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What is TDDFT?

What is TDDFT?
TDDFT is an extension of DFT: it is a DFT with time-dependent
external potential
The fundamental degree of freedom is the time-dependent
electronic density ρ(r, t)

Basic theorems

E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).

R. van Leeuwen, Phys. Rev. Lett. 82, 3863 (1999).

G. Vignale, Phys. Rev. A 77, 062511 (2008).
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DFT

There exists a one-to-one correspondence (up to an additive constant)
between the ground-state density ρ(r) and the static external potential
Vext (r).

The expectation value of any physical observable of a many-electron
system is a unique functional of the ground-state electron density ρ(r).

The minimum of the total energy functional gives the ground-state
density ρ(r).

TDDFT

For a given initial state Φ(t = 0) = Φ0, time-dependent potentials
Vext (r, t) and time-dependent densities ρ(r, t) are in a one-to-one
correspondence (up to a purely time-dependent function).

The expectation value of any physical time-dependent observable is a
unique functional of the electron density ρ(r, t) and of the initial state
Φ(t = 0) = Φ0 (in our case: always the ground state).

The stationary point of the action (plus a boundary condition) gives the
density ρ(r, t).
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Action functional

Quantum mechanics

A[Ψ] =

∫ T

0
〈Ψ(t)|i∂t − H|Ψ(t)〉

δA[Ψ]/δΨ = 0 with |δΨ(0)〉 = |δΨ(T )〉 = 0 is equivalent to the
time-dependent Schrödinger equation:

(i∂t − H)|Ψ(t)〉 = 0

TDDFT

Runge Gross theorem⇒ Ψ(t) = Ψ(t)[ρ].

A[ρ] =

∫ T

0
〈Ψ(t)[ρ]|i∂t − H|Ψ(t)[ρ]〉

But δA[ρ]/δρ = 0 is wrong!
The variation of the density at any time t < T causes a variation of the
wavefunction: we cannot set |δΨ(T )〉 = 0. So the correct variational principle
in TDDFT is:

δA[ρ]/δρ = i〈Ψ(T )[ρ]|δΨ(T )[ρ]/δρ〉
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TDDFT summary

(Runge-Gross) Given an initial state, if two time-dependent external potentials v1
and v2 differ more than a time-dependent constant, then the corresponding
time-dependent densities ρ1 and ρ2 are different

(van Leeuwen) If the density ρ1 is produced by a time-dependent external
potential v1 in system 1 (starting from a given initial state), then one can uniquely
construct the potential v2 that produces the same density in system 2 (the choice
of initial state in system 2 is also unique) - “v -representability in TDDFT”



bg=whiteTheory LR TDDFT Approximations

TDDFT summary

(Runge-Gross) Given an initial state, if two time-dependent external potentials v1
and v2 differ more than a time-dependent constant, then the corresponding
time-dependent densities ρ1 and ρ2 are different

(van Leeuwen) If the density ρ1 is produced by a time-dependent external
potential v1 in system 1 (starting from a given initial state), then one can uniquely
construct the potential v2 that produces the same density in system 2 (the choice
of initial state in system 2 is also unique) - “v -representability in TDDFT”



bg=whiteTheory LR TDDFT Approximations

Kohn-Sham equations

DFT

[
− ∇

2

2
+ VKS(r)

)
]ϕi (r) = εiϕi (r)

VKS(r) = VH(r) + Vext (r) + Vxc(r)

ρ(r) =
N∑

i=1

|ϕi (r)|2

Unknown exchange-correlation poten-
tial Vxc(r): functional of the density
ρ(r).

V LDA
xc (r) = V HEG

xc (ρ(r))

TDDFT

[
− ∇

2

2
+VKS(r, t)

]
ϕi (r, t) = i

∂

∂t
ϕi (r, t)

VKS(r, t) = VH(r, t)+Vext (r, t)+Vxc(r, t)

ρ(r, t) =
N∑

i=1

|ϕi (r, t)|2

Unknown exchange-correlation time-
dependent potential Vxc(r, t): func-
tional of the density at all past times
ρ(r, t ′) with t ′ < t (and of the initial
states).

V ALDA
xc (r, t) = V HEG

xc (ρ(r, t))
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Response functions

External perturbation Vext applied on the sample
→ Vtot acting on the electronic system

Potentials

δVtot = δVext + δVind

δVind = vδρ

Dielectric function

ε =
δVext

δVtot
= 1− v

δρ

δVtot

ε−1 =
δVtot

δVext
= 1 + v

δρ

δVext
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Response functions

External perturbation Vext applied on the sample
→ Vtot acting on the electronic system

Dielectric function

ε =
δVext

δVtot
= 1− vP

ε−1 =
δVtot

δVext
= 1 + vχ

P =
δρ

δVtot
χ =

δρ

δVext

χ = P + Pvχ
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Spectra

Spectra

Abs(ω) = lim
q→0

ImεM(q, ω)

Eels(q, ω) = −Im
{

1
εM(q, ω)

}

Eels(q, ω) =
ImεM(q, ω)

[ReεM(q, ω)]2 + [ImεM(q, ω)]2
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Linear response TDDFT

Linear response TDDFT

δρ(1) =

∫
d2χ(1, 2)δVext (2) and δρ(1) =

∫
d2χ0(1, 2)δVKS(2)

Using:
δVKS(1)

δVext (2)
= δ(1, 2) +

δVH(1)

δVext (2)
+
δVxc(1)

δVext (2)

one obtains the Dyson equation of linear response TDDFT :

χ(1, 2) = χ0(1, 2) +

∫
d34χ0(1, 3)[v(3, 4) + fxc(3, 4)]χ(4, 2)

where the exchange-correlation kernel fxc has been defined as:

fxc(1, 2) =
δVxc(1)

δρ(2)

f ALDA
xc (r, r′, t , t ′) = δ(r− r′)δ(t − t ′)

∂V LDA
xc (ρ(r))

∂ρ(r)
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Linear response TDDFT

Exercise: derivation of TDDFT Dyson equation

δρ(1) =

∫
d2χ(1, 2)δVext (2) =

∫
d2χ0(1, 2)δVKS(2)∫

d2χ(1, 2)
δVext (2)

δVext (3)
=

∫
d2χ0(1, 2)

δVKS(2)

δVext (3)

χ(1, 3) =

∫
d2χ0(1, 2)

δVext (2) + δVH(2) + δVxc(2)

δVext (3)

χ(1, 3) = χ0(1, 3) +

∫
d2χ0(1, 2)

[ δVH(2)

δVext (3)
+
δVxc(2)

δVext (3)

]
χ(1, 3) = χ0(1, 3) +

∫
d24χ0(1, 2)

[δVH(2)

δρ(4)

δρ(4)

δVext (3)
+
δVxc(2)

δρ(4)

δρ(4)

δVext (3)

]
δVH(2) =

∫
d5v(2, 5)δρ(5)

χ(1, 3) = χ0(1, 3) +

∫
d24χ0(1, 2)[v(2, 4) + fxc(2, 4)]χ(4, 3)
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Linear response TDDFT

One equation...

χ(1,2) = χ0(1,2) +

∫
d34χ0(1,3)[v(3,4) + fxc(3,4)]χ(4,2)

...many algorithms

Dyson equation in transition space (aka “Casida equation”): finite
systems
Dyson equation in Fourier space: extended systems
Lanczos algorithm - see B. Walker et al., PRL 96 (2006); D.
Rocca et al., J. Chem. Phys. 128 (2008).
Sternheimer equation - see X. Andrade et al., J. Chem. Phys.
126 (2007).
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Linear response TDDFT

Dyson equation

χ(1,2) = χ0(1,2) +

∫
d34χ0(1,3)[v(3,4) + fxc(3,4)]χ(4,2)

Kohn-Sham response function

χ0 (r, r′, ω) =
∑

ij

(fi − fj )
ϕ∗i (r)ϕj (r)ϕ∗j (r′)ϕi (r′)
ω − (εj − εi ) + iη

χ0
G,G′(q, ω) =

2
Ω

∑
vck

(fvk − fck+q)
〈uvk|e−i(q+G)r|uck+q〉〈uck+q|ei(q+G′)r′ |uvk〉

ω − (εck+q − εvk) + iη

where we use ϕnk(r) = eikrunk(r)
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TDDFT flow chart

Ground state calculation : εi , ϕi ⇒ construction of χ0

χG,G′(q, ω) = χ0
G,G′(q, ω)+

∑
G1,G2

χ0
G,G1

(q, ω)[vG1 (q)δG1,G2 +f xc
G1,G2

]χG2,G′(q, ω)

ε−1
G,G′(q, ω) = δG,G′ + vG(q)χG,G′(q, ω)

εM(ω) = lim
q→0

1
ε−1

G=0,G′=0(q, ω)

Abs(ω) = Im{εM(ω)} Eels(ω) = −Im

{
1

εM(ω)

}
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Approximations

Dyson equation

χ = χ0 + χ0(v + fxc)χ

Approximations

Independent-particle approximation (IPA): v = fxc = 0
Random-phase approximation (RPA): fxc = 0
TDLDA: fxc = f ALDA

xc
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Independent particles

ImεM (ω) = − lim
q→0

vG=0(q)Imχ0
G=0,G′=0(q, ω)

χ0
G,G′(q, ω) =

2
Ω

∑
vck

(fvk − fck+q)
〈uvk|e−i(q+G)r|uck+q〉〈uck+q|ei(q+G′)r′ |uvk〉

ω − (εck+q − εvk) + iη

Fermi’s golden rule

ImεM (ω) = lim
q→0

8π2

Ωq2

∑
vck

|〈uck+q|eiqr|uvk〉|2δ(ω − (εck+q − εvk))
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Independent particles
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Approximations

Dyson equation

χ = χ0 + χ0(v + fxc)χ

can be equivalently be written as:

χ = χ0 + χ0(v0 + v̄ + fxc)χ

Coulomb interaction

v ≡ v0 + v̄

v0 = vG(q) for G = 0

v̄G(q) =

{
0 for G = 0
vG(q) for G 6= 0
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The Coulomb term v

The Coulomb term

v = v0 + v̄

long-range v0 ⇒ difference between Abs and Eels
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Coulomb term v0: Abs vs. Eels

F. Sottile, PhD thesis (2003) - Bulk silicon: absorption vs. EELS.
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v = v0 + v̄
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what about v̄ ?
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The Coulomb term v

The Coulomb term

v = v0 + v̄

long-range v0 ⇒ difference between Abs and Eels

what about v̄ ?

v̄ is responsible for crystal local-field effects
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Coulomb term v̄ : local fields

A. G. Marinopoulos et al., PRL 89 (2002) - Graphite EELS
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What are local fields?

Effective medium theory
Uniform field E0 applied to a dielectric sphere with dielectric constant ε in
vacuum. From continuity conditions at the interface:

P =
3

4π
ε− 1
ε+ 2

E0

Jackson, Classical electrodynamics, Sec. 4.4.
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What are local fields?

Effective medium theory
Regular lattice of objects dimensionality d of material ε1 in vacuum
Maxwell-Garnett formulas

dot (O D system)

ImεM (ω) ∝ 9
Imε1(ω)

[Reε1(ω) + 2]2 + [Imε1(ω)]2

wire (1D system)

Imε‖M (ω) ∝Imε1(ω)

Imε⊥M (ω) ∝4
Imε1(ω)

[Reε1(ω) + 1]2 + [Imε1(ω)]2
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What are local fields?

F. Bruneval et al., PRL 94 (2005) -
Si nanowires

S. Botti et al., PRB 79 (2009) -
SiGe nanodots



bg=whiteTheory LR TDDFT Approximations

fxc kernel: TDLDA

Up to now fxc = 0 (RPA).
What about the kernel fxc?
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fxc kernel: TDLDA
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fxc kernel: TDLDA

H. Weissker et al, PRL 97 (2006) - Bulk Si - IXS
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fxc kernel: TDLDA

Sodium - IXS
Exp. M. Cazzaniga, et al, PRB 84 (2011);
Theo: M. Panholzer et al, PRL 120 (2018).
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fxc kernel: TDLDA

Sodium - IXS
Exp. M. Cazzaniga, et al, PRB 84 (2011);
Theo: M. Panholzer et al, PRL 120 (2018).
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fxc kernel: TDLDA

M. Marques et al., J. Chem. Phys. 115 (2001) - SiH4: Vxc vs. fxc
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fxc kernel: TDLDA

Bulk silicon: absorption
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fxc kernel: TDLDA

Solid argon: absorption
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fxc kernel: TDLDA

Summary

TDLDA:

YES for EELS of solids and absorption of finite systems
NO for absorption of solids

What is missing?
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