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Atomic calculation using DFT:
Solving the Schrodinger-like equation

One particle Kohn-Sham equations



Difficulty: how to deal accurately with both 
the core and valence electrons

CORE
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Si atomic configuration:  1s2 2s2 2p6      3s2 3p2

core valence



Core eigenvalues are much deeper than 
valence eigenvalues

Atomic Si

Core

Valence



Core wavefunctions are very 
localized around the nuclei

Atomic Si



Atomic Si

Core wavefunctions are very 
localized around the nuclei

Core electrons…
 highly localized

 very depth energy

… are chemically inert



Core electrons are chemically inert
All electron calculation for an isolated N atom

Core charge density Valence charge density
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Core electrons are chemically inert
All electron calculation for an isolated N atom

Core charge density Valence charge density

Although there are drastic modifications in 
the valence charge density

The core charge density remains 
unperturbed

Peak due to the 2s all-electron orbitals of N, 
(they have a node to be ortogonal with the 1s)
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All electron calculation for an isolated Si atom

Angularly integrated core and valence charge densities
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Core electrons are chemically inert
All electron calculation for an isolated Si atom

Angularly integrated core and valence charge densities



Valence wave functions must be orthogonal 
to the core wave functions

Atomic Si

Core electrons…
 highly localized

 very depth energy

… are chemically inert



Fourier expansion of a valence wave function 
has a great contribution of short-wave length

To get a good approximation we would have 
to use a large number of plane waves. 



Pseudopotential idea:

Core electrons are chemically inert 
(only valence electrons involved in bonding)

Core electrons make the calculation more expensive

 more electrons to deal with

 orthogonality with valence Þ poor convergence in PW

Idea:
Ignore the dynamics of the core electrons (freeze them)

And replace their effects by an effective potential

Core electrons main effect: screen nuclear potential



The nodes are imposed by orthogonality 
to the core states

core region



Idea, eliminate the core electrons by 
ironing out the nodes

The construction of a pseudopotential is an inverse problem:

Given a nodeless pseudo-wave function that
(1) Beyond some distance decays exactly as the all-electron wave-function
(2) is an eigenstate of a pseudo-Hamiltonian with the same eigenvalue as 

the all-electron wave function

The pseudopotential is obtained by inverting the radial Schrödinger 
equation for that pseudo-wave function



Construction of a first-principles pseudopotential:
The radial Schrödinger equation

An “atomic DFT program” will be used
(only considers an isolated atom for the rest of the universe) 

The radial Schrödinger equation is given by 

It will be solved in a radial (typically logarithmic) grid

The wave functions, eigenstates of the Hamiltonian, angular momentum     and         
can be written as the product of a radial part times a spherical harmonic



The radial logarithmic derivative

Second-order linear differential equation 

It requires two integration constants to be solved 

Once       has been fixed (not necessarily to an eigenvalue),      
its solution is uniquely determined by the value of the wave function 

and its derivative                    at any given point  

These two conditions can be equally realized by specifying the value of the 
(dimensionless) radial logarithmic derivative of the wave function at 

together with the normalization condition



The first-principles pseudopotencial 
construction idea
Given

Invent

Same for 

If the all-electron potential and the pseudopotential are the same outside some 
radius         (the cutoff or core radius), 

then
The all-electron and pseudo-wave functions are proportional if the 

corresponding logarithmic derivatives are the same

The proportionality becomes an equality only when the pseudo-wave 
function is farther required to preserve the norm inside the cutoff radius 



First-principles pseudopotential construction
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Relationship between the logarithmic derivative 
and the scattering properties

So?...
• So, we know from scattering theory that an incoming plane wave with wave vector ! to be scattered from a 

spherically symmetric potential (within a radius "# and centred at the origin) may be decomposed into partial 
waves with the identity:

exp '! ( ) = 4,-
./0
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• These spherical waves are then elastically scattered by the potential, introducing a phase-shift :., related to 
;. " by:
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L. I. Schiff, Quantum Mechanics. 
Chapter V (page 106)



First-principles pseudopotential construction

By construction, the pseudopotential has the correct eigenvalues

- Scattering properties are correct at the reference eigenvalues 
- Find the solution of the Schrödinger equation that is regular at 
the origin at this energy 

Also want:
- Norm conservation
- Scattering conservation remain pretty good for nearby eigenvalues

Surprising result of Hamann, Schlüter and Chang:
- These two properties come together
- Norm conserving pseudopotentials have good scattering properties



Checking the transferability 
through the scattering properties

For separated all-electron and a pseudopotential calculations:

- Choose a given angular momentum channel      and an energy 
- Find the solution of the Schrödinger equation that is regular at 
the origin at this energy 

- Compare the solution beyond 
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Scattering properties:
How to quantify the “logarithmic derivatives” 
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Norm conservation
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Relationship between norm conservation 
and scattering properties 

Fundamental advance of Hamann, Schlüter and Chang 
Phys. Rev. Lett. (1979) 

If norm conservation is imposed,
then the pseudo-logarithmic derivative 

matches 
the all-electron logarithmic derivative to second order in 

All-electron radial equation
Norm-conserving pseudopotentials

Fully separable pseudopotentials

The logarithmic derivative
Using the pseudopotential in the solid
Transferability tests

The logarithmic derivative - II
The two logarithmic derivatives usually coincide for a quite
extended range of energies, of the order of a few Rydberg
making the pseudopotential concept quite useful in practice.
Here is the example of the s, p and d logarithmic derivatives for
the Si atom (color: all-electron; black: pseudopotential) :

Andrea Dal Corso Pseudopotentials

Color: all electron
Black: pseudopotential
Arrows: bound energies

Courtesy of Andrea del Corso

The slopes 
automatically 

matches at the 
reference energies



The pseudopotential transformation:
Seeking for the wave equation of the “smooth” 

J. C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959)

Replace the OPW form of the wave function into the Schrödinger equation 

Equation for the smooth part, with a non local operator

ß



The original potential is replaced by a 
weaker non-local pseudopotential

J. C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959)

Advantages Disadvantages
Repulsive

ß

VPKA is much weaker than the 
original potential V(r)

Spatially localized

vanishes where ψjc = 0

Non-local operator 

l-dependent

are not orthonormal

is not smooth 



Ab-initio pseudopotential method:
fit the valence properties calculated from the atom



List of requirements for a good                   
norm-conserving pseudopotential:

D. R. Hamann et al., Phys. Rev. Lett. 43, 1494 (1979)

Choose an atomic reference configuration Si:  1s2 2s2 2p6      3s2 3p2

core valence

1. All electron and pseudo valence eigenvalues agree 
for the chosen reference configuration



List of requirements for a good                   
norm-conserving pseudopotential:

D. R. Hamann et al., Phys. Rev. Lett. 43, 1494 (1979)

Choose an atomic  reference configuration Si:  1s2 2s2 2p6      3s2 3p2

core valence

2. All electron and pseudo valence wavefunctions agree beyond 
a chosen cutoff radius Rc (might be different for each shell)



List of requirements for a good                   
norm-conserving pseudopotential:

D. R. Hamann et al., Phys. Rev. Lett. 43, 1494 (1979)

Choose an atomic reference configuration Si:  1s2 2s2 2p6      3s2 3p2

core valence

3. The logarithmic derivatives of the all-electron and pseudowave 
functions agree at Rc



List of requirements for a good                   
norm-conserving pseudopotential:

D. R. Hamann et al., Phys. Rev. Lett. 43, 1494 (1979)

Choose an atomic reference configuration Si:  1s2 2s2 2p6      3s2 3p2

core valence

4. The integrals from 0 to r of the real and pseudo charge densities 
agree for r > Rc for each valence state 

Ql is the same for ψl
PS as for the all electron radial orbital ψl 

•Total charge in the core region is correct

•Normalized pseudoorbital is equal to the true orbital outside of Rc

ß



List of requirements for a good                   
norm-conserving pseudopotential:

D. R. Hamann et al., Phys. Rev. Lett. 43, 1494 (1979)

Choose an atomic reference configuration Si:  1s2 2s2 2p6      3s2 3p2

core valence

5. The first energy derivative of the logarithmic derivatives of the 
all-electron and pseudo wave functions agrees at Rc

Central point due to Hamann, Schlüter and Chiang:

Norm conservation [(4)] Þ (5)



Equality of AE and PS energy derivatives of  the 
logarithmic derivatives essential for transferability

If condition 5 is satisfied, the change in the eigenvalues to 
linear order in the change in the potential is reproduced

Atomic Si Bulk Si 



Generation of l-dependent        
norm-conserving pseudopotential

Choose an atomic reference configuration, i.e., a given distribution of 
electrons in the atomic energy levels (degree of freedom)



Generation of l-dependent norm-conserving pseudo:  
Step 1, choosing the reference configuration

Question: how to choose the electronic configuration of the isolated atom 

(the reference atomic configuration)
so that the pseudopotential remains useful in molecular systems and solids 

(the target system)

The reference configuration is arbitrary, the user has a degree of freedom here 

If the pseudopotential is transferable enough, the choice is not so critical, 
but transferability tests are mandatory

Transferability is expected to work best for electronic configurations close 
to the reference one, but it is not obvious for rather different configurations 

(would  a pseudopotential generated for neutral K work well in K+?)



Generation of l-dependent norm-conserving pseudo:  
Step 1, choosing the reference configuration

Standard first choice: ground state configuration of the neutral isolated atom

However, states of angular momenta that are unoccupied in the neutral 
atom hibridize with the occupied states in the presence of a different 

environment, becoming partially occupied. 

In these cases, it is necessary to include these angular momenta as 
non-local components of the pseudopotential



Solve the all-electron radial Schrödinger equation for the chosen atomic 
reference configuration

ºbare nuclear chargeº sum of electronic charges 
for occupied states

Generation of l-dependent        
norm-conserving pseudopotential

Choose an atomic reference configuration, i.e., a given distribution of 
electrons in the atomic energy levels (degree of freedom)



Generation of l-dependent norm-conserving pseudo:  
Step 2, solving the radial wave function

Since, in the isolated atom, the potential is spherically symmetric,                     
the one electron wave functions can be decoupled as the product of a radial part 

times an spherical harmonic

If, as in many textbooks, we redefine the radial part of the 
wave function, to simplify the differential operator

The radial equation (in atomic units) reads



Generation of l-dependent norm-conserving pseudo:  
Step 2, solving the radial wave function

The equation has to be solved subject to the following boundary conditions

And the radial part of the wave function has to be normalized as



Solve the all-electron radial Schrödinger equation for the chosen atomic 
reference configuration

ºbare nuclear chargeº sum of electronic charges 
for occupied states

Generation of l-dependent        
norm-conserving pseudopotential

Choose an atomic reference configuration, i.e., a given distribution of 
electrons in the atomic energy levels (degree of freedom)

Parametrization of the pseudo-wave functions for               according to 
any of the available prescriptions (degree of freedom)



Generation of l-dependent norm-conserving pseudo:  
Step 3, parametrization of the pseudowave functions

Several schemes available in the literature for norm-conserving pseudopotentials

Hamann, Schlüter, and Chiang [D. R. Hamann et al., Phys. Rev. Lett. 43, 1494 (1979)]

Kerker [G. P. Kerker, J. Phys. C 13, L189 (1980)]

Troullier-Martins [N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991)]

Rappe-Rabe-Kaxiras-Joannopoulos [A. M. Rappe et. al., Phys. Rev. B 41, 1227 (1990)]

Independently of the method, two 
conditions usually imposed:

-Smooth matching between the all 
electron and the pseudo wave function 
at the cutoff radius Rc 

- Conservation of the norm of the 
pseudo wave function.

Degree of freedom in the choice of the 
flavour of the pseudopotential and Rc



Different methods to generate       
norm-conserving pseudopotential

R. M. Martin, Electronic structure, Basic Theory and Practical Methods, 
Cambridge University Press, Cambridge, 2004

Troullier-Martins Kerker
Haman-Schlüter-

Chiang Vanderbilt

s-state p-state

C



Solve the all-electron radial Schrödinger equation for the chosen atomic 
reference configuration

ºbare nuclear chargeº sum of electronic charges 
for occupied states

Generation of l-dependent        
norm-conserving pseudopotential

Choose an atomic reference configuration, i.e., a given distribution of 
electrons in the atomic energy levels (degree of freedom)

Parametrization of the pseudo-wave functions for               according to 
any of the available prescriptions (degree of freedom)

Invert the radial Schrödinger equation for the screened pseudopotential



Generation of l-dependent norm-conserving pseudo:  
Step 4, inversion of the radial Schrödinger equation

Search for the Schrödinger-like equation 
that would satisfy the pseudo-orbital



Generation of l-dependent norm-conserving pseudo:  
Step 4, inversion of the radial Schrödinger equation

Note that the principal quantum number has droped, because the pseudization 
is done for the lowest-lying valence state of each angular momentum

The inversion can always be done because of the nodeless condition

Higher lying valence states of the same angular momentum correspond to 
excited states of the pseudopotential

Search for the Schrödinger-like equation 
that would satisfy the pseudo-orbital



Solve the all-electron radial Schrödinger equation for the chosen atomic 
reference configuration

ºbare nuclear chargeº sum of electronic charges 
for occupied states

Generation of l-dependent        
norm-conserving pseudopotential

Choose an atomic reference configuration, i.e., a given distribution of 
electrons in the atomic energy levels (degree of freedom)

Parametrization of the pseudo-wave functions for               according to 
any of the available prescriptions (degree of freedom)

Invert the radial Schrödinger equation for the screened pseudopotential

Subtract (unscreen) the Hartree and exchange-correlation potentials



Generation of l-dependent norm-conserving pseudo:  
Step 5, unscreening of the pseudopotential

The pseudo-wave function obeys

Where the effective potential is computed in the atom

Bare nuclei-valence interaction

Hartree interacion

Exchange-correlation interacion

Computed with an atomic charge density

Blind to the chemical 
environment

Extremely dependent 
on the chemical 

environment
In the molecular system or condensed phase, we have to screen the (ion+core)-valence 

interaction with the valence charge density computed in the targeted sytem

includes



Generation of l-dependent norm-conserving pseudo:  
Step 5, unscreening of the pseudopotential

So, the pseudopotential is finally obtained by subtracting (unscreening) the 
Hartree and exchange and correlation potential calculated only for the valence 

electrons (with the valence pseudo-wave function)

In the molecular system or condensed phase, we have to screen the (ion+core)-valence 
interaction with the valence charge density computed in the targeted sytem

Where the pseudo-valence charge density is computed as 

Exchange-correlation functional in the DFT all-electron calculation used to 
construct the pseudopotential has to be the same as in the target calculation



When there is a significant overlap of core and 
valence charge densities: problem with unscreening

The exchange and correlation potential and energy 
are not linear functions of the density

In cases where the core and valence charge density overlap significantly:

 - In systems with few valence electrons (alkali atoms)

 - In systems with extended core states

 - In transition metals, where the valence d bands overlap spatially 
with the code s and p electrons

the unscreening procedure as explained before is not fully justified. 

xc potential that appears 
in the unscreened 

potential

xc potential that is 
removed in the 

unscreening procedure

Since xc is not linear, if core and 
valence overlap, the contribution 
from valence is not fully canceled

Then, the screening pseudopotential are dependent on the valence configuration, 
a feature highly undesirable since it reduces the transferability of the potential.



When there is a significant overlap of core and 
valence charge densities: non-linear core correction

Solution 1: Include explicitly the extended core orbitals in 
the valence (semicore in valence)

Expensive since:

 - We have to include explicitly more electrons in the simulation
 -The semicore orbitals tend to be very localized and hard, in the 
sense that high Fourier components are required



When there is a significant overlap of core and 
valence charge densities: non-linear core correction

Solution 2: Include non-linear core corrections (NLCC)

S. Louie et al., Phys. Rev. B 26, 1738 (1982)

Step 1: Replace the previous unscreening expression by 

Step 2: In the actual electronic structure calculations performed with this 
pseudopotential, the exchange and correlation distribution is computed from 
the full electronic charge,                   , instead of the usual valence charge. The 
frozen core charge density of isolated atoms is used for          

Step 3: The full core density, with its very high Fourier components, is 
impractical to use. However, the core charge has significant effect only  where 
the core and valence charge densities are of similar magnitude. We can 
therefore, replace the full core charge density with a partial core charge 
density 



When there is a significant overlap of core and 
valence charge densities: non-linear core correction

Solution 2: Include non-linear core corrections (NLCC)

Models for the partial core

1. Original one proposed by S. Louie et al. (in ATOM, the default for LDA)

2. New one that fixes some problems in the generation of GGA pseudos

Parameters a and b determined by the 
continuity of the partial core and its 

first derivative at rpc

Parameters a, b and c determined by 
the continuity of the partial core and its 

first and second derivatives at rpc

rpc has to be chosen such that the valence charge density is negligeable compared to 
the core one for r < rpc. 

Tests show that it might be located where the core charge density is from 1 to 2 times 
larger than the valence charge density 



When there is a significant overlap of core and 
valence charge densities: non-linear core correction

No se puede mostrar la imagen.

Bulk NaCl (rocksalt structure)

J. Hebenstreit and M. Scheffler, 
Phys. Rev. B 46, 10134 (1992)

Without core corrections for Na:

Semi metal 

With core corrections for Na:

Insulator



The screened potential depends on the angular 
momentum of the valence electron: is l-dependent

Reason for the l-dependency: different orthogonality conditions

The 3s valence state has to 
be orthogonal with the 2s 

and 1s core states

The 3p valence state does 
not feel the orthogonality 
constraint with the 2s and 
1s core states, because 

they have different angular 
momentum quantum  

numbers

For instance, in the Si atom

Within the core region, these 
electrons feel different potentials 

from the ionic core. 

At large distances (beyond Rc) the potential 
is –Zion/r, independently of l, because the 
ionic core is seen as a point charge of 

magnitude equal to the valence charge Zion



General form of a l-dependent pseudopotential 

Where       is a projector operator onto the l-th angular momentum subspace 

Meaning of the previous expression:

When the pseudopotential operator         acts on an electronic wave 
function, the projector operator      selects the different angular 
momentum components of the wave function, which are then 

multiplied by the corresponding pseudopotential.
The contributions of all the angular momentums are finally added up to 
form the total pseudopotential contribution to the Hamiltonian matrix 

elements that enter Schrödinger equation. 

is spherically symmetric



General form of a l-dependent pseudopotential 

Where       is a projector operator onto the l-th angular momentum subspace 

This pseudopotential form is semilocal:

It is local in      but non-local in 

is spherically symmetric

If we want to know the result of applying this operator to a function     in a point 

We need to know the value of    at all the points 



It is useful to separate the ionic pseudopotentials 
into a local (l-independent) part and non-local terms

The local part of the pseudo              
is in principle arbitrary, but it must 
join the semilocal potentials         , 
which by construccion, all become 
equal to the ionic all electron 
potential beyond the pseupotential 
core radius Rc

Thus, the non-local part is 
short range

All the long-range effects of the Coulomb potential are included in the 
local part of the pseudopotential



It is useful to separate the ionic pseudopotentials 
into a local (l-independent) part and non-local terms

Normally, only a few            
low angular momenta 

core states are occupied.

For values                the ionic 
core is seen in the same way 
by all the     component of the 

wave function
Identity operator



Computing matrix elements of the 
pseudopotential operator

Where due to the semilocal character of the pseudopotential, 
a factor                  is understood

Matrix elements of the pseudopotential in some basis



The pseudopotential operator in the semilocal form:          
local in radial variable, non-local in the angular variable

In either case, the above integral factorizes into two angular-dependent parts 
that can be integrated separately, and a radial integral of the form

The most common basis functions:
- floating (plane waves)

- atom-centered (product of radial function and spherical harmonics)

Radial part of the basis function (for AO) or the spherical Bessel functions (for PW)

Local integral in 
the radial variable



Computational scaling in the computation of 
semilocal potentials

Radial part of the basis function (for AO) or the spherical Bessel functions (for PW)

Local integral in 
the radial variable

The computation of these integrals is very expensive. 
It scales as 

Number of basis functions

Number of atoms in the system (for every atom            changes)

Since       also scales with the number of atoms, the scaling of the 
previous operation is 

Bottleneck for electronic structure simulations



Replacing the semi-local operator by a fully 
non-local form separable in the radial variables

Replacing the semi-local operator with a fully non-local form separable 
in the radial variables, allows a factorization of the problem

with

Now, the non-local part can be cheaply and accurately computed as two-center intergrals



It is useful to separate the ionic pseudopotentials 
into a local (l-independent) part and non-local terms

In SIESTA, the local pseudopotential is optimized for smoothness, 
because it is represented in the real space grid

It is defined as the potential generated by a positive charge 
distribution of the form

a and b are chosen to provide simultaneously 
optimal real-space localization and 

reciprocal-space convergence 



General expression for a separable non-local 
potential of the Kleinman-Bylander form

where               are the atomic, reference pseudo-wave function 

The only relevant aspect is to reproduce the all-electron calculation 
for the reference configuration

The reference pseudowave-function should be an eigenstate of the 
pseudo-Hamiltonian with (all electron and pseudo) eigenvalue 

Thus, to reproduce the all-electron scattering 
properties and energy derivatives at the 

reference energy, the projection function can 
be constructed as



Kleinman-Bylander fully non-local separable form

L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425 (1982)

Request: the action of the fully non-local separable pseudopotential              on the 
reference pseudo-wave function is the same as that of the original semi-local form

For that, they proposed 

so that 



Kleinman-Bylander fully non-local separable form

L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425 (1982)

The Kleinman–Bylander projector is then written as 

Where the normalized projection functions are given by



Kleinman-Bylander fully non-local separable form

L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425 (1982)

The strength of the non-locality is determined by  



Balance between softness and 
transferability controlled by Rc

TRANSFERABILITY
SOFTNESS

Rc

Si

Shorter Rc: harder pseudo

Larger Rc: softer pseudo

Accuracy in varying 
environments

Representability by a 
resonable small 
number of PW

First guess: last peak of the 
all electron wave function



A transferable pseudo will reproduce the AE  energy 
levels and wave functions in arbitrary environments

3s2 3p2    (reference)
3s2 3p1 3d1

3s1 3p3

3s1 3p2  3d1

3s0 3p3  3d1

•Compute the energy of two different configurations

•Compute the difference in energy

•For the pseudopotential to be transferible:



Problematic cases: first row elements
 2p and 3d elements

pseudopotential is hard

No nodes because there 
are no p states to be 
orthogonal to

O:  1s2 2s2 2p4  

core valence



Conclusions

•Core electrons…
 highly localized and very depth energy

… are chemically inert

•Pseudopotential idea

 Ignore the dynamics of the core electrons (freeze them)
 And replace their effects by an effective potential

•Pseudopotentials are not unique 

 there might be many “best choices”

•Two overall competing factors: transferability vs hardness

•Always test the pseudopotential in well-known situations

•Norm conservation helps transferability



Howto: input file to generate the pseudopotential













Core electrons are chemically inert



Core electrons are chemically inert



Generation of l-dependent        
norm-conserving pseudopotential

Freedom (different approaches) 

All electron self consistent atomic calculation
Each state l,m treated independently

Identify the valence states

Generate the pseudopotential Vl,total(r) and pseudoorbitals ψl
PS(r)

Vl,total (r) screened pseudopotential acting on valence electrons

“Unscreened” by substracting from the total potential VHxcPS(r)



The pseudopotential operator in the semilocal form:          
local in radial variable, non-local in the angular variable

Matrix elements of the pseudopotential in some basis            assume the form

Where due to the semilocal character of the pseudopotential, 
a factor                  is understood



The pseudopotential operator in the semilocal form:          
local in radial variable, non-local in the angular variable

In either case, the above integral factorizes into two angular-dependent parts 
that can be integrated separately, and a radial integral of the form

The most common basis functions:
- floating (plane waves)

- atom-centered (product of radial function and spherical harmonics)

Radial part of the basis function (for AO) or the spherical Bessel functions (for PW)

Local integral in 
the radial variable


