respect to s] to E (s®0)

Marzari & Vanderbilt:
Marzari & Vanderbilt, Phys Rev. Lett. 82, 3296 (1999). 

Unlike Methfessel-Paxton, don’t have negative occupancies.
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Convergence wrt grid & smearing

Gaussian Methfessel-Paxton:

represents an energy difference of 1 mRy

Madhura Marathe
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Convergence with respect to  
k-points and smearing width

R. Gebauer

e.g., for bcc Fe, using 14 ´14 ´ 14 grid:
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Smearing for molecules

Consider a molecule where HOMO is multiply degenerate and only partially 
occupied.

If we don’t permit fractional occupancies…the code will occupy only one (or some) 
of the degenerate states, resulting in wrong symmetry.

Smearing will fix this problem. 



Intrinsically aperiodic systems simulated with periodic 
boundary conditions: the supercell approach

How can we simulate systems where the periodicity is broken?

- Defects:

Point defects (interstitials, vacancies,…)

Extended defects (surfaces, edges, steps,…)

- Molecules or clusters

Solution:

Supercell approach + periodic boundary conditions

Make sure that the physical and chemical properties are converged 
with respect to the size of the supercell



The supercell approach 
for molecules or clusters

Make sure that the physical and 
chemical properties are converged with 

respect to the size of the supercell

M. C. Payne et al., Rev. Mod. Phys. 64, 1045 (1992)

Introduce a vacuum region that should be large 
enough that periodic images corresponding to 

adjacent replicas of the supercell do not interact 
significantly

Sometimes convergence is difficult to achieve
Charged molecules: the electrostatic energy of an infinitely periodically replicated 

charged system diverges.

Typical solution: compensate the charge with a uniformly 
spread of background charge of opposite sign (a jellium)

In Siesta, use the input variable NetCharge (for SC, FCC, BCC)



The supercell approach 
for molecules or clusters

Make sure that the physical and 
chemical properties are converged with 

respect to the size of the supercell

M. C. Payne et al., Rev. Mod. Phys. 64, 1045 (1992)

Introduce a vacuum region that should be large 
enough that periodic images corresponding to 

adjacent replicas of the supercell do not interact 
significantly

Sometimes convergence is difficult to achieve
Neutral polar molecules: the electrostatic interaction between dipoles decays as       
and the quadropole-quadropole interaction decays as       

Mechanism to eliminate the undesired inter-cell interactions can be devised 
modifying the Poisson equation that determines the electrostatic potential.

G. Makov and M. C. Payne, Phys. Rev. B 51, 4014 (1995)



The supercell approach 
for point defects

Charged defects present the same 
problems of convergence as charged 

molecules

M. C. Payne et al., Rev. Mod. Phys. 64, 1045 (1992)

Introduce a piece of bulk. The amount of bulk 
should be large enough that the periodic images 

of the defect do not interact significantly



The supercell approach for surfaces: 
the slab geometry

M. C. Payne et al., Rev. Mod. Phys. 64, 1045 (1992)

The semi-infinite bulk is represented 
by a slab with two surfaces

The slab has to be large enough that the two 
surfaces do not interact with each other

The vacuum between periodic replicas has 
also to be large enough, specially in charged 

or polarized slabs 

Usually, semiconductor and insulators require larger supercells than metals 
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For artificially periodic supercells, choose only 1 division along  the dimensions 
that have been extended (in real space) by introducing vacuum region.

x
z kx

kz

Choosing grid divisions



Once SCF has been achieved, we compute the bands along 
the high symmetry points in the First-Brillouin zone

The Fermi energy lies in a gap 
Þ insulator
Theo. direct gap = 5.3 eV

Expt. Gap = 7.8 eV
(LDA band gap understimation)

MgO band structure
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Summary

For extended systems, need to sum over BZ

Smaller the cell in real space, larger # k-points needed

Always need to test for convergence with respect to k-points

More k-points needed for metals than insulators

Problems with metals can be aided by “smearing”

All of this is true for all DFT codes (not special for plane waves 
& pseudopotentials)



How to set up the k-point sampling in Siesta

kgrid_cutoff
kgrid_cutoff         10.0 Ang

kgrid_Monkhorst_Pack
%block kgrid_Monkhorst_Pack

4     0    0   0.5

0     4    0   0.5 

0     0    4   0.5

%endblock kgrid_Monkhorst_Pack

Spetial set of k-points: Accurate results for a small number of  k-points

Monkhorst-Pack

A real-space radius that plays a role 
equivalent to the plane-wave cutoff 
in real space grids

(Moreno and Soler 92)

The origin of the k-grid might be 
displaced to reduce the number of 
inequivalent k-points

Variables that control the fineness of the grid



Once SCF has been achieved, we compute the bands along 
the high symmetry points in the First-Brillouin zone

New variables to plot the band structure

First-Brillouin zone of a FCC , 
with the high symmetry points 


