Norm-conserving pseudopotentials
In electronic structure calculations
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Atomic calculation using DFT:
Solving the Schrodinger-like equation

One particle Kohn-Sham equations
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Difficulty: how to deal accurately with both
the core and valence electrons

First neighbour  Second neighbour
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Difficulty: how to deal accurately with both
the core and valence electrons

First neighbour  Second neighbour
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Si atomic configuration: 1s?2s?2p®  3s? 3p?

o

core valence
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Core eigenvalues are much deeper than
valence eigenvalues

3p (-4.18)
/ Valence
U 3s i-10.83§
2p (-95.63
2s (-139.08)

> Core

1s (-1773.77)

Atomic Si




Core wavefunctions are very
localized around the nuclei

/ 3p (-4.18)
3s i-10.83§
2p (-95.63
2s (-139.08)

1s (-1773.77)

Atomic Si




Core wavefunctions are very
localized around the nuclei

/ 3p (-4.18)
3s i-10.83§
2p (-95.63
2s (-139.08)

Core electrons...

highly localized

18 (-1773.77)
very depth energy

Atomic Si ... are chemically inert
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Core electrons are chemically inert

All electron calculation for an isolated N atom

Core charge density Valence charge density
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Core electrons are chemically inert
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All electron calculation for an isolated N atom

Core charge density

— Neutral configuration: 15 25 2p3

— Ionic configuration +1: 15> 25° 2p2

| 1 | 1 . | 1 |

0.50 0.75 1.00 1.25
distance from the nuclei (bohr)

1.50

4n rz) x Valence charge density (electrons /bohr)

-
=]

e
o

N
o

i
=]

e
oo
o

Valence charge density

I ' I ' I ! I

— Neutral configuration: 15”25 2p ?

— Ionic configuration +1: 1s° 25> 2p2

1.0 2.0 3.0 4.0
distance from the nuclei (bohr)

50




Core electrons are chemically inert

All electron calculation for an isolated N atom

Core charge density Valence charge density
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Core electrons are chemically inert

All electron calculation for an isolated N atom

Core charge density Valence charge density
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The core charge density remains Although there are drastic modifications in
unperturbed the valence charge density

Peak due to the 2s all-electron orbitals of N,
(they have a node to be ortogonal with the 1s)




Core electrons are chemically inert

All electron calculation for an isolated Si atom

Angularly integrated core and valence charge densities

— Neutral configuration: 25" 25 2p6 35 3p 2
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Core electrons are chemically inert

All electron calculation for an isolated Si atom

Angularly integrated core and valence charge densities

— Neutral configuration: 232 252 2p6 382 3p g
— Ionic configuration +1: 15> 25 2p6 3s5° 3p1
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Core electrons are chemically inert

All electron calculation for an isolated Si atom

Angularly integrated core and valence charge densities

— Neutral configuration: 25" 25 2p6 35 3p g
— Ionic configuration +1: 1s° 25 2p6 3s” 3p]

— lonic configuration +2: 15> 25> 2p6 35> 3p0
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Core electrons are chemically inert

All electron calculation for an isolated Si atom

Angularly integrated core and valence charge densities

Neutral configuration: 25" 25 2p6 35 3p g
Tonic configuration +1: 1s° 25 2p6 3s” 3p]
Ionic configuration +2: 15> 25> 2p6 35> 3p0

Tonic configuration +3: 1s° 25 2p6 3s' 3p0
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Valence wave functions must be orthogonal
to the core wave functions

/ 3p (-4.18)
3s i-10.83§
2p (-95.63
2s (-139.08)

Core electrons...

highly localized

18 (-1773.77)
very depth energy

Atomic Si ... are chemically inert



Fourier expansion of a valence wave function
has a great contribution of short-wave length

To get a good approximation we would have
to use a large number of plane waves.




Pseudopotential idea:

Core electrons are chemically inert

(only valence electrons involved in bonding)

Core electrons make the calculation more expensive

more electrons to deal with

orthogonality with valence = poor convergence in PW
Core electrons main effect: screen nuclear potential

Idea:
Ignore the dynamics of the core electrons (freeze them)

And replace their effects by an effective potential




The nodes are imposed by orthogonality
to the core states

{ core region




Idea, eliminate the core electrons by
ironing out the nodes

5.0
r (bohr)

The construction of a pseudopotential is an inverse problem:

Given a nodeless pseudo-wave function that
(1) Beyond some distance decays exactly as the all-electron wave-function
(2) is an eigenstate of a pseudo-Hamiltonian with the same eigenvalue as
the all-electron wave function

The pseudopotential is obtained by inverting the radial Schrodinger
uation for that pseudo-wave function




Construction of a first-principles pseudopotential:
The radial Schrodinger equation

An “atomic DFT program” will be used
(only considers an isolated atom for the rest of the universe)

The wave functions, eigenstates of the Hamiltonian, angular momentumE and [,
can be written as the product of a radial part times a spherical harmonic

Up1(1T)

The radial Schrodinger equation is given by

B2 d> U+ 1)k

Fo(r) | upi(e,r) = euni(e, )

 2m dr2 2mr?

It will be solved in a radial (typically logarithmic) grid




The radial logarithmic derivative

_h2 d? | (1 + 1)h?
om dr2

Fu(r) | uni(e, ) = eun(e, )

2mr?

Second-order linear differential equation

\

It requires two integration constants to be solved

|

Once & has been fixed (not necessarily to an eigenvalue),
its solution is uniquely determined by the value of the wave function u,,; (8, 7“)
and its derivative Uf,n,l (e,r) atany given point 7°g

These two conditions can be equally realized by specifying the value of the
(dimensionless) radial logarithmic derivative of the wave function at7"(

1 {dunl(e, r)}

o Uni(g,To) dr

together with the normalization condition




The first-principles pseudopotencial
construction idea
{ A2 d? I(l+1)R?

- 29m dr2 2mr?

" m(r)} WAP(r) = eagh AP (r)

Same for 1 > 71,

{ B2 I+ 1R

I S p— S
o g2 T o2 UPS(T)} UEZ (r) = 5PSU51 (7)

If the all-electron potential and the pseudopotential are the same outside some
radius 7'c (the cutoff or core radius),
then
The all-electron and pseudo-wave functions are proportional if the
corresponding logarithmic derivatives are the same

1 [duglE(e, r)] B 1 {dugf(g, r)]

AFE

ubr (e, re) dr -~ ubs dr

U (e,7¢) )

The proportionality becomes an equality only when the pseudo-wave
function is farther required to preserve the norm inside the cutoff radius




First-principles pseudopotential construction

Beyond 7

uAE(fr) — uPS(fr)

nl nl




Relationship between the logarithmic derivative
and the scattering properties

w0) _ i) — tannith) 1,
w () j(kr)) —tan(8) n;(kry) 7, (1

/
/

<« Spherical Bessel
function

von Neumann
function

L. I. Schiff, Quantum Mechanics.
Chapter V (page 106)




First-principles pseudopotential construction

By construction, the pseudopotential has the correct eigenvalues

- Scattering properties are correct at the reference eigenvalues

- Find the solution of the Schrodinger equation that is regular at
the origin at this energy &

Also want:
- Norm conservation
- Scattering conservation remain pretty good for nearby eigenvalues

Surprising result of Hamann, Schluter and Chang:
- These two properties come together
- Norm conserving pseudopotentials have good scattering properties




Checking the transferability
through the scattering properties

For separated all-electron and a pseudopotential calculations:

- Choose a given angular momentum channel [ and an energy £

- Find the solution of the Schrodinger equation that is regular at
the origin at this energy &

_h2 d? | (1 + 1)R?
om dr2

- Compare the solution beyond 7"

Sy Fu(r) | upi(e,r) = euni(e, )

- If they match —> good scattering properties

. (Used for | ¢ (Used for
: construction) . testing)




Scattering properties:
How to quantify the “logarithmic derivatives”

Diagnostic -
radius 7"

Logarithmic derivative

AE Iogderl O —W

- Correct by construction

PS logder IW

at Cbound

-2.5 -2

-15 -1 -05 0 0.5

Energy (Ry)




Norm conservation

/O WA () 2dr = / WS () 2dr

At € = Epound
(used for construction)

Charge contained in this region is
the same (AE vs. PS)




Relationship between norm conservation
and scattering properties

Fundamental advance of Hamann, Schluter and Chang
Phys. Rev. Lett. (1979)

If norm conservation is imposed,
then the pseudo-logarithmic derivative
matches
the all-electron logarithmic derivative to second order in

(5 — 5bound)

The slopes
automatically
matches at the
reference energies

Energy (Ry)




The pseudopotential transformation:
Seeking for the wave equation of the “smooth”

J. C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959)

Replace the OPW form of the wave function into the Schrodinger equation

0r(7) = 07 (7) = 3 (s |y )y s (7)

J

() = [-572 + V()] 08 = 00 (7
U

Equation for the smooth part, with a non local operator

o (= 1 ) U= v, v
HIFAGHT) = | =5V VP4 () = <t




The original potential is replaced by a
weaker non-local pseudopotential

J. C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959)
VPKA_y 4 PR
VRS () = 3 (e7 — £5) (Wsly ) ()
Advantages ’ Disadvantages
Repulsive Non-local operator
8;{) _ ij >0 775;] are not orthonormal

VPKA is much weaker than the V% is not smooth
original potential V(r)

Spatially localized I-dependent

vanishes where y;© = ()



Ab-initio pseudopotential method:
fit the valence properties calculated from the atom




List of requirements for a good

norm-conserving pseudopotential:
D. R. Hamann et al., Phys. Rev. Lett. 43, 1494 (1979)

Choose an atomic reference configuration Si: jsz 2s? Zpi

3s? 3p?

Y Y
core valence

\

1. All electron and pseudo valence eigenvalues agree
for the chosen reference configuration

Energy (eV)

All electron Pseudopotential

8‘.'*lp -4.17




List of requirements for a good

norm-conserving pseudopotential:
D. R. Hamann et al., Phys. Rev. Lett. 43, 1494 (1979)

Choose an atomic reference configuration Si: jsz 2s? Zpi

3s? 3p?

Y Y
core valence

\

2. All electron and pseudo valence wavefunctions agree beyond
a chosen cutoff radius R, (might be different for each shell)




List of requirements for a good

norm-conserving pseudopotential:
D. R. Hamann et al., Phys. Rev. Lett. 43, 1494 (1979)

Choose an atomic reference configuration Si: jsz 2s? Zpi \332 3p21

Y Y
core valence

3. The logarithmic derivatives of the all-electron and pseudowave
functions agree at R,

Di(e,7) = Tii Eig - frim (e, 7))




List of requirements for a good

norm-conserving pseudopotential:
D. R. Hamann et al., Phys. Rev. Lett. 43, 1494 (1979)

Choose an atomic reference configuration Si: jsz 2s? Zpi \332 3p21

Y Y
core valence

4. The integrals from 0 to r of the real and pseudo charge densities
agree for r > R. for each valence state

R 9
Q= [ drr® ()

0, is the same for /% as for the all electron radial orbital v,

U

*Total charge in the core region is correct

‘Normalized pseudoorbital is equal to the true orbital outside of R,




List of requirements for a good

norm-conserving pseudopotential:
D. R. Hamann et al., Phys. Rev. Lett. 43, 1494 (1979)

Choose an atomic reference configuration Si: jsz 2s? 2p‘i \332 3p21

Y Y
core valence

5. The first energy derivative of the logarithmic derivatives of the
all-electron and pseudo wave functions agrees at R,

Central point due to Hamann, Schluter and Chiang:

Norm conservation [(4)] = (5)

<w>

R
Ling| 4 | rtutdr
0

IR

dg dr




Equality of AE and PS energy derivatives of the

logarithmic derivatives essential for transferability
Atomic Si Bulk Si

/ 3p (-4.18)
3s 2-1083{
2p (-95.63
2s (-139.08)

Energy (eV)

_ 1s (-1773.77)

If condition 5 is satisfied, the change in the eigenvalues to
linear order in the change in the potential is reproduced




Generation of /-dependent
norm-conserving pseudopotential

Choose an atomic reference configuration, i.e., a given distribution of
electrons in the atomic energy levels (degree of freedom)




Generation of /-dependent norm-conserving pseudo:
Step 1, choosing the reference configuration

Question: how to choose the electronic configuration of the isolated atom
(the reference atomic configuration)
so that the pseudopotential remains useful in molecular systems and solids

(the target system)

The reference configuration is arbitrary, the user has a degree of freedom here

If the pseudopotential is transferable enough, the choice is not so critical,
but transferability tests are mandatory

Transferability is expected to work best for electronic configurations close
to the reference one, but it is not obvious for rather different configurations
(would a pseudopotential generated for neutral K work well in K*?)




Generation of /-dependent norm-conserving pseudo:
Step 1, choosing the reference configuration

Standard first choice: ground state configuration of the neutral isolated atom

However, states of angular momenta that are unoccupied in the neutral
atom hibridize with the occupied states in the presence of a different
environment, becoming partially occupied.

In these cases, it is necessary to include these angular momenta as
non-local components of the pseudopotential




Generation of /-dependent
norm-conserving pseudopotential

Choose an atomic reference configuration, i.e., a given distribution of
electrons in the atomic energy levels (degree of freedom)
v
Solve the all-electron radial Schrodinger equation for the chosen atomic
reference configuration
1d> I(l+1)

AE . AE
—§m + 92 + ‘/eff[n] (T)] Upy (T) = Enlly (T)

Ver[n](r) = Vet (r) + Vitartree[n] + Vie[n] = —— /

n(,r) = sum of electronic charges
for occupied states

dr + Vieln]

!7“—7“!

7 =bare nuclear charge




Generation of /-dependent norm-conserving pseudo:
Step 2, solving the radial wave function

Since, in the isolated atom, the potential is spherically symmetric,
the one electron wave functions can be decoupled as the product of a radial part
times an spherical harmonic

¢nlm(F) — lbnzm("“, (97 ¢) — Rnl(r)}/lm(ey ¢) — %unl(T)Yim(ea ¢)

The radial equation (in atomic units) reads

[_id_r o [(l+1) 4 V;ﬁ[n](r)] Ry(r) = eqRy(r)

2r dr? 272

G ), dr’ —+ Vieln]
"

Ve [n](r) = Vi (1) + Viartree[n] + Vae[n] = _g i /

If, as in many textbooks, we redefine the radial part of the R (7“) B lu (7“)
wave function, to simplify the differential operator ni _ nl

[_1 d? N (14 1)

2r?

+ Veat[n] (T)] ni (1) = Enitina(7)



Generation of /-dependent norm-conserving pseudo:
Step 2, solving the radial wave function

[(l+1)
272

+ Ver[n](r) | uni(r) = enttn(r)

The equation has to be solved subject to the following boundary conditions

for r— 0 = Up(r =0) =0

U (1) — 0 for r — oo

And the radial part of the wave function has to be normalized as

/ 2| Ry (r) |2 dr :/ Uy (7)[Pdr = 1
0 0




Generation of /-dependent
norm-conserving pseudopotential

Choose an atomic reference configuration, i.e., a given distribution of
electrons in the atomic energy levels (degree of freedom)
v
Solve the all-electron radial Schrodinger equation for the chosen atomic
reference configuration
1d> I(l+1) e e
—=—F + Vegt [n)(r) | (7“) = Enlly ()

2 dr? 212
dr’ + Vieln]

Ver[n](r) = Vet (r) + Vitartree[n] + Vie[n] = —— /

n(,r) = sum of electronic charges
for occupied states

!7“—7“!

7 =bare nuclear charge

v
Parametrization of the pseudo-wave functions for » < [ _according to
any of the available prescriptions (degree of freedom)




Generation of /-dependent norm-conserving pseudo:
Step 3, parametrization of the pseudowave functions

Independently of the method, two
conditions usually imposed:

-Smooth matching between the all
electron and the pseudo wave function
at the cutoff radius R,

- Conservation of the norm of the
pseudo wave function.

Degree of freedom in the choice of the
flavour of the pseudopotential and R,

Several schemes available in the literature for norm-conserving pseudopotentials

Hamann, Schluter, and Chiang [D. R. Hamann et al., Phys. Rev. Lett. 43, 1494 (1979)]
Kerker [G. P. Kerker, J. Phys. C 13, L189 (1980)]

Troullier-Martins [N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991)]
Rappe-Rabe-Kaxiras-Joannopoulos [A. M. Rappe et. al., Phys. Rev. B 41, 1227 (1990)]




Different methods to generate

norm-conserving pseudopotential

Haman-Schluter-
Troullier-Martins Kerker Chiang Vanderbilt

—15

_25 -

s-state

R. M. Martin, Electronic structure, Basic Theory and Practical Methods,
Cambridge University Press, Cambridge, 2004




Generation of /-dependent
norm-conserving pseudopotential

Choose an atomic reference configuration, i.e., a given distribution of
electrons in the atomic energy levels (degree of freedom)
v
Solve the all-electron radial Schrodinger equation for the chosen atomic
reference configuration
1d> I(l+1) e e
—=—F + Vegt [n)(r) | (7“) = Enlly ()

2 dr? 22
Vigln](r) = Vi (r) + Vitartreeln] + Vo] = —2 /

n(,r) = sum of electronic charges
for occupied states

dr + Vieln]

!7“—7“!

7 =bare nuclear charge

v
Parametrization of the pseudo-wave functions for » < [ _according to
any of the available prescriptions (degree of freedom)
¥
Invert the radial Schrodinger equation for the screened pseudopotential




Generation of /-dependent norm-conserving pseudo:
Step 4, inversion of the radial Schrodinger equation

0.8

0.6

302 Search for the Schrodinger-like equation
0.0 that would satisfy the pseudo-orbital

-0.2

-0.46. .




Generation of /-dependent norm-conserving pseudo:
Step 4, inversion of the radial Schrodinger equation

0.8

Search for the Schrodinger-like equation
that would satisfy the pseudo-orbital

5.0
r (bohr)

[(1+1) . 1 d®ul>(r)
272 2uiS(r)  dr?

The inversion can always be done because of the nodeless condition
Note that the principal gquantum number has droped, because the pseudization
is done for the lowest-lying valence state of each angular momentum

Higher lying valence states of the same angular momentum correspond to
excited states of the pseudopotential




Generation of /-dependent
norm-conserving pseudopotential

Choose an atomic reference configuration, i.e., a given distribution of
electrons in the atomic energy levels (degree of freedom)
v
Solve the all-electron radial Schrodinger equation for the chosen atomic
reference configuration

1d> I(l+1)

AE AE

g o+ Vaalal(r) | () = i)

/ n(r /
Varlnl(r) = Vo (1) + Vil + Vil = ==+ [ 2’4 Vi
n(,r) = sum of electronic charges

for occupied states 7, =bare nuclear charge

v
Parametrization of the pseudo-wave functions for » < [ _according to
any of the available prescriptions (degree of freedom)
¥
Invert the radial Schrodinger equation for the screened pseudopotential
¥
Subtract (unscreen) the Hartree and exchange-correlation potentials




Generation of /-dependent norm-conserving pseudo:
Step 5, unscreening of the pseudopotential

The pseudo-wave function obeys

1d* I(l+1)
—§ﬁ+ 572 +V(§cs)z(7") u > (r) = ey (r)

Where the effective potential is computed in the atom

r : : :
Bare nuclei-valence interaction

V(PS ]| Computed with an atomic charge density

)l | Hartree interacion
ncore Valence )

i natom atom + N tom

Exchange-correlation interacion | / /
x

Blind to the chemical Extremely dependent
environment on the chemical
environment

In the molecular system or condensed phase, we have to screen the (ion+core)-valence
interaction with the valence charge density computed in the targeted sytem

includes




Generation of /-dependent norm-conserving pseudo:
Step 5, unscreening of the pseudopotential

In the molecular system or condensed phase, we have to screen the (ion+core)-valence
interaction with the valence charge density computed in the targeted sytem

So, the pseudopotential is finally obtained by subtracting (unscreening) the
Hartree and exchange and correlation potential calculated only for the valence
electrons (with the valence pseudo-wave function)

VHartree [nv] - Va:c [nv]

(1) BECASIVAY/S Vielno]
r— 1|

Where the pseudo-valence charge density is computed as

lmaaz

77‘%

=0 m=-—I

Exchange-correlation functional in the DFT all-electron calculation used to
construct the pseudopotential has to be the same as in the target calculation




When there is a significant overlap of core and
valence charge densities: problem with unscreening

The exchange and correlation potential and energy
are not linear functions of the density

Ew(:[natom (77)] + Exc[n;(ggil (77)] T Exc{”ﬁcﬁgce (77)]

In cases where the core and valence charge density overlap significantly:
- In systems with few valence electrons (alkali atoms)
- In systems with extended core states

- In transition metals, where the valence d bands overlap spatially
with the code s and p electrons

the unscreening procedure as explained before is not fully justified.

Vzuc[ncore (7:») 4 nvalence (7:»)] _ (Va:c [ncore (7:») 4 nvalence (7:')} . Vwc[nvalence(,':»)]) i ch[nvalence (7:*)]

atom atom atom atom atom atom

~—— — ~— o - gy
— Sy -

xc potential that appears Since xc is not linear, if core and xc potential that is
in the unscreened valence overlap, the contribution removed in the
potential from valence is not fully canceled unscreening procedure

Then, the screening pseudopotential are dependent on the valence configuration,
a feature highly undesirable since it reduces the transferability of the potential.




When there is a significant overlap of core and
valence charge densities: non-linear core correction

Solution 1: Include explicitly the extended core orbitals in
the valence (semicore in valence)

Expensive since:
- We have to include explicitly more electrons in the simulation

-The semicore orbitals tend to be very localized and hard, in the
sense that high Fourier components are required




When there is a significant overlap of core and
valence charge densities: non-linear core correction

Solution 2: Include non-linear core corrections (NLCC)
S. Louie et al., Phys. Rev. B 26, 1738 (1982)

Step 1: Replace the previous unscreening expression by

sc)l
VPS(p) = YOO /’T_T’ Vel + n]

Step 2: In the actual electronic structure calculations performed with this
pseudopotential, the exchange and correlation distribution is computed from
the full electronic charge, [nv + nc] , instead of the usual valence charge. The
frozen core charge density of isolated atoms is used for 7ic

Step 3: The full core density, with its very high Fourier components, is
impractical to use. However, the core charge has significant effect only where
the core and valence charge densities are of similar magnitude. We can
therefore, replace the full core charge density with a partial core charge




When there is a significant overlap of core and
valence charge densities: non-linear core correction

Solution 2: Include non-linear core corrections (NLCC)
Models for the partial core

1. Original one proposed by S. Louie ef al. (in ATOM, the default for LDA)

( asin(br)
s 5

T < Tpc Parameters a and » determined by the

n;%iiial(f) = continuity of the partial core and its
nere(r), r > rpe first derivative at 7,

N

2. New one that fixes some problems in the generation of GGA pseudos

( a+br24cr?)

2
rlel , "< Tpc Parameters g, b and ¢ determined by
Noartial(T) = the continuity of the partial core and its
ncore(,r)j r > T first and second derivatives at r,

\

rp. has to be chosen such that the valence charge density is negligeable compared to
the core one for» <7,

Tests show that it might be located where the core charge density is from 1 to 2 times
larger than the valence charge density




When there is a significant overlap of core and
valence charge densities: non-linear core correction

Bulk NaCl (rocksalt structure)

EI No se puede mostrar la imagen.

Without core corrections for Na:

Semi metal

With core corrections for Na:

Insulator

J. Hebenstreit and M. Scheffler,
Phys. Rev. B 46, 10134 (1992)




The screened potential depends on the angular
momentum of the valence electron: is /-dependent

Reason for the /-dependency: different orthogonality conditions

For instance, in the Si atom

The 3s valence state has to
be orthogonal with the 2s
and 1s core states

The 3p valence state does
not feel the orthogonality
constraint with the 2s and
1s core states, because
they have different angular
momentum quantum
numbers

At large distances (beyond R,) the potential
is —Z,,,/r, independently of /, because the
ionic core is seen as a point charge of
magnitude equal to the valence charge 7, ,

Within the core region, these
electrons feel different potentials
from the ionic core.




General form of a /-dependent pseudopotential

0

VP (7 Y Y VS (1) [Yim) (Yim| = > ViP5(r) P

[=0 m=—I [=0

Where F) is a projector operator onto the /-th angular momentum subspace

— Z Yim) (Vi | ﬁl is spherically symmetric

m=—I

Meaning of the previous expression:

When the pseudopotential operatorAVPS acts on an electronic wave
function, the projector operator P, selects the different angular
momentum components of the wave function, which are then
multiplied by the corresponding pseudopotential.

The contributions of all the angular momentums are finally added up to
form the total pseudopotential contribution to the Hamiltonian matrix
elements that enter Schrodinger equation.




General form of a /-dependent pseudopotential

0

VPS S‘ S‘ VPS D/lm lm| _ Z VEPS(T)E

[=0 m=—I =0

Where F) is a projector operator onto the /-th angular momentum subspace

— Z Yim) (Vi | ﬁl is spherically symmetric

m=—I[

This pseudopotential form is semilocal:

It is local in 7° but non-local in (. ¢

If we want to know the result of applying this operator to a function f in a point (7“, 0, gb)

VPS1(0.0) = 32 3 VS 0Yial6.6) [ dicos! ) Vinl6.6) 10, 6)
[=0 m=—I
We need to know the value of fat all the points (7, 9/, gb/)




It is useful to separate the ionic pseudopotentials
into a local (I-independent) part and non-local terms

Vi (r) = Vigam (r) + 6V;75(r)
The local part of the pseudo V.1 (1)
Is in principle arbitrary, but it must
join the semilocal potentialsV/ (),
which by construccion, all become
equal to the ionic all electron
potential beyond the pseupotential
core radius R,

Thus, the non-local part is
short range

oVi(r) =0, for r> R,

All the long-range effects of the Coulomb potential are included in the
local part of the pseudopotential




It is useful to separate the ionic pseudopotentials
into a local (I-independent) part and non-local terms

VI3(r) = Vieea(r) + 6V (1)

©.@)

vPS 7:* S‘ S‘ VPS D/lm lm’ _ ZWPS(T)E

[=0 m=—I [=0

Normally, only a few [ ..
low angular momenta
core states are occupied.

For values [ > [, ..the ionic

core is seen in the same way

by all the [ component of the
wave function

Identity operator




Computing matrix elements of the
pseudopotential operator

Matrix elements of the pseudopotential in some basis |gba>

= (Pa|Vieoi (r)|#5) +Z ($al0Vi"S(r) Bi|¢5)

lmax

<¢Oé|viocal )|¢5> + Z<¢a‘5‘/}PS(T)E|¢B>
[=0

lmax

<¢04H/iocal ‘¢5 +Z ¢@‘5VPS )

l /

Z /OOOerr/ sm@d&/ dgb/ ’er/ sm@d&’/ do' or(r, 6, 0)Y, VOVES ()6 (r — )Yy (6, ) os(r', 6, &)

m=—I

Where due to the semilocal character of the pseudopotential,
a factor (7 — 1 )is understood




The pseudopotential operator in the semilocal form:
local in radial variable, non-local in the angular variable

l o0 T 27 o0 e 27
S [ [ sinoas [ s [ [Csingas [ dgn.0.0)Yi (0. 00060~ 1) Yi (0, 6)0nl0", 8. 8)
o Jo 0 0 0 0 0

The most common basis functions:
- floating (plane waves) €7 =41 Y i'ji(kr)Yin (k)Y (7)
l,m
- atom-centered (product of radial function and spherical harmonics) ¢, (%) = ¢, (7)Y, (6, @)

In either case, the above integral factorizes into two angular-dependent parts
that can be integrated separately, and a radial integral of the form

Gaﬁ — /T2¢Z(T)5‘/}(T)g05(r)dr Local integral in

the radial variable

f f

Radial part of the basis function (for AO) or the spherical Bessel functions (for PW)




Computational scaling in the computation of
semilocal potentials

_ 2 % Local integral in
Gap = /r 90?(7“)5‘/1(7“)9051(7“)@“ the radial variable

Radial part of the basis function (for AO) or the spherical Bessel functions (for PW)

The computation of these integrals is very expensive.

It scales as O(NMQ)

M Number of basis functions

N Number of atoms in the system (for every atom 5VZPS changes)

Since )\/also scales with the number of atoms, the scaling of the
previous operation is O(N3)

Bottleneck for electronic structure simulations




Replacing the semi-local operator by a fully
non-local form separable in the radial variables

Replacing the semi-local operator with a fully non-local form separable
in the radial variables, allows a factorization of the problem

OV (r) = VP (1) = Q)¢ ()

/ sin 0 / " i / 2! / sin 60 / " 81,0, 6)Yim(0, §)SVP(r, Vit (0 )5l 0, )
|

sin 06 / o / 2y’ / sin 00’ / 48647, 6, 8)Yim 0, O)G(r) G () V7 (0, )65+, €, &)

POy
S [
(0

Zdr " sin 68 /0 06 ¢(r, 8, &)Yim(6, >< / 2y / sin 0/d6’ / dqb’cl*(r’)mw’,¢'>¢ﬁ<r’,9’,¢’))

F*lmFﬂlm
: with

EFo i = /OO r2dr /7r sin 6d0 /27r doC (r)Y, (0, 9)pa(r, 0, @)

o kG AGTNG

Now, the non-local part can be cheaply and accurately computed as two-center intergrals




It is useful to separate the ionic pseudopotentials
into a local (I-independent) part and non-local terms

In SIESTA, the local pseudopotential is optimized for smoothness,
because it is represented in the real space grid

It is defined as the potential generated by a positive charge
distribution of the form

a and b are chosen to provide simultaneously
optimal real-space localization and
reciprocal-space convergence
_1.82
==

sinh(abr) )2

nlocal(r) X €_< sin b

b=1 a




General expression for a separable non-local
potential of the KIeinman-ByIander form

sep ’Clm Clm’
v mZ_:l Gl TS

where @DZP,,S () are the atomic, reference pseudo-wave function

The only relevant aspect is to reproduce the all-electron calculation
for the reference configuration

The reference pseudowave-function should be an eigenstate of the
pseudo-HamiItonian with (all electron and pseudo) eigenvalue &

A PS
srrlugsy = 3 Kelucinl )

Thus, to reproduce the all-electron scattering

properties and energy derivatives at the - (T + VPS8 (r) + 5\?2861)) |[WE5Y = g ES)
reference energy, the projection function can
be constructed as

‘Clm> — (81 R T Viocal( ) ) |?7DZPT§>




Kleinman-Bylander fully non-local separable form

L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425 (1982)

Request: the action of the fully non-local separable pseudopotential Mﬁsep on the
reference pseudo-wave function is the same as that of the original semi-local form

For that, they proposed

i) = 10VA(r)um)

so that

|SVPSES) (4P S5V
(YRS |6VES|Es)

5‘%861@ |¢lm> —

) = SViPS|yrs)




Kleinman-Bylander fully non-local separable form

L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425 (1982)

The Kleinman—-Bylander projector is then written as
l
KB KB\ 7KB/+KB
5‘/2 — Z ’€lm >Elm <€lm ‘
m=—I1

Where the normalized projection functions are given by

[ I /0
(G (G} (WESOVAIOViUps)

i) =




Kleinman-Bylander fully non-local separable form

L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425 (1982)

The strength of the non-locality is determined by

T 0 [CL /A (V%

Im 2
(Wi 10V, [




Balance between softness and
transferability controlled by R,

Representability by a Accuracy in varying
resonable small environments

number of PW
TRANSFERABILITY

Larger R.: softer pseudo _ R_=1.90 bohr
— R:: 1.30 bohr

First guess: last peak of the
all electron wave function

Shorter R.: harder pseudo




A transferable pseudo will reproduce the AE energy

levels and wave functions in arbitrary environments
Compute the energy of two different configurations ECl ECQ

-Compute the differenceinenergy AF = FE-o — E
AE*Y = AEP®

*For the pseudopotential to be transferible:

total energy differences in series

1
0.0000
0.4308
0.4961
0.9613
1.4997

2

0.0000
0.0653
0.5305
1.0689

3

0.0000
0.4652
1.0036

4

A

0.0000
0.5384

energy differences in series

1
0.0000
0.4304
0.4958
0.9602
1.4970

2

0.0000
0.0654
0.5297
1.0666

3

0.0000
0.4643
1.0012

4

A

0.0000
0.5369

5
EAE

0.0000

5
EPS

0.0000

3s2 3p? (reference)

3s? 3p3 3d1




Problematic cases: first row elements
2p and 3d elements

O: 1s22s?2p*

core valence

No nodes because there
are no p states to be
orthogonal to

pseudopotential is hard




Conclusions

Core electrons...

highly localized and very depth energy

... are chemically inert

Pseudopotential idea

Ignore the dynamics of the core electrons (freeze them)

And replace their effects by an effective potential
Pseudopotentials are not unique
there might be many “best choices”

*Two overall competing factors: transferability vs hardness

‘Norm conservation helps transferability

*Always test the pseudopotential in well-known situations




Howto: input file to generate the pseudopotential

Pseudopotential generation for Silicon
pg: simple generation

PE Silicon
tm2 3.0 PS flavor, logder R
n=Si c=car Symbol, XC flavor,{ |rls}
0. : : 0.0 0.0 0.0
norbs_core, norbs_valence
382
3p2
3d0
. . 4f0
1.90 . . 1.90
#
# Last line (above):
# rc(s) rc(p) rc(d) rc(f) rcore_flag rcore
#
#23456789012345678901234567830123456789012345678901234567890




$ pg.sh Si.tm2.inp

Generation Mechanics

Calculation for Si.tm2 completed. Output in directory Si.tm2
$ 1s Si.tm2

AECHARGE

AELOGDO
AELOGD1
AELOGD2
AELOGD3
AEWFNRO
AEWFNR1
AEWFNR2

AEWFNR3
CHARGE
INP

QuT

PSCHARGE

PSLOGDO
PSLOGD1
PSLOGD2

$ cd Si.tm?2

$

$ # PLOTTING

$

$ gnuplot pseudo.gps

PSLOGD3
PSPOTQO
PSPOTQ1
PSPOTQ2
PSPOTQ3
PSPOTRO
PSPOTR1
PSPOTR2

PSPOTR3
PSWFNQO
PSWFNQ1
PSWFNQ2
PSWFNQ3
PSWFNRO
PSWFNR1
PSWFNR2

==> Postscript output in pseudo.ps

PSWFNR3
RHO
SCRPSPOTRO
SCRPSPOTR1
SCRPSPOTR2
SCRPSPOTR3
VPSFMT
VPSOUT

charge.gplot
charge.gps
pots.gplot
pots.gps
pseudo.gplot
pseudo.gps

pt.gplot
pt.gps




I 1 1
AE logder I1=0

| | 1 | | 1 |

25 -2 -16 -1 05 0 05

=0 Fl’seudopot ('q




Testing Mechanics

ae Si Test -- 3s0 3p3 34l
51 ca
0.

(Same configuration)
Si Test -- 3s0
ca
0.




sh ../pt.sh Si.test.inp Si.tm2.vps

Output data in directory Si.test-S5Si.tm2...

$ cd Si.test-Si.tm2

$ 1s [A-Z]x

AECHARGE AEWFNR1 CHARGE OQOUT PTWFNRO PTWFNR2 VPSIN

AEWFNRO AEWFNR2 INP PTCHARGE PTWFNR1 RHO

$

$ ## EIGENVALUE TEST

$

$ grep ’&v’ OUT

ATM3 11-JUL-02 S5i Test -- 3s0 3p3 3dl
0.0000 -1.14358268 3.71462770
3.0000 -0.60149474 2.68964513
-0.04725203 0.46423687

S5i Test -- 3s0 3p3 3dl
-1.14353959 0.56945741
-0.59931810 0.95613808
-0.04733135 0.45664551




&d total energy differences in series

&d
&d
&d
&d
&d
&d

1
0.0000
0.4308
0.4961
0.9613
1.4997

11-JUL-02
11-JUL-02

11-JUL-02
11-JUL-02
11-JUL-02

2

3

0.0000
0.4652
1.0036

1 Test
1 Test

Test
Test

1 Test

2

.0000
.0694
.5336
.0745

0.0000
0.4642
1.0051

4

0.0000
0.5384

GS 3s2 3p2
3s2 3pl 3d1
3s1 3p3

3s1 3p2 3d1
3s0 3p3 3dl

4

0.0000
0.5408

0.0000

0.0000




Core electrons are chemically inert
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Core electrons are chemically inert
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Generation of /-dependent
norm-conserving pseudopotential

All electron self consistent atomic calculation

Each state I,m treated independently

Identify the valence states

Freedom (different approaches)

Generate the pseudopotential V(1) and pseudoorbitals y/5(r)

Vi (1) screened pseudopotential acting on valence electrons

“Unscreened” by substracting from the total potential V,.P3(r)
Vi(7) = Vigota () — V}I;ai(F)




The pseudopotential operator in the semilocal form:
local in radial variable, non-local in the angular variable

max

PLS(T) local —'_ S‘ Y |Y2m 5‘/ lm|

=0 m=—I

Matrix elements of the pseudopotential in some basis |¢,) assume the form

max

Varas = (alVar 168) = (dalViocal(r)|ds) + D Z (BalYim)SVi(r) (Yim|d5)

=0 m=—1

—

SV (a, B) = ) (Bl Yim)SVi(r)(Yim|d5)

m=—I

!

-y [ [ im0 (7ol i

m=—I

Where due to the semilocal character of the pseudopotential,
a factor (7 — 1 ) is understood




The pseudopotential operator in the semilocal form:
local in radial variable, non-local in the angular variable

l

SV (a, B) = ) (alYim)SVi(r){Yim|s)

=

> [ [ 6o iP5 ()Y ()0

m=—I

The most common basis functions:
- floating (plane waves) €7 =4 > " i'ji(kr)Yim(k) Y, (7)

l,m
- atom-centered (product of radial function and spherical harmonics) ¢, (%) = ¢, (7)Y, (6, @)

In either case, the above integral factorizes into two angular-dependent parts
that can be integrated separately, and a radial integral of the form

the radial variable

Gap = /7“2902(7“)5‘/2(7“)905(7“)617“ Local !ntegr?l in

f f

Radial part of the basis function (for AO) or the spherical Bessel functions (for PW)




