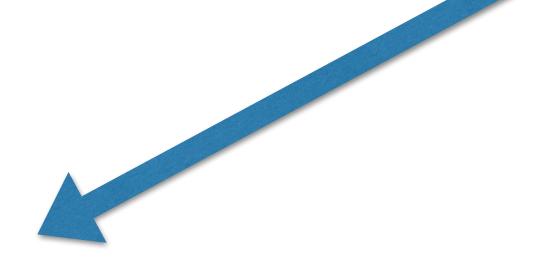
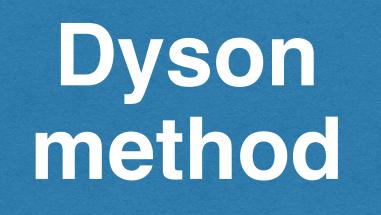
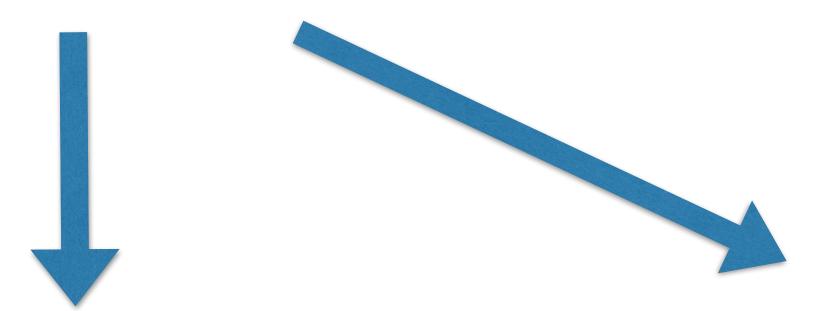


NATIONAL CENTRE OF COMPETENCE IN RESEARCH

Time-dependent density-functional theory: Liouville-Lanczos and Sternheimer approaches


Iurii Timrov


Paul Scherrer Institut (PSI), Switzerland


Different methods within TDDFT

Sternheimer method

Liouville-Lanczos method

$$\chi_{\mathbf{G},\mathbf{G}'}(\mathbf{q},\omega) = \chi^{0}_{\mathbf{G},\mathbf{G}'}(\mathbf{q},\omega) + \sum_{\mathbf{G}_{1},\mathbf{G}_{2}} \chi^{0}_{\mathbf{G},\mathbf{G}_{1}}(\mathbf{q},\omega) \Big[v_{\mathbf{G}_{1}}(\mathbf{q})\delta_{\mathbf{G}_{1},\mathbf{G}_{2}} + f^{\mathrm{xc}}_{\mathbf{G}_{1},\mathbf{G}_{2}}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big[v_{\mathbf{G}_{1}}(\mathbf{q},\omega) \Big[v_{\mathbf{G}_{2}}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big[v_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big[v_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big[v_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big[v_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}'}(\mathbf{q},\omega$$

 $v_{\mathbf{G}}(\mathbf{q}) = 4\pi e^2/|\mathbf{q} + \mathbf{G}|^2$ is the Fourier transform of the Coulomb potential

 $f_{\mathbf{G},\mathbf{G}'}^{\mathrm{xc}}(\mathbf{q},\omega)$ is the Fourier transform of the exchange-correlation kernel

Dyson method

(RPA: $f_{xc} = 0$)

$$\chi_{\mathbf{G},\mathbf{G}'}(\mathbf{q},\omega) = \chi^{0}_{\mathbf{G},\mathbf{G}'}(\mathbf{q},\omega) + \sum_{\mathbf{G}_{1},\mathbf{G}_{2}} \chi^{0}_{\mathbf{G},\mathbf{G}_{1}}(\mathbf{q},\omega) \Big[v_{\mathbf{G}_{1}}(\mathbf{q})\delta_{\mathbf{G}_{1},\mathbf{G}_{2}} + f^{\mathrm{xc}}_{\mathbf{G}_{1},\mathbf{G}_{2}}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big[\chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big[v_{\mathbf{G}_{1},\mathbf{G}_{2}}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big[v_{\mathbf{G}_{1},\mathbf{G}_{2}}(\mathbf{q},\omega) \Big[v_{\mathbf{G}_{1},\mathbf{G}_{2}}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big[v_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big[v_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big[v_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big[v_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big[v_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big[v_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big[v_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big[v_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf$$

 $v_{\mathbf{G}}(\mathbf{q}) = 4\pi e^2/|\mathbf{q} + \mathbf{G}|^2$ is the Fourier transform of the Coulomb potential

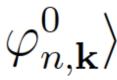
 $f_{\mathbf{G},\mathbf{G}'}^{\mathrm{xc}}(\mathbf{q},\omega)$ is the Fourier transform of the exchange-correlation kernel

Dyson method

(RPA: $f_{xc} = 0$)

$$\chi_{\mathbf{G},\mathbf{G}'}(\mathbf{q},\omega) = \chi^{0}_{\mathbf{G},\mathbf{G}'}(\mathbf{q},\omega) + \sum_{\mathbf{G}_{1},\mathbf{G}_{2}} \chi^{0}_{\mathbf{G},\mathbf{G}_{1}}(\mathbf{q},\omega) \Big[v_{\mathbf{G}_{1}}(\mathbf{q})\delta_{\mathbf{G}_{1},\mathbf{G}_{2}} + f^{\mathrm{xc}}_{\mathbf{G}_{1},\mathbf{G}_{2}}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big[\chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big[v_{\mathbf{G}_{1},\mathbf{G}_{2}}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big[v_{\mathbf{G}_{1},\mathbf{G}_{2}}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big[v_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big[v_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big[v_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big[v_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big[v_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}'}(\mathbf{q},\omega) \Big$$

 $v_{\bf G}({f q}) = 4\pi e^2/|{f q}+{f G}|^2$ is the Fourier transform of the Coulomb potential


 $f_{\mathbf{G},\mathbf{G}'}^{\mathrm{xc}}(\mathbf{q},\omega)$ is the Fourier transform of the exchange-correlation kernel

$$\chi^{0}_{\mathbf{G},\mathbf{G}'}(\mathbf{q},\omega) = \frac{1}{\Omega} \sum_{\mathbf{k}}^{\mathrm{BZ}} \sum_{n,n'} \frac{f_{n,\mathbf{k}} - f_{n',\mathbf{k}+\mathbf{q}}}{\hbar\omega + \varepsilon_{n,\mathbf{k}} - \varepsilon_{n',\mathbf{k}+\mathbf{q}} + i\eta} \left\langle \varphi^{0}_{n,\mathbf{k}} | e^{-i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}} | \varphi^{0}_{n',\mathbf{k}+\mathbf{q}} \right\rangle \left\langle \varphi^{0}_{n',\mathbf{k}+\mathbf{q}} | e^{i(\mathbf{q}+\mathbf{G}')\cdot\mathbf{r}'} | \varphi^{0}_{n',\mathbf{k}+\mathbf{q}} \right\rangle$$

Dyson method

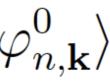
(RPA: $f_{xc} = 0$)

$$\chi_{\mathbf{G},\mathbf{G}'}(\mathbf{q},\omega) = \chi^{0}_{\mathbf{G},\mathbf{G}'}(\mathbf{q},\omega) + \sum_{\mathbf{G}_{1},\mathbf{G}_{2}} \chi^{0}_{\mathbf{G},\mathbf{G}_{1}}(\mathbf{q},\omega) \Big[v_{\mathbf{G}_{1}}(\mathbf{q})\delta_{\mathbf{G}_{1},\mathbf{G}_{2}} + f^{\mathrm{xc}}_{\mathbf{G}_{1},\mathbf{G}_{2}}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big[\chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big[v_{\mathbf{G}_{1},\mathbf{G}_{2}}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big[v_{\mathbf{G}_{1},\mathbf{G}_{2}}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big[v_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big[v_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big[v_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big[v_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big[v_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \Big] \chi_{\mathbf{G}'}(\mathbf{q},\omega) \Big$$

 $v_{\mathbf{G}}(\mathbf{q}) = 4\pi e^2/|\mathbf{q} + \mathbf{G}|^2$ is the Fourier transform of the Coulomb potential

 $f_{\mathbf{G},\mathbf{G}'}^{\mathrm{xc}}(\mathbf{q},\omega)$ is the Fourier transform of the exchange-correlation kernel

$$\chi^{0}_{\mathbf{G},\mathbf{G}'}(\mathbf{q},\omega) = \frac{1}{\Omega} \sum_{\mathbf{k}}^{\mathrm{BZ}} \sum_{n,n'} \frac{f_{n,\mathbf{k}} - f_{n',\mathbf{k}+\mathbf{q}}}{\hbar\omega + \varepsilon_{n,\mathbf{k}} - \varepsilon_{n',\mathbf{k}+\mathbf{q}} + i\eta} \left\langle \varphi^{0}_{n,\mathbf{k}} | e^{-i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}} | \varphi^{0}_{n',\mathbf{k}+\mathbf{q}} \right\rangle \left\langle \varphi^{0}_{n',\mathbf{k}+\mathbf{q}} | e^{i(\mathbf{q}+\mathbf{G}')\cdot\mathbf{r}'} | \varphi^{0}_{n',\mathbf{k}+\mathbf{q}} \right\rangle$$

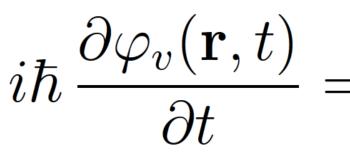

- Sum over numerous empty states n' in the calculation of $\chi^0_{\mathbf{G},\mathbf{G}'}$
- Multiplication and inversion of large matrices

Dyson method

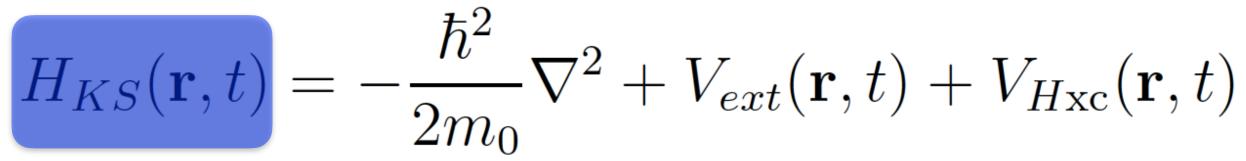
(RPA: $f_{xc} = 0$)

- The matrices $\chi^0_{G,G'}$ and $\chi^{'}_{G,G}$ must be computed for every value of frequency

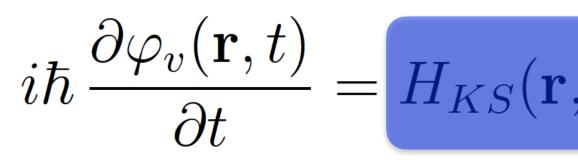
The time-dependent Kohn-Sham equations:


 $i\hbar \frac{\partial \varphi_v(\mathbf{r}, t)}{\partial t} = H_{KS}(\mathbf{r}, t) \, \varphi_v(\mathbf{r}, t)$

The Kohn-Sham Hamiltonian:


Sternheimer method

The time-dependent Kohn-Sham equations:

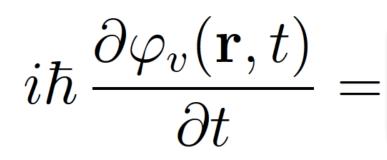

The Kohn-Sham Hamiltonian:

 $i\hbar \frac{\partial \varphi_v(\mathbf{r}, t)}{\partial t} = H_{KS}(\mathbf{r}, t) \varphi_v(\mathbf{r}, t)$

The time-dependent Kohn-Sham equations:

The Kohn-Sham Hamiltonian:

$$H_{KS}(\mathbf{r},t) = -\frac{\hbar^2}{2m_0}\nabla^2 + V_{ext}(\mathbf{r},t) + V_{Hxc}(\mathbf{r},t)$$


$$V_{ext}(\mathbf{r},t) = V_e^0$$

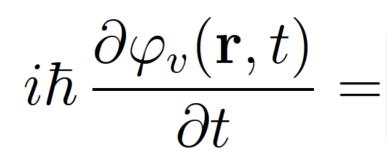
$$= H_{KS}(\mathbf{r},t) \, \varphi_v(\mathbf{r},t)$$

 $V_{ext}^0(\mathbf{r}) + V_{ext}'(\mathbf{r},t)$

The time-dependent Kohn-Sham equations:

The Kohn-Sham Hamiltonian:

$$H_{KS}(\mathbf{r},t) = -\frac{\hbar^2}{2m_0}\nabla^2 + \frac{V_{ext}(\mathbf{r},t)}{V_{Hxc}(\mathbf{r},t)} + V_{Hxc}(\mathbf{r},t)$$


$$V_{ext}(\mathbf{r},t) = V_{ext}^0(\mathbf{r}) + V_{ext}'(\mathbf{r},t)$$

$$n(\mathbf{r},t) = n^0(\mathbf{r}) + n'(\mathbf{r},t)$$

$$= H_{KS}(\mathbf{r},t) \, \varphi_v(\mathbf{r},t)$$

The time-dependent Kohn-Sham equations:

The Kohn-Sham Hamiltonian:

$$H_{KS}(\mathbf{r},t) = -\frac{\hbar^2}{2m_0}\nabla^2 + \frac{V_{ext}(\mathbf{r},t)}{V_{Hxc}(\mathbf{r},t)} + \frac{V_{Hxc}(\mathbf{r},t)}{V_{Hxc}(\mathbf{r},t)}$$

$$V_{ext}(\mathbf{r},t) = V_{ext}^0(\mathbf{r}) + V_{ext}'(\mathbf{r},t)$$

$$n(\mathbf{r},t) = n^0(\mathbf{r}) + n'(\mathbf{r},t)$$

$$V_{Hxc}(\mathbf{r},t) = V_{Hxc}^0(\mathbf{r}) + V_{Hxc}'(\mathbf{r},t)$$

$$= H_{KS}(\mathbf{r},t) \, \varphi_v(\mathbf{r},t)$$

Therefore, we can rewrite the Kohn-Sham Hamiltonian as:

 $H_{KS}(\mathbf{r},t) = H^0(\mathbf{r}) + V'(\mathbf{r},t)$

Therefore, we can rewrite the Kohn-Sham Hamiltonian as: $H_{KS}(\mathbf{r},t) = E$ **+**2

$$H^0(\mathbf{r}) = -\frac{\hbar^2}{2m_0}\nabla^2$$

$$V'(\mathbf{r},t) =$$

$$H^0(\mathbf{r}) + V'(\mathbf{r},t)$$

$$+ V_{ext}^0(\mathbf{r}) + V_{Hxc}^0(\mathbf{r})$$

$$V'_{ext}(\mathbf{r},t) + V'_{Hxc}(\mathbf{r},t)$$

Therefore, we can rewrite the Kohn-Sham Hamiltonian as: $H_{KS}(\mathbf{r},t) = H$ $H^0(\mathbf{r}) = -\frac{\hbar^2}{2m_0}\nabla^2$ $V'(\mathbf{r},t) = V'_{ext}(\mathbf{r},t)$

The time-dependent Kohn-Sham wavefunctions

$$I^0(\mathbf{r}) + V'(\mathbf{r},t)$$

$$+ V_{ext}^0(\mathbf{r}) + V_{Hxc}^0(\mathbf{r})$$

$$,t) + V'_{Hxc}(\mathbf{r},t)$$

s are:
$$\varphi_v(\mathbf{r},t) = e^{-i\varepsilon_v t/\hbar} \left[\varphi_v^0(\mathbf{r}) + \varphi_v'(\mathbf{r},t) \right]$$

Therefore, we can rewrite the Kohn-Sham Hamiltonian as: $H_{KS}(\mathbf{r},t) = H$ $H^{0}(\mathbf{r}) = -\frac{\hbar^2}{2m_0}\nabla^2$ $V'(\mathbf{r},t) = V'_{ext}(\mathbf{r},t)$

The time-dependent Kohn-Sham wavefunctions

This allows us to write the time-dependent linear-response Kohn-Sham equations (Sternheimer eqs.) as:

$$i\hbar \frac{\partial \varphi_v'(\mathbf{r},t)}{\partial t} = (\hat{H}^0 - \varepsilon_v)\varphi_v'(\mathbf{r},t) + \left[V_{ext}'(\mathbf{r},t) + V_{Hxc}'(\mathbf{r},t)\right]\varphi_v^0(\mathbf{r})$$
$$-i\hbar \frac{\partial \varphi_v'^*(\mathbf{r},t)}{\partial t} = (\hat{H}^0 - \varepsilon_v)\varphi_v'^*(\mathbf{r},t) + \left[V_{ext}'(\mathbf{r},t) + V_{Hxc}'(\mathbf{r},t)\right]\varphi_v^{0*}(\mathbf{r})$$

$$I^0(\mathbf{r}) + V'(\mathbf{r},t)$$

$$+ V_{ext}^0(\mathbf{r}) + V_{Hxc}^0(\mathbf{r})$$

$$,t) + V'_{Hxc}(\mathbf{r},t)$$

are:
$$\varphi_v(\mathbf{r},t) = e^{-i\varepsilon_v t/\hbar} \left[\varphi_v^0(\mathbf{r}) + \varphi_v'(\mathbf{r},t) \right]$$

$$(\hat{H}^{0} - \varepsilon_{v} - \hbar\omega)\tilde{\varphi}_{v}'(\mathbf{r}, \omega) + \hat{P}_{c}\tilde{V}_{Hxc}'(\mathbf{r}, \omega)\varphi_{v}^{0}(\mathbf{r}) = -\hat{P}_{c}\tilde{V}_{ext}'(\mathbf{r}, \omega)\varphi_{v}^{0}(\mathbf{r}),$$
$$(\hat{H}^{0} - \varepsilon_{v} + \hbar\omega)\tilde{\varphi}_{v}'^{*}(\mathbf{r}, -\omega) + \hat{P}_{c}\tilde{V}_{Hxc}'(\mathbf{r}, \omega)\varphi_{v}^{0}(\mathbf{r}) = -\hat{P}_{c}\tilde{V}_{ext}'(\mathbf{r}, \omega)\varphi_{v}^{0}(\mathbf{r})$$

$$(\hat{H}^{0} - \varepsilon_{v} - \hbar\omega)\tilde{\varphi}_{v}'(\mathbf{r},\omega) + \hat{P}_{c}\tilde{V}_{Hxc}'(\mathbf{r},\omega)\varphi_{v}^{0}(\mathbf{r}) = -\hat{P}_{c}\tilde{V}_{ext}'(\mathbf{r},\omega)\varphi_{v}^{0}(\mathbf{r}),$$
$$(\hat{H}^{0} - \varepsilon_{v} + \hbar\omega)\tilde{\varphi}_{v}'^{*}(\mathbf{r},-\omega) + \hat{P}_{c}\tilde{V}_{Hxc}'(\mathbf{r},\omega)\varphi_{v}^{0}(\mathbf{r}) = -\hat{P}_{c}\tilde{V}_{ext}'(\mathbf{r},\omega)\varphi_{v}^{0}(\mathbf{r})$$

$$\tilde{V}'_{Hxc}(\mathbf{r},\omega) = \int \left[\frac{e^2}{|\mathbf{r}-\mathbf{r}'|} + f_{xc}(\mathbf{r},\mathbf{r}')\right] \,\tilde{n}'(\mathbf{r}',\omega)\,d\mathbf{r}'$$

$$(\hat{H}^{0} - \varepsilon_{v} - \hbar\omega)\tilde{\varphi}_{v}'(\mathbf{r},\omega) + \hat{P}_{c}\tilde{V}_{Hxc}'(\mathbf{r},\omega)\varphi_{v}^{0}(\mathbf{r}) = -\hat{P}_{c}\tilde{V}_{ext}'(\mathbf{r},\omega)\varphi_{v}^{0}(\mathbf{r}),$$
$$(\hat{H}^{0} - \varepsilon_{v} + \hbar\omega)\tilde{\varphi}_{v}'^{*}(\mathbf{r},-\omega) + \hat{P}_{c}\tilde{V}_{Hxc}'(\mathbf{r},\omega)\varphi_{v}^{0}(\mathbf{r}) = -\hat{P}_{c}\tilde{V}_{ext}'(\mathbf{r},\omega)\varphi_{v}^{0}(\mathbf{r})$$

$$\tilde{V}'_{Hxc}(\mathbf{r},\omega) = \int \left[\frac{e^2}{|\mathbf{r}-\mathbf{r}'|} + f_{xc}(\mathbf{r},\mathbf{r}')\right] \tilde{n}'(\mathbf{r}',\omega) d\mathbf{r}'$$

$$\tilde{n}'(\mathbf{r},\omega) = 2\sum_{v} \left[\tilde{\varphi}'_{v}(\mathbf{r},\omega) \varphi_{v}^{0*}(\mathbf{r}) + \tilde{\varphi}'_{v}^{*}(\mathbf{r},-\omega) \varphi_{v}^{0}(\mathbf{r}) \right]$$

$$(\hat{H}^{0} - \varepsilon_{v} - \hbar\omega)\tilde{\varphi}_{v}'(\mathbf{r},\omega) + \hat{P}_{c}\tilde{V}_{Hxc}'(\mathbf{r},\omega)\varphi_{v}^{0}(\mathbf{r}) = -\hat{P}_{c}\tilde{V}_{ext}'(\mathbf{r},\omega)\varphi_{v}^{0}(\mathbf{r}),$$
$$(\hat{H}^{0} - \varepsilon_{v} + \hbar\omega)\tilde{\varphi}_{v}'^{*}(\mathbf{r},-\omega) + \hat{P}_{c}\tilde{V}_{Hxc}'(\mathbf{r},\omega)\varphi_{v}^{0}(\mathbf{r}) = -\hat{P}_{c}\tilde{V}_{ext}'(\mathbf{r},\omega)\varphi_{v}^{0}(\mathbf{r})$$

$$\tilde{V}'_{Hxc}(\mathbf{r},\omega) = \int \left[\frac{e^2}{|\mathbf{r}-\mathbf{r}'|} + f_{xc}(\mathbf{r},\mathbf{r}')\right] \tilde{n}'(\mathbf{r}',\omega) d\mathbf{r}'$$

$$\tilde{n}'(\mathbf{r},\omega) = 2\sum_{v} \left[\tilde{\varphi}'_{v}(\mathbf{r},\omega) \varphi_{v}^{0*}(\mathbf{r}) + \tilde{\varphi}'_{v}^{*}(\mathbf{r},-\omega) \varphi_{v}^{0}(\mathbf{r}) \right]$$

$$(\hat{H}^{0} - \varepsilon_{v} - \hbar\omega)\tilde{\varphi}_{v}'(\mathbf{r},\omega) + \hat{P}_{c}\tilde{V}_{Hxc}'(\mathbf{r},\omega)\varphi_{v}^{0}(\mathbf{r}) = -\hat{P}_{c}\tilde{V}_{ext}'(\mathbf{r},\omega)\varphi_{v}^{0}(\mathbf{r}),$$
$$(\hat{H}^{0} - \varepsilon_{v} + \hbar\omega)\tilde{\varphi}_{v}'^{*}(\mathbf{r},-\omega) + \hat{P}_{c}\tilde{V}_{Hxc}'(\mathbf{r},\omega)\varphi_{v}^{0}(\mathbf{r}) = -\hat{P}_{c}\tilde{V}_{ext}'(\mathbf{r},\omega)\varphi_{v}^{0}(\mathbf{r})$$

$$\tilde{V}'_{Hxc}(\mathbf{r},\omega) = \int \left[\frac{e^2}{|\mathbf{r}-\mathbf{r}'|} + f_{xc}(\mathbf{r},\mathbf{r}')\right] \tilde{n}'(\mathbf{r}',\omega) d\mathbf{r}'$$

$$\tilde{n}'(\mathbf{r},\omega) = 2\sum_{v} \left[\tilde{\varphi}'_{v}(\mathbf{r},\omega) \varphi_{v}^{0*}(\mathbf{r}) + \tilde{\varphi}'_{v}(\mathbf{r},-\omega) \varphi_{v}^{0}(\mathbf{r}) \right]$$

$$(\hat{H}^{0} - \varepsilon_{v} - \hbar\omega)\tilde{\varphi}_{v}'(\mathbf{r},\omega) + \hat{P}_{c}\tilde{V}_{Hxc}'(\mathbf{r},\omega)\varphi_{v}^{0}(\mathbf{r}) = -\hat{P}_{c}\tilde{V}_{ext}'(\mathbf{r},\omega)\varphi_{v}^{0}(\mathbf{r}),$$
$$(\hat{H}^{0} - \varepsilon_{v} + \hbar\omega)\tilde{\varphi}_{v}'^{*}(\mathbf{r},-\omega) + \hat{P}_{c}\tilde{V}_{Hxc}'(\mathbf{r},\omega)\varphi_{v}^{0}(\mathbf{r}) = -\hat{P}_{c}\tilde{V}_{ext}'(\mathbf{r},\omega)\varphi_{v}^{0}(\mathbf{r})$$

 $ilde{V}_{H\mathbf{x}\mathbf{c}}'(\mathbf{r},\omega) = \int \left[rac{e^2}{|\mathbf{r}-\mathbf{r}'|}
ight]$ Projector on empty states: $\hat{P}_{c} = \sum_{c} |\varphi_{c}^{0}\rangle\langle\varphi_{c}^{0}|$ $\hat{P}_{c} = 1 - \hat{P}_{v}$ $\tilde{n}'(\mathbf{r},\omega) = 2\sum \left[\tilde{\varphi}'_v(\mathbf{r},\omega)\right]$

$$\overline{f'} + f_{\mathrm{xc}}(\mathbf{r},\mathbf{r}') \int \tilde{n}'(\mathbf{r}',\omega) d\mathbf{r}'$$

$$\varphi_v^{0*}(\mathbf{r}) + \tilde{\varphi}_v^{\prime*}(\mathbf{r}, -\omega)\varphi_v^0(\mathbf{r}) \Big]$$

$$(\hat{H}^{0} - \varepsilon_{v} - \hbar\omega)\tilde{\varphi}_{v}'(\mathbf{r},\omega) + \hat{P}_{c}\tilde{V}_{Hxc}'(\mathbf{r},\omega)\varphi_{v}^{0}(\mathbf{r}) = -\hat{P}_{c}\tilde{V}_{ext}'(\mathbf{r},\omega)\varphi_{v}^{0}(\mathbf{r}),$$
$$(\hat{H}^{0} - \varepsilon_{v} + \hbar\omega)\tilde{\varphi}_{v}'^{*}(\mathbf{r},-\omega) + \hat{P}_{c}\tilde{V}_{Hxc}'(\mathbf{r},\omega)\varphi_{v}^{0}(\mathbf{r}) = -\hat{P}_{c}\tilde{V}_{ext}'(\mathbf{r},\omega)\varphi_{v}^{0}(\mathbf{r})$$

 $ilde{V}_{H ext{xc}}^{\prime}(\mathbf{r},\omega) = \int \left[rac{e^2}{|\mathbf{r}-\mathbf{r}'|}
ight]$ Projector on empty states: $\hat{P}_{c} = \sum_{c} |\varphi_{c}^{0}\rangle\langle\varphi_{c}^{0}|$ $\hat{P}_{c} = 1 - \hat{P}_{v}$ $\tilde{n}'(\mathbf{r},\omega) = 2 \sum \left[\tilde{\varphi}'_v(\mathbf{r},\omega) \right]$

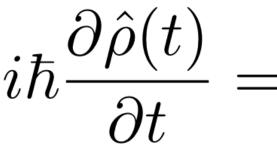
Output Description of the second s

By performing a Fourier transformation from the time domain to the frequency domain we obtain:

$$\frac{1}{|\mathbf{r}|} + f_{\mathrm{xc}}(\mathbf{r},\mathbf{r}') \int \tilde{n}'(\mathbf{r}',\omega) d\mathbf{r}'$$

$$\varphi_v^{0*}(\mathbf{r}) + \tilde{\varphi}_v^{\prime*}(\mathbf{r}, -\omega)\varphi_v^0(\mathbf{r})$$

 \bigcirc No need in empty states (thanks to the projector \hat{P}_c)


The quantum Liouville equation describes the time evolution of the charge density matrix operator:

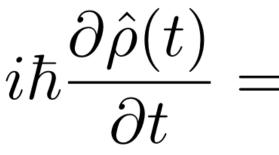
B. Walker, A.M. Saitta, R. Gebauer, and S. Baroni, Phys. Rev. Lett. 96, 113001 (2006). D. Rocca, R. Gebauer, Y. Saad, and S. Baroni, J. Chem. Phys. **128**, 154105 (2008).

 $i\hbar \frac{\partial \hat{\rho}(t)}{\partial t} = [\hat{H}_{KS}(t), \hat{\rho}(t)]$

The quantum Liouville equation describes the time evolution of the charge density matrix operator:

In the coordinate representation, the charge density matrix reads:

 $\rho(\mathbf{r},\mathbf{r}';t)=2$


B. Walker, A.M. Saitta, R. Gebauer, and S. Baroni, Phys. Rev. Lett. 96, 113001 (2006). D. Rocca, R. Gebauer, Y. Saad, and S. Baroni, J. Chem. Phys. **128**, 154105 (2008).

 $i\hbar \frac{\partial \hat{\rho}(t)}{\partial t} = [\hat{H}_{KS}(t), \hat{\rho}(t)]$

$$\sum_{v} \varphi_{v}(\mathbf{r}, t) \,\varphi_{v}^{*}(\mathbf{r}', t)$$

The quantum Liouville equation describes the time evolution of the charge density matrix operator:

In the coordinate representation, the charge density matrix reads:

$$\rho(\mathbf{r}, \mathbf{r}'; t) = 2 \sum_{v} \varphi_{v}(\mathbf{r}, t) \varphi_{v}^{*}(\mathbf{r}', t)$$

Using the linear response theory, we can rewrite the quantum Liouville equation to first order as:

$$i\hbar\frac{\partial\hat{\rho}'(t)}{\partial t} = [\hat{H}^0, \hat{\rho}'(t)] + [\hat{V}'_{Hxc}(t), \hat{\rho}^0] + [\hat{V}'_{ext}(t), \hat{\rho}^0]$$

$$\rho'(\mathbf{r},\mathbf{r}';t) = 2\sum_{v} \left[\varphi'_{v}(\mathbf{r},t)\varphi^{0*}_{v}(\mathbf{r}') + \varphi'^{*}_{v}(\mathbf{r}',t)\varphi^{0}_{v}(\mathbf{r})\right]$$

B. Walker, A.M. Saitta, R. Gebauer, and S. Baroni, Phys. Rev. Lett. 96, 113001 (2006). D. Rocca, R. Gebauer, Y. Saad, and S. Baroni, J. Chem. Phys. **128**, 154105 (2008).

 $i\hbar \frac{\partial \hat{\rho}(t)}{\partial t} = [\hat{H}_{KS}(t), \hat{\rho}(t)]$

Let use rewrite the linear-response quantum Liouville equation by defining the Liouville superoperator:

$$i\hbar \frac{\partial \hat{\rho}'(t)}{\partial t} = \hat{\mathcal{L}} \cdot \hat{\rho}'(t) + [\hat{V}'_{ext}(t), \hat{\rho}^0]$$
$$\hat{\mathcal{L}} \cdot \hat{\rho}' = [\hat{H}^0, \hat{\rho}'] + [V'_{Hxc}[\hat{\rho}'], \hat{\rho}^0]$$

Let use rewrite the linear-response quantum Liouville equation by defining the Liouville superoperator:

$$i\hbar \frac{\partial \hat{\rho}'(t)}{\partial t} = \hat{\mathcal{L}} \cdot \hat{\rho}'(t) + [\hat{V}'_{ext}(t), \hat{\rho}^0]$$
$$\hat{\mathcal{L}} \cdot \hat{\rho}' = [\hat{H}^0, \hat{\rho}'] + [V'_{Hxc}[\hat{\rho}'], \hat{\rho}^0]$$

Now let us perform a Fourier transform from the time domain to the frequency domain:

$$\left(\hbar\omega - \hat{\mathcal{L}}\right) \cdot \hat{\rho}'(\omega) = [\hat{V}'_{ext}(\omega), \hat{\rho}^0]$$

Let use rewrite the linear-response quantum Liouville equation by defining the Liouville superoperator:

$$i\hbar \frac{\partial \hat{\rho}'(t)}{\partial t} = \hat{\mathcal{L}} \cdot \hat{\rho}'(t) + [\hat{V}'_{ext}(t), \hat{\rho}^0]$$
$$\hat{\mathcal{L}} \cdot \hat{\rho}' = [\hat{H}^0, \hat{\rho}'] + [V'_{Hxc}[\hat{\rho}'], \hat{\rho}^0]$$

Now let us perform a Fourier transform from the time domain to the frequency domain:

$$\begin{pmatrix} \hbar\omega - \hat{\mathcal{L}} \end{pmatrix} \cdot \hat{\rho}'(\omega) = [\hat{V}'_{ext}(\omega), \hat{\rho}^0]$$

$$\hat{\rho}'(\omega) = \left(\hbar\omega - \hat{\mathcal{L}} \right)^{-1} \cdot [\hat{V}'_{ext}(\omega), \hat{\rho}^0]$$

$$\left(\hbar \omega - \hat{\mathcal{L}} \right) \cdot \hat{\rho}'(\omega) = \left[\hat{V}'_{ext}(\omega), \hat{\rho}^0 \right]$$
$$\hat{\rho}'(\omega) = \left(\hbar \omega - \hat{\mathcal{L}} \right)^{-1} \cdot \left[\hat{V}'_{ext}(\omega), \hat{\rho}^0 \right]$$

Let use rewrite the linear-response quantum Liouville equation by defining the Liouville superoperator:

$$i\hbar \frac{\partial \hat{\rho}'(t)}{\partial t} = \hat{\mathcal{L}} \cdot \hat{\rho}'(t) + [\hat{V}'_{ext}(t), \hat{\rho}^0]$$
$$\hat{\mathcal{L}} \cdot \hat{\rho}' = [\hat{H}^0, \hat{\rho}'] + [V'_{Hxc}[\hat{\rho}'], \hat{\rho}^0]$$

Now let us perform a Fourier transform from the time domain to the frequency domain:

$$\begin{pmatrix} \hbar\omega - \hat{\mathcal{L}} \end{pmatrix} \cdot \hat{\rho}'(\omega) = [\hat{V}'_{ext}(\omega), \hat{\rho}^0]$$

$$\hat{\rho}'(\omega) = \left(\hbar\omega - \hat{\mathcal{L}} \right)^{-1} \cdot [\hat{V}'_{ext}(\omega), \hat{\rho}^0]$$

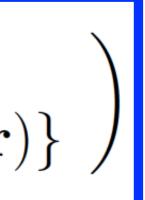
$$\chi_A(\omega) = \operatorname{Tr}[\hat{A} \, \hat{\rho}'(\omega)]$$

Lanczos recursion How to solve the linear-response quantum Liouville equation in practice? algorithm

Lanczos recursion How to solve the linear-response quantum Liouville equation in practice? algorithm

We define the standard batch representation: $q_v(\mathbf{r}) = \frac{1}{2} \left[\tilde{\varphi}'_v(\mathbf{r}, \omega) + \tilde{\varphi}'^*_v(\mathbf{r}, -\omega) \right]$ $\mathbf{q} = \{q_v(\mathbf{r})\}$

$$p_{v}(\mathbf{r}) = \frac{1}{2} \left[\tilde{\varphi}'_{v}(\mathbf{r}, \omega) - \tilde{\varphi}'^{*}_{v}(\mathbf{r}, -\omega) \right]$$
$$\mathbf{p} = \{ p_{v}(\mathbf{r}) \}$$

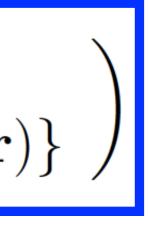

Lanczos recursion How to solve the linear-response quantum Liouville equation in practice? algorithm

We define the standard batch representation: $q_v(\mathbf{r}) = \frac{1}{2} \left[\tilde{\varphi}'_v(\mathbf{r}, \omega) + \tilde{\varphi}'^*_v(\mathbf{r}, -\omega) \right]$ $\mathbf{q} = \{q_v(\mathbf{r})\}$ $\left(\hbar\omega - \hat{\mathcal{L}}\right) \cdot \hat{\rho}'(\omega) = [\hat{V}'_{ext}(\omega), \hat{\rho}^0] \quad \blacksquare \quad \left(\begin{array}{c} \\ \\ \end{array} \right)$

$$p_{v}(\mathbf{r}) = \frac{1}{2} \left[\tilde{\varphi}_{v}'(\mathbf{r}, \omega) - \tilde{\varphi}_{v}'^{*}(\mathbf{r}, -\omega) \right]$$
$$\mathbf{p} = \{ p_{v}(\mathbf{r}) \}$$

$$\begin{array}{cc} \hbar\omega & -\mathcal{D} \\ -\hat{\mathcal{D}} - 2\hat{\mathcal{K}} & \hbar\omega \end{array} \right) \left(\begin{array}{c} \mathbf{q} \\ \mathbf{p} \end{array} \right) = \left(\begin{array}{c} 0 \\ \{\hat{P}_c \,\tilde{V}'_{ext}(\mathbf{r},\omega) \,\varphi_v^0(\mathbf{r},\omega) \,\varphi_v^0(\mathbf{r},\omega) \right) \right) \left(\begin{array}{c} \mathbf{q} \\ \hat{P}_c \,\tilde{V}'_{ext}(\mathbf{r},\omega) \,\varphi_v^0(\mathbf{r},\omega) \,\varphi$$

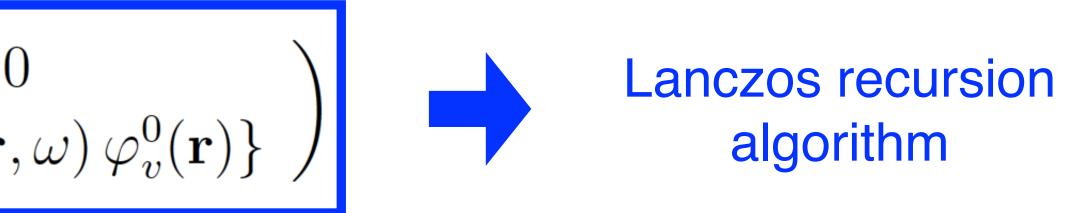
Lanczos recursion How to solve the linear-response quantum Liouville equation in practice? algorithm


We define the standard batch representation: $q_v(\mathbf{r}) = \frac{1}{2} \left[\tilde{\varphi}'_v(\mathbf{r}, \omega) + \tilde{\varphi}'^*_v(\mathbf{r}, -\omega) \right]$ $\mathbf{q} = \{q_v(\mathbf{r})\}$ $\left(\hbar\omega - \hat{\mathcal{L}}\right) \cdot \hat{\rho}'(\omega) = [\hat{V}'_{ext}(\omega), \hat{\rho}^0] \quad \blacksquare \quad \left(\begin{array}{c} \\ \\ \end{array} \right)$ $\hat{\mathcal{D}} \cdot q_v(\mathbf{r}) = \left(\hat{H}^0 - \varepsilon_v\right) q_v(\mathbf{r}) \qquad \hat{\mathcal{K}} \cdot q_v(\mathbf{r}) = 2$

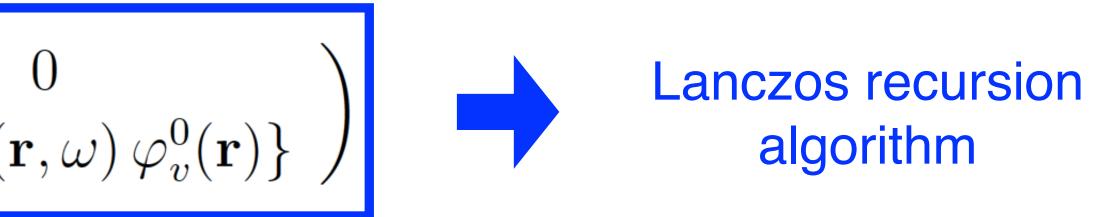
$$p_{v}(\mathbf{r}) = \frac{1}{2} \left[\tilde{\varphi}'_{v}(\mathbf{r}, \omega) - \tilde{\varphi}'^{*}_{v}(\mathbf{r}, -\omega) \right]$$
$$\mathbf{p} = \{ p_{v}(\mathbf{r}) \}$$

$$\begin{aligned} &\hbar\omega & -\hat{\mathcal{D}} \\ -\hat{\mathcal{D}} - 2\hat{\mathcal{K}} & \hbar\omega \end{aligned} \begin{pmatrix} \mathbf{q} \\ \mathbf{p} \end{pmatrix} = \begin{pmatrix} 0 \\ \{\hat{P}_c \,\tilde{V}'_{ext}(\mathbf{r},\omega) \,\varphi_v^0(\mathbf{r},\omega) \\ \{\hat{P}_c \,\tilde{V}'_{ext}(\mathbf{r},\omega) \,\varphi_v^0(\mathbf{r},\omega) \\ \hat{P}_v^0(\mathbf{r},\omega) \\ \hat{$$

$$2\hat{P}_c \sum_{v'} \int \left[\frac{e^2}{|\mathbf{r} - \mathbf{r}'|} + f_{\rm xc}(\mathbf{r}, \mathbf{r}') \right] \varphi_v^0(\mathbf{r}) \varphi_{v'}^{0*}(\mathbf{r}') q_{v'}(\mathbf{r}')$$



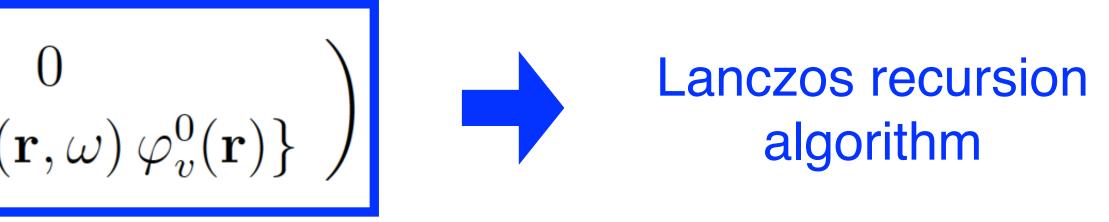
 $\begin{pmatrix} \hbar\omega & -\hat{\mathcal{D}} \\ -\hat{\mathcal{D}} - 2\hat{\mathcal{K}} & \hbar\omega \end{pmatrix} \begin{pmatrix} \mathbf{q} \\ \mathbf{p} \end{pmatrix} = \begin{pmatrix} 0 \\ \{\hat{P}_c \,\tilde{V}'_{ext}(\mathbf{r},\omega) \,\varphi^0_v(\mathbf{r})\} \end{pmatrix}$

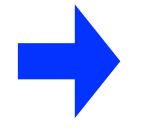


$$\begin{pmatrix} \hbar\omega & -\hat{\mathcal{D}} \\ -\hat{\mathcal{D}} - 2\hat{\mathcal{K}} & \hbar\omega \end{pmatrix} \begin{pmatrix} \mathbf{q} \\ \mathbf{p} \end{pmatrix} = \begin{pmatrix} \hat{P}_c \, \tilde{V}'_{ext}(\mathbf{r}) \\ \hat{P}_c \, \tilde{V}'_{ext}(\mathbf{r}) \end{pmatrix}$$

Let us define two two-component Lanczos vectors:

$$\mathbf{V}_i = \begin{pmatrix} q_v^i \\ p_v^i \end{pmatrix} \qquad \mathbf{U}_i = \begin{pmatrix} \tilde{q}_v^i \\ \tilde{p}_v^i \end{pmatrix}$$

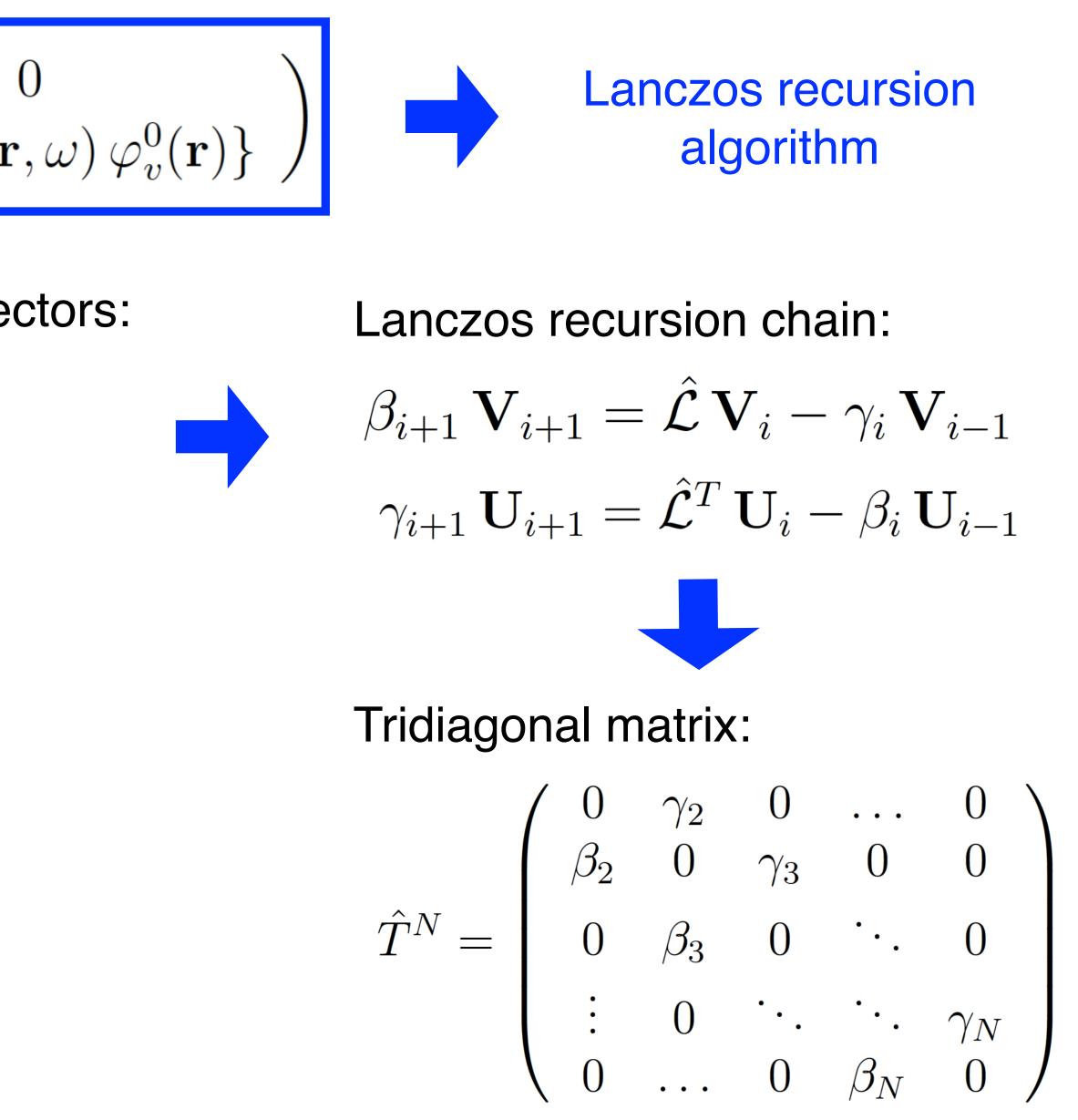



$$\begin{pmatrix} \hbar\omega & -\hat{\mathcal{D}} \\ -\hat{\mathcal{D}} - 2\hat{\mathcal{K}} & \hbar\omega \end{pmatrix} \begin{pmatrix} \mathbf{q} \\ \mathbf{p} \end{pmatrix} = \begin{pmatrix} \hat{P}_c \, \tilde{V}'_{ext}(\mathbf{r}) \\ \hat{P}_c \, \tilde{V}'_{ext}(\mathbf{r}) \end{pmatrix}$$

Let us define two two-component Lanczos vectors:

$$\mathbf{V}_i = \begin{pmatrix} q_v^i \\ p_v^i \end{pmatrix} \qquad \mathbf{U}_i = \begin{pmatrix} \tilde{q}_v^i \\ \tilde{p}_v^i \end{pmatrix}$$

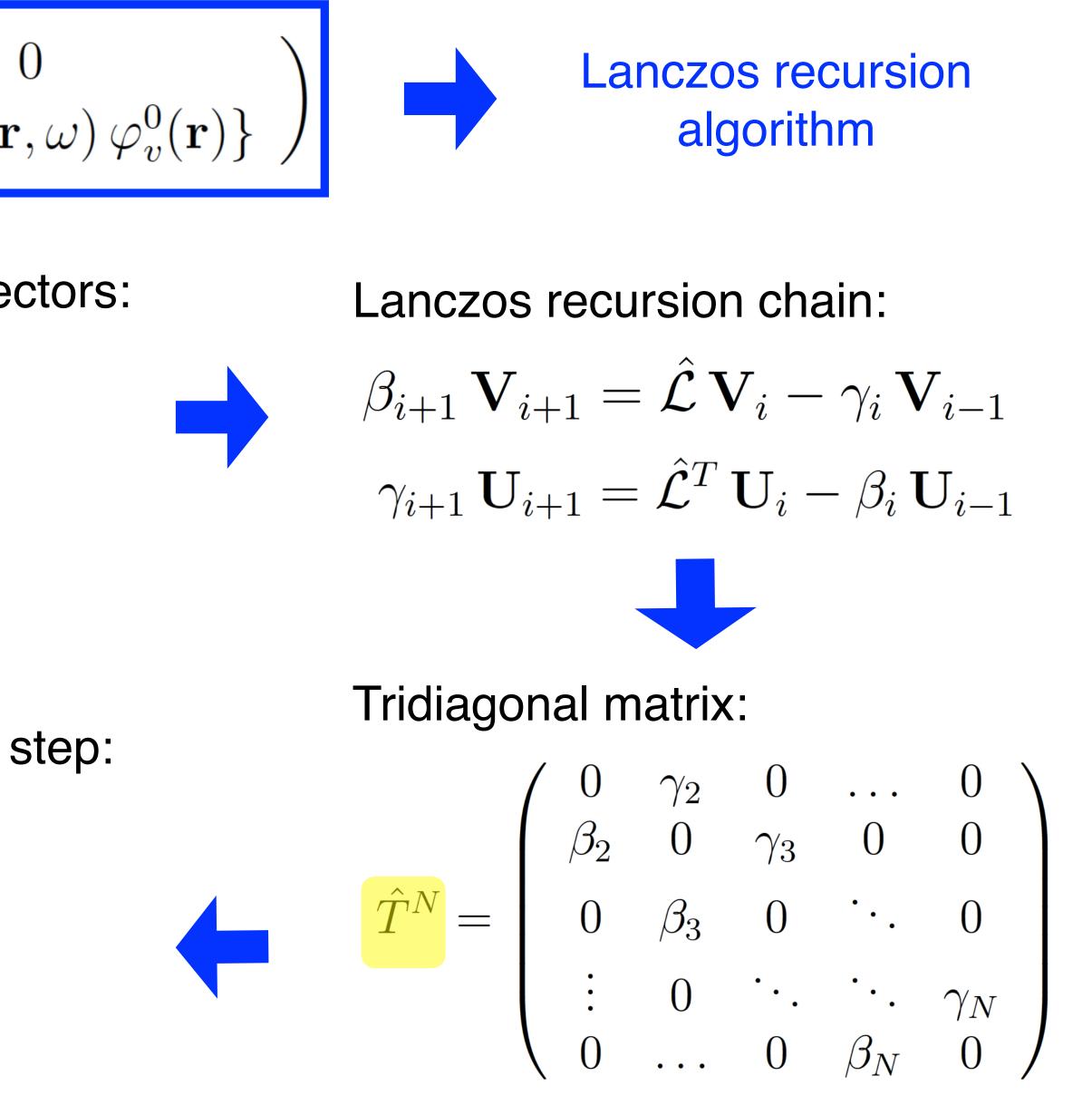
Lanczos recursion chain:


 $\beta_{i+1} \mathbf{V}_{i+1} = \hat{\mathcal{L}} \mathbf{V}_i - \gamma_i \mathbf{V}_{i-1}$ $\gamma_{i+1} \mathbf{U}_{i+1} = \hat{\mathcal{L}}^T \mathbf{U}_i - \beta_i \mathbf{U}_{i-1}$

$$\begin{pmatrix} \hbar\omega & -\hat{\mathcal{D}} \\ -\hat{\mathcal{D}} - 2\hat{\mathcal{K}} & \hbar\omega \end{pmatrix} \begin{pmatrix} \mathbf{q} \\ \mathbf{p} \end{pmatrix} = \begin{pmatrix} \hat{P}_c \, \tilde{V}'_{ext}(\mathbf{r}) \\ \hat{P}_c \, \tilde{V}'_{ext}(\mathbf{r}) \end{pmatrix}$$

Let us define two two-component Lanczos vectors:

$$\mathbf{V}_i = \begin{pmatrix} q_v^i \\ p_v^i \end{pmatrix} \qquad \mathbf{U}_i = \begin{pmatrix} \tilde{q}_v^i \\ \tilde{p}_v^i \end{pmatrix}$$

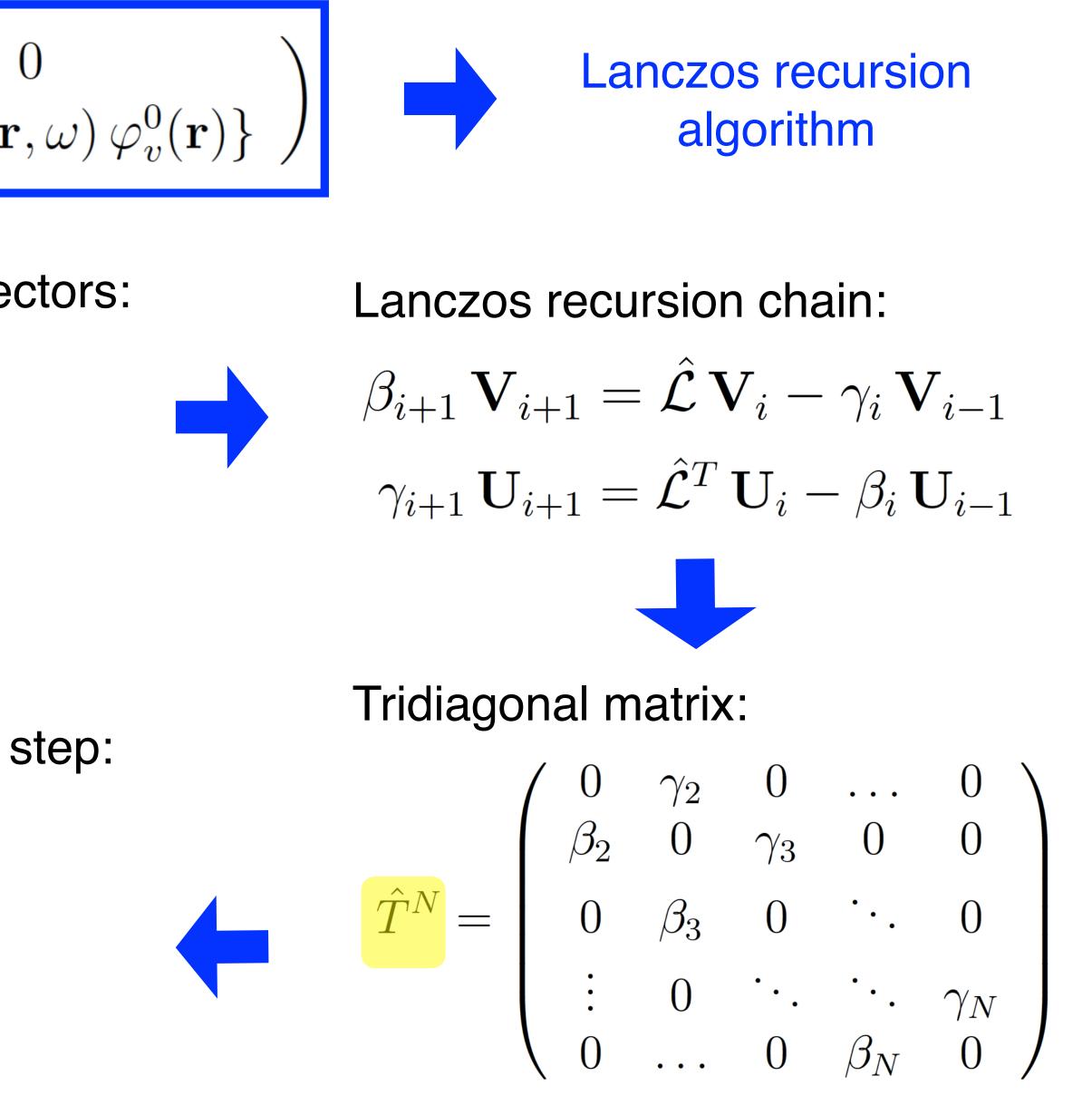

$$\begin{pmatrix} \hbar\omega & -\hat{\mathcal{D}} \\ -\hat{\mathcal{D}} - 2\hat{\mathcal{K}} & \hbar\omega \end{pmatrix} \begin{pmatrix} \mathbf{q} \\ \mathbf{p} \end{pmatrix} = \begin{pmatrix} \hat{P}_c \, \tilde{V}'_{ext}(\mathbf{r}) \\ \hat{V}'_{ext}(\mathbf{r}) \end{pmatrix}$$

Let us define two two-component Lanczos vectors:

$$\mathbf{V}_{i} = \begin{pmatrix} q_{v}^{i} \\ p_{v}^{i} \end{pmatrix} \qquad \mathbf{U}_{i} = \begin{pmatrix} \tilde{q}_{v}^{i} \\ \tilde{p}_{v}^{i} \end{pmatrix}$$

Susceptibility is computed in a postprocessing step:

$$\chi_A(\omega) = \langle \zeta^N | \left(\hbar \omega \hat{I}^N - \hat{T}^N \right)^{-1} \cdot e_1^N \rangle$$

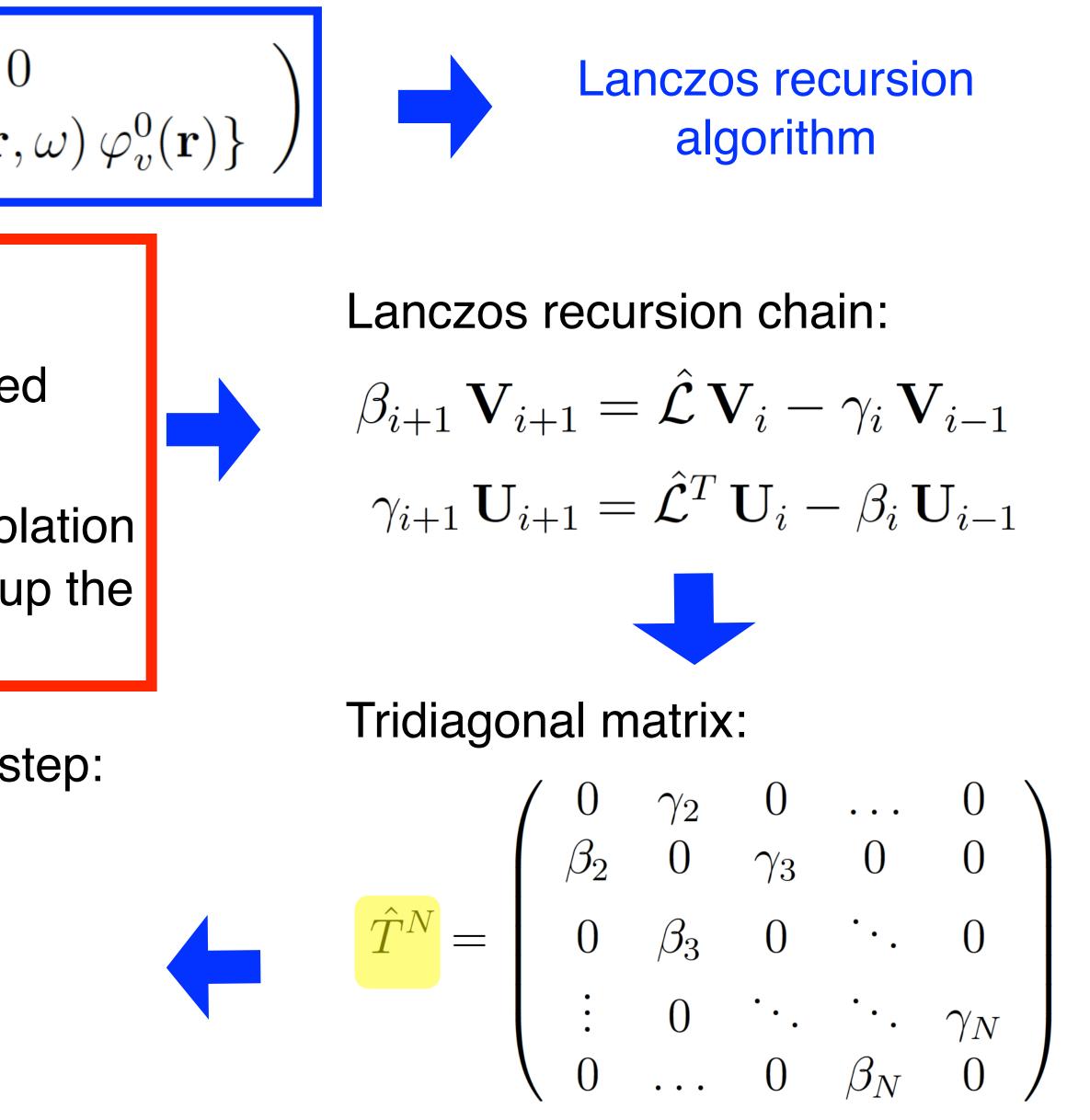

$$\begin{pmatrix} \hbar\omega & -\hat{\mathcal{D}} \\ -\hat{\mathcal{D}} - 2\hat{\mathcal{K}} & \hbar\omega \end{pmatrix} \begin{pmatrix} \mathbf{q} \\ \mathbf{p} \end{pmatrix} = \begin{pmatrix} \hat{P}_c \, \tilde{V}'_{ext}(\mathbf{r}) \\ \hat{V}'_{ext}(\mathbf{r}) \end{pmatrix}$$

Let us define two two-component Lanczos vectors:

$$\mathbf{V}_{i} = \begin{pmatrix} q_{v}^{i} \\ p_{v}^{i} \end{pmatrix} \qquad \mathbf{U}_{i} = \begin{pmatrix} \tilde{q}_{v}^{i} \\ \tilde{p}_{v}^{i} \end{pmatrix}$$

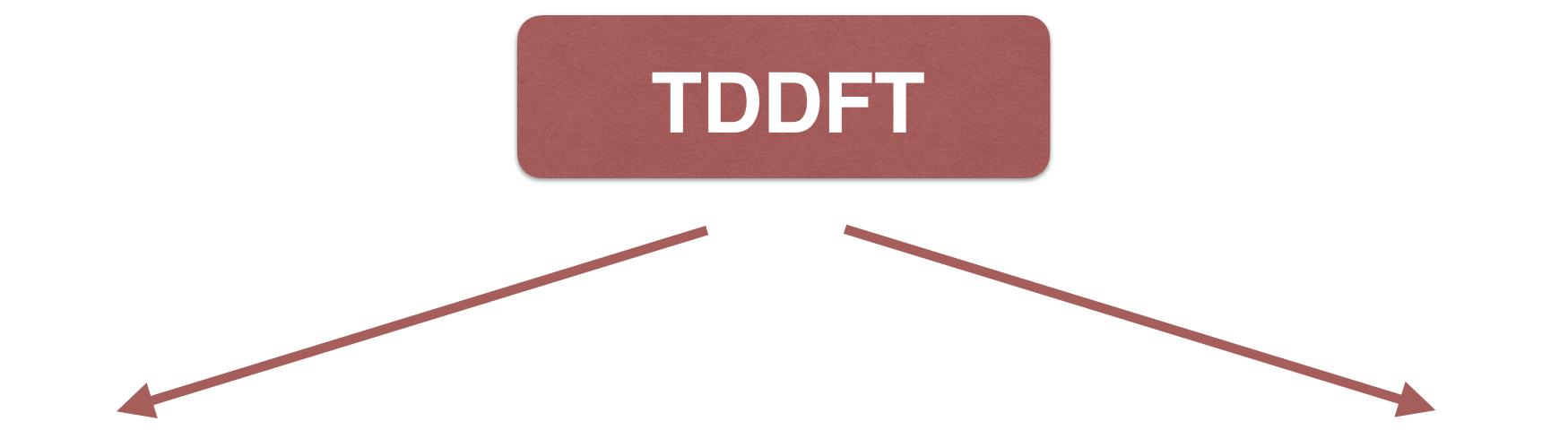
Susceptibility is computed in a postprocessing step:

$$\chi_A(\omega) = \langle \boldsymbol{\zeta}^N | \left(\hbar \omega \hat{I}^N - \hat{\boldsymbol{T}}^N \right)^{-1} \cdot e_1^N \rangle$$
$$\boldsymbol{\zeta}^N = \{ \langle (\hat{P}_c \hat{A} \varphi_v^{\circ}(\mathbf{r}), 0) | \mathbf{V}_i \rangle \}_N$$


$$\begin{pmatrix} \hbar\omega & -\hat{\mathcal{D}} \\ -\hat{\mathcal{D}} - 2\hat{\mathcal{K}} & \hbar\omega \end{pmatrix} \begin{pmatrix} \mathbf{q} \\ \mathbf{p} \end{pmatrix} = \begin{pmatrix} \hat{\mathcal{P}}_{c} \tilde{\mathcal{V}}_{ext}'(\mathbf{r}) \\ \hat{\mathcal{P}}_{c} \tilde{\mathcal{V}}_{ext}'(\mathbf{r}) \end{pmatrix}$$

$$\stackrel{\textbf{(i)}}{\stackrel{(i)}}{\stackrel{\textbf{(i)}}{\stackrel{(i)}}{\stackrel{(i)}{\stackrel{(i)}}{\stackrel{(i)}}{\stackrel{(i)}{\stackrel{(i)}}{\stackrel{(i)}}{\stackrel{(i)}{\stackrel{(i)}}{\stackrel{(i)}{\stackrel{(i)}}{\stackrel{(i)}{\stackrel{(i)}}{\stackrel{(i)}{\stackrel{(i)}}{\stackrel{(i)}{\stackrel{(i)}}{\stackrel{(i)}{\stackrel{(i)}}{\stackrel{(i)}}{\stackrel{(i)}{\stackrel{(i)}}{\stackrel{(i)}{\stackrel{(i)}}{\stackrel{(i)}}{\stackrel{(i)}}{\stackrel{(i)}{\stackrel{(i)}}{\stackrel{(i)}}{\stackrel{(i)}}{\stackrel{(i)}}{\stackrel{(i)}}{\stackrel{(i)}{\stackrel{(i)}}{\stackrel{(i)$$

Susceptibility is computed in a postprocessing step:

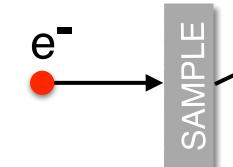

$$\chi_A(\omega) = \langle \boldsymbol{\zeta}^N | \left(\hbar \omega \hat{I}^N - \hat{\boldsymbol{T}}^N \right)^{-1} \cdot e_1^N$$

$$\boldsymbol{\zeta}^{N} = \left\{ \langle (\hat{P}_{c} \hat{A} \varphi_{v}^{\circ}(\mathbf{r}), 0) | \mathbf{V}_{i} \rangle \right\}_{N}$$

Various spectroscopies from TDDFT

Electron energy loss spectroscopy

Inelastic neutron scattering spectroscopy

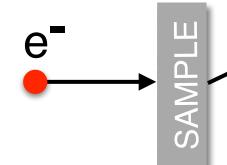


11

Let us consider an external perturbation which is an incoming electron (i.e. a plane wave):

 $\tilde{V}_{ext,\mathbf{q}}^{\prime}(\mathbf{r})$

$$(\mathbf{r},\omega) = e^{i\mathbf{q}\cdot\mathbf{r}}$$



Let us consider an external perturbation which is an incoming electron (i.e. a plane wave):

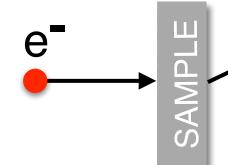
$$\tilde{V}_{ext,\mathbf{q}}'(\mathbf{r},\omega) = e^{i\mathbf{q}\cdot\mathbf{r}}$$

The charge-density susceptibility (density-density response function) reads:

 $\chi_{\rm n}(\mathbf{q},\omega) = \langle \hat{\mathbf{n}}_{\mathbf{q}} |$

$$(\hbar\omega - \hat{\mathcal{L}}_{\mathbf{q}})^{-1} \cdot [\hat{\mathbf{n}}_{\mathbf{q}}, \hat{\rho}^0] \rangle$$

Let us consider an external perturbation which is an incoming electron (i.e. a plane wave):


$$\tilde{V}_{ext,\mathbf{q}}'(\mathbf{r},\omega) = e^{i\mathbf{q}\cdot\mathbf{r}}$$

The charge-density susceptibility (density-density response function) reads:

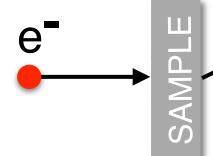
$$\chi_{\mathbf{n}}(\mathbf{q},\omega) = \langle \hat{\mathbf{n}}_{\mathbf{q}} | (\hbar\omega - \hat{\mathcal{L}}_{\mathbf{q}})^{-1} \cdot [\hat{\mathbf{n}}_{\mathbf{q}}, \hat{\rho}^{0}] \rangle$$

This allows us to compute the inverse dielectric function:

$$\epsilon^{-1}(\mathbf{q},\omega) = 1 + \frac{4\pi e^2}{|\mathbf{q}|^2} \chi_{\mathbf{n}}(\mathbf{q},\omega)$$

Let us consider an external perturbation which is an incoming electron (i.e. a plane wave):

$$\tilde{V}_{ext,\mathbf{q}}'(\mathbf{r},\omega) = e^{i\mathbf{q}\cdot\mathbf{r}}$$


The charge-density susceptibility (density-density response function) reads:

$$\chi_{\mathbf{n}}(\mathbf{q},\omega) = \langle \hat{\mathbf{n}}_{\mathbf{q}} | (\hbar\omega - \hat{\mathcal{L}}_{\mathbf{q}})^{-1} \cdot [\hat{\mathbf{n}}_{\mathbf{q}}, \hat{\rho}^{0}] \rangle$$

This allows us to compute the inverse dielectric function: Double-differential cross section: $\frac{d^2\sigma}{d\Omega d\varepsilon} \propto -\mathrm{Im}\left[\epsilon^{-1}(\mathbf{q},\omega)\right]$

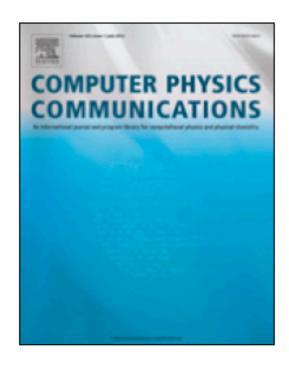
$$\epsilon^{-1}(\mathbf{q},\omega) = 1 + \frac{4\pi e^2}{|\mathbf{q}|^2} \chi_{\mathbf{n}}(\mathbf{q},\omega)$$

Loss function $-\text{Im}\left[\epsilon^{-1}(\mathbf{q},\omega)\right]$: Liouville-Lanczos (turbo_eels.x)

12

turboEELS code

Computer Physics Communications 196 (2015) 460–469

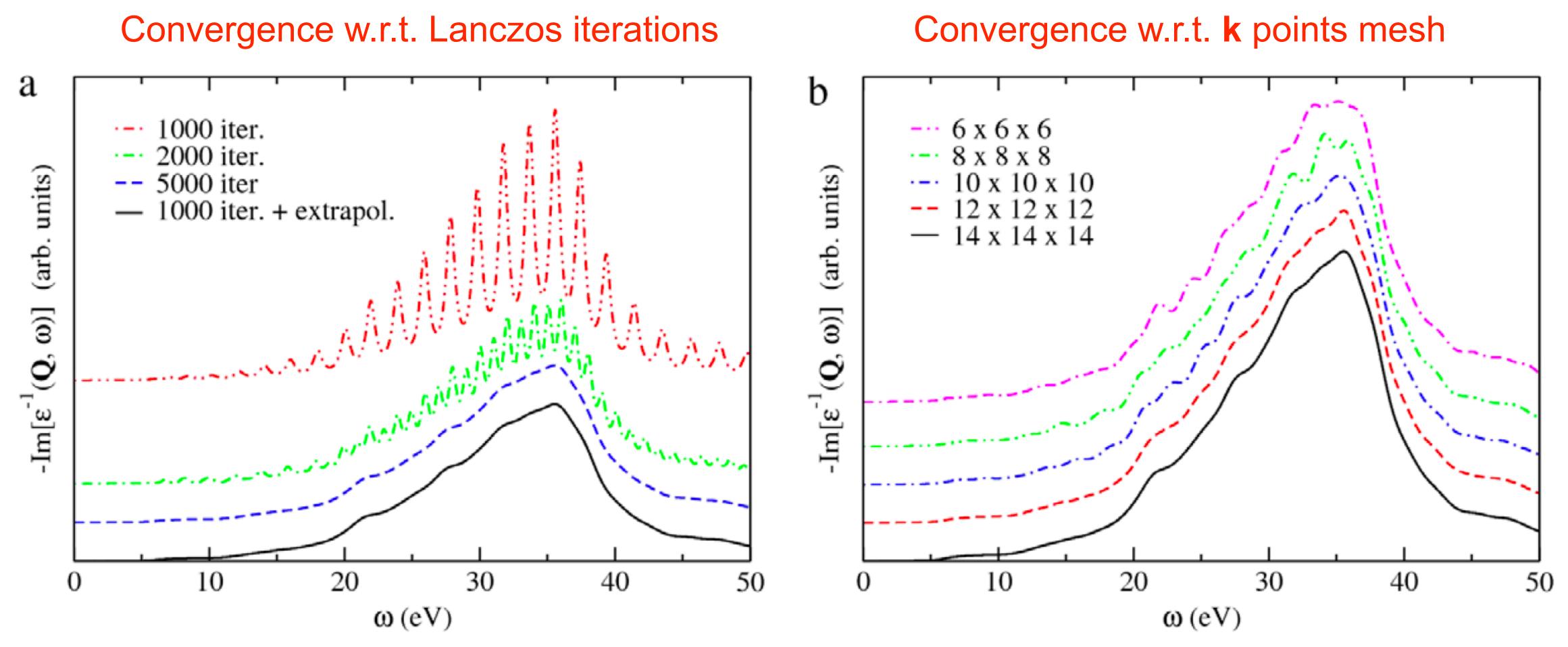

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cpc

turboEELS—A code for the simulation of the electron energy loss and inelastic X-ray scattering spectra using the Liouville–Lanczos approach to time-dependent density-functional perturbation theory

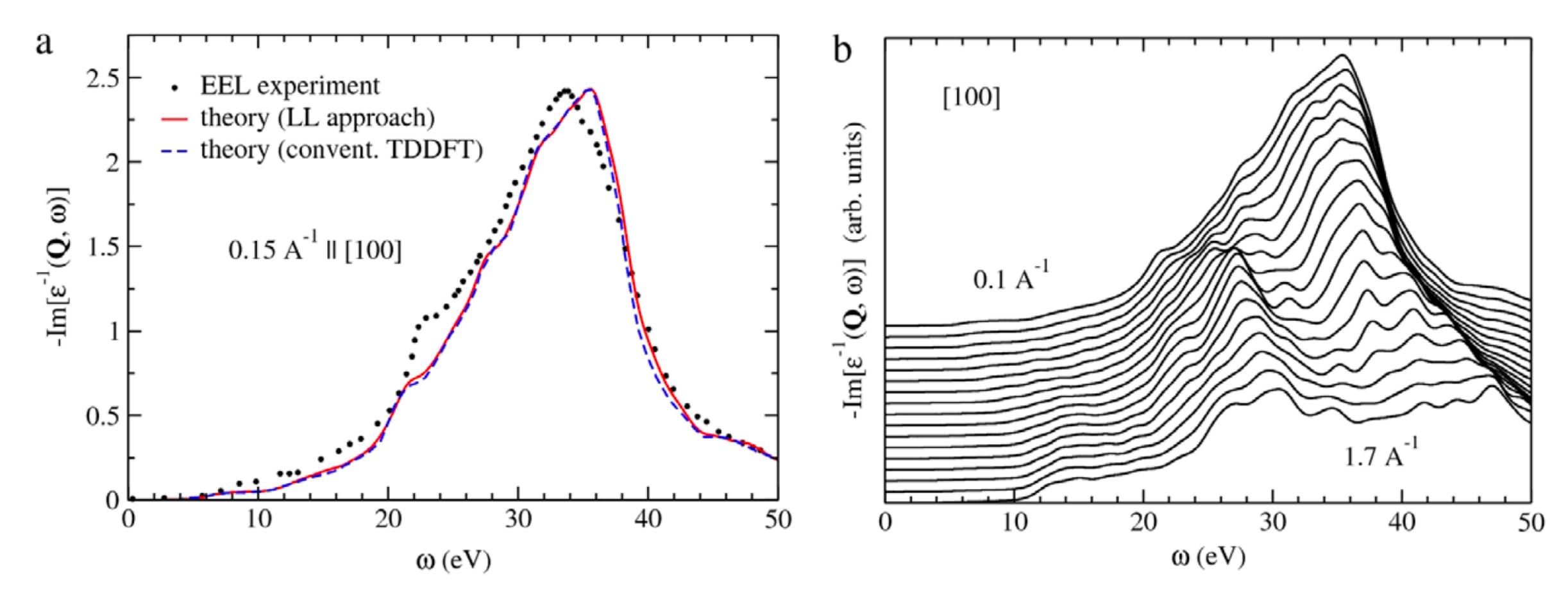
Iurii Timrov^{a,b,1}, Nathalie Vast^a, Ralph Gebauer^c, Stefano Baroni^{b,*}

Computer Physics Communications



Loss function of bulk diamond

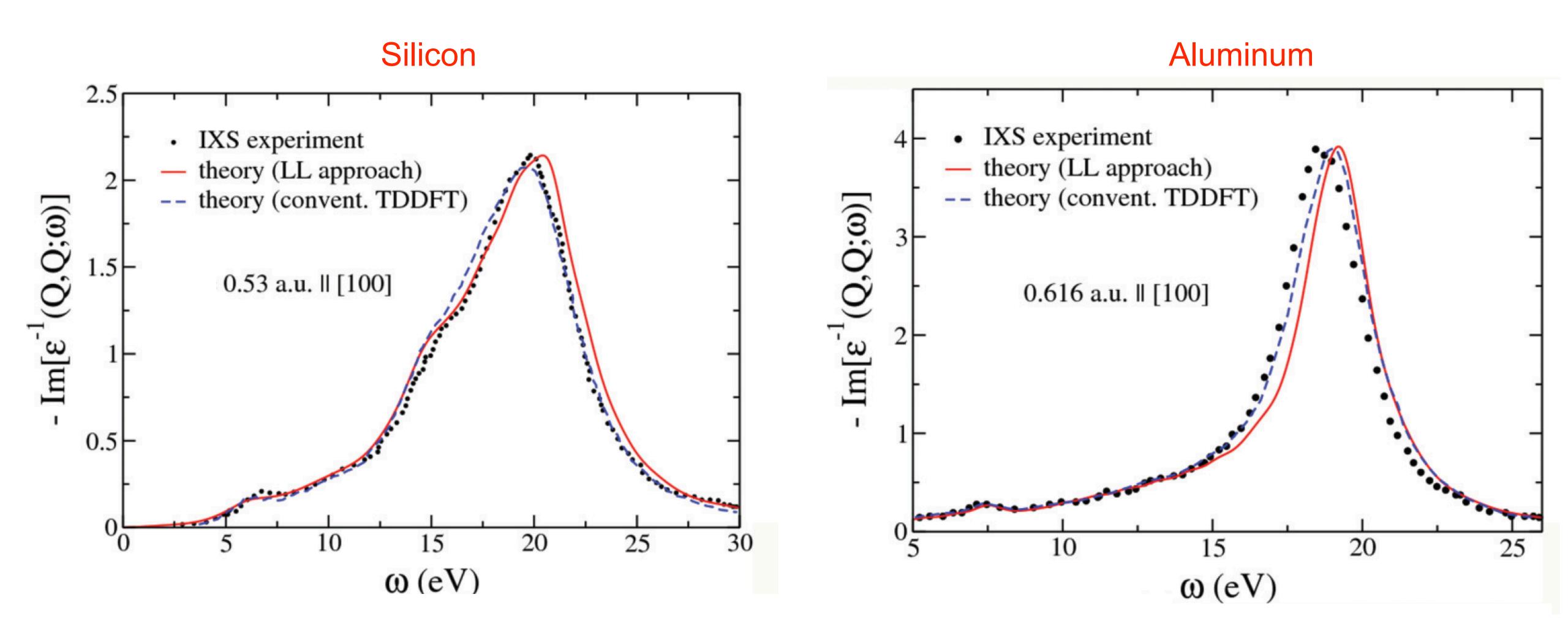
I. Timrov, N. Vast, R. Gebauer, and S. Baroni, Comput. Phys. Commun. 196, 460 (2015).


The loss function is computed for q = 0.15 (A^{-1}) along the [100] direction

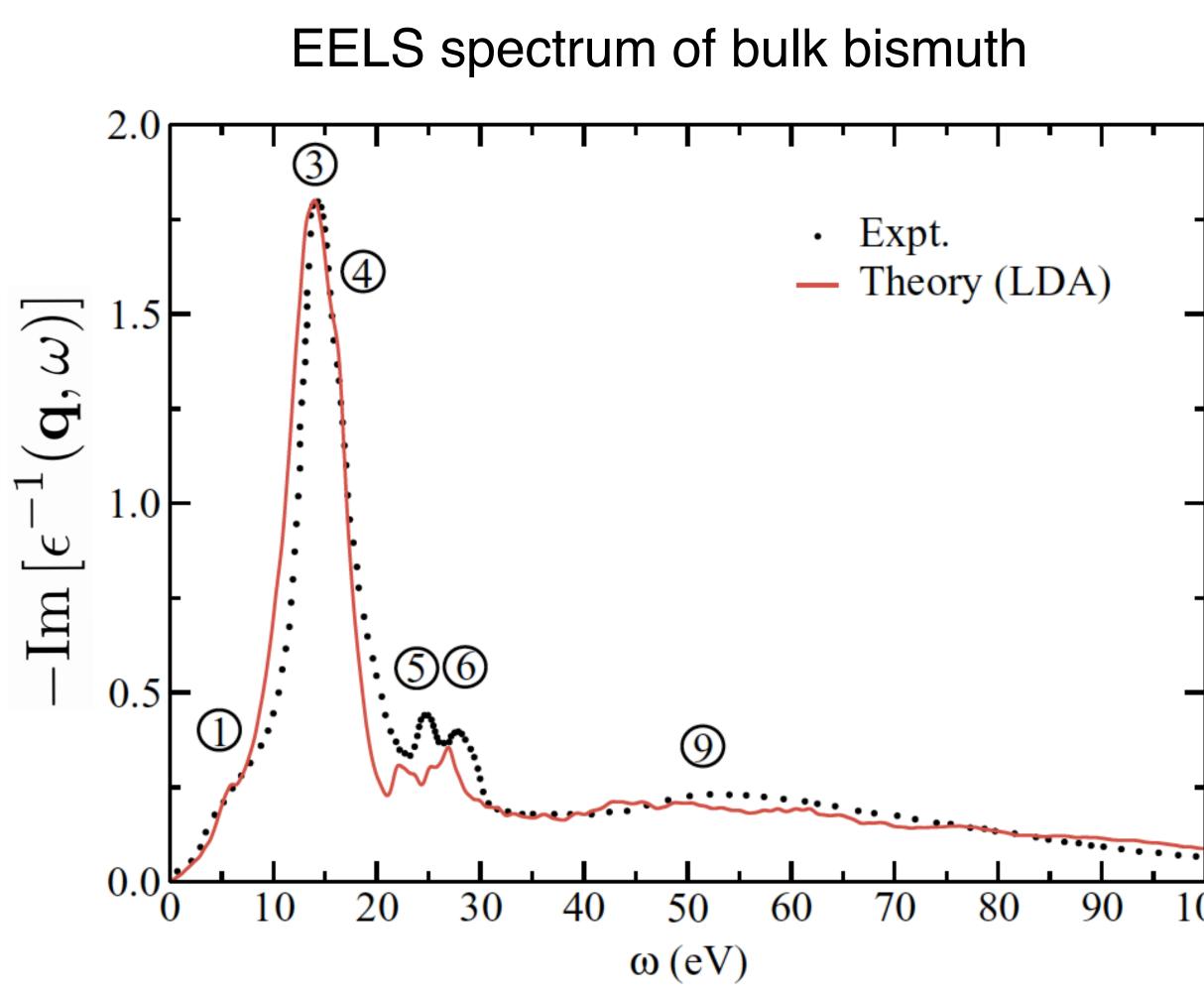
14

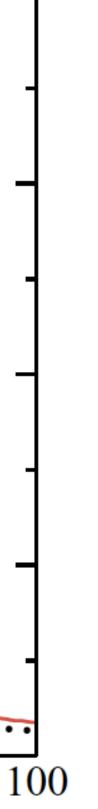
Loss function of bulk diamond

Comparison with experiment

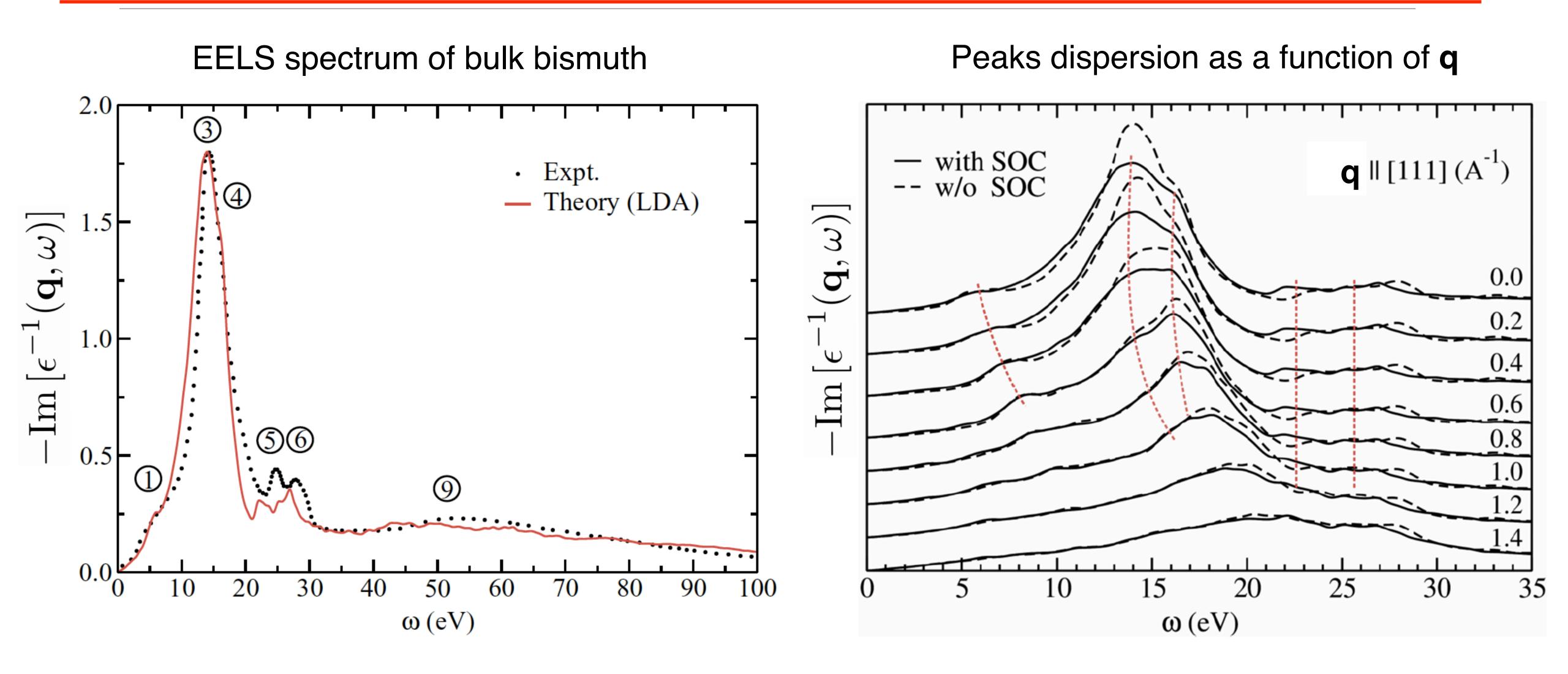


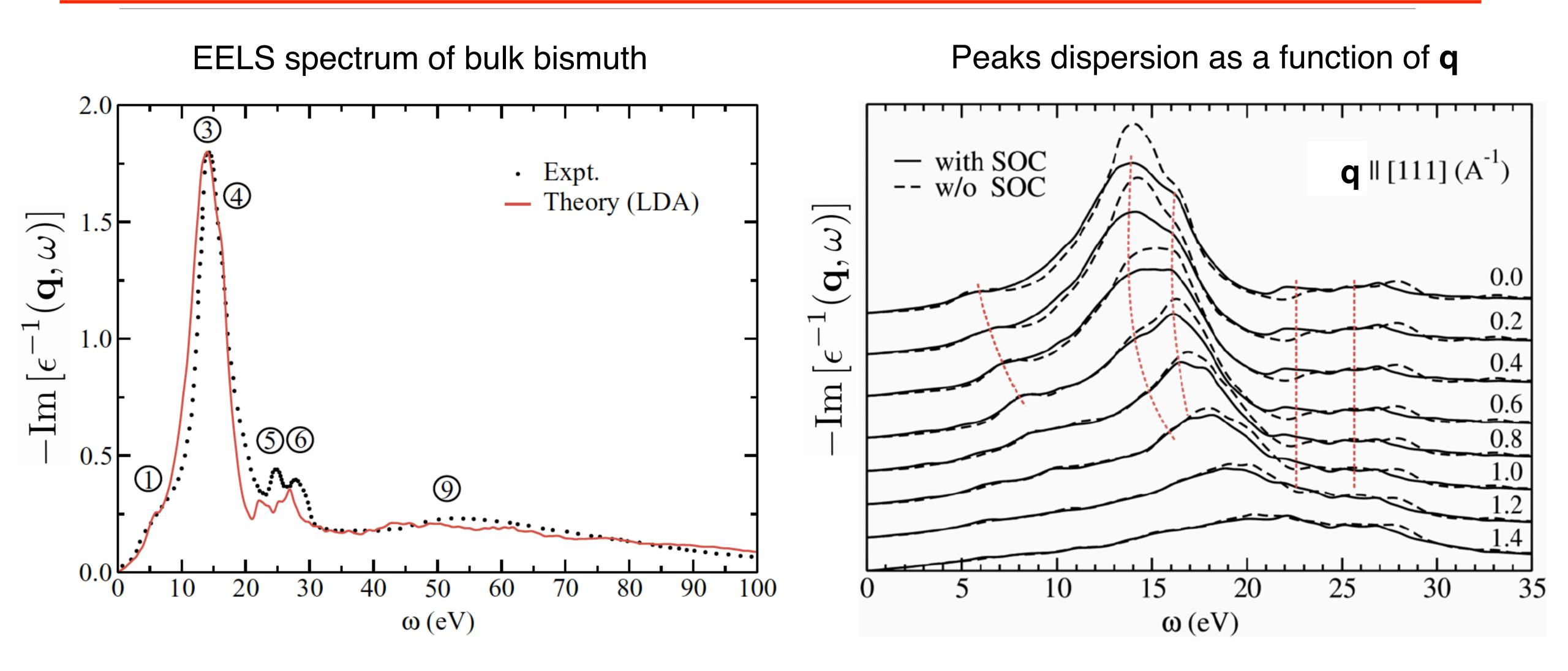
I. Timrov, N. Vast, R. Gebauer, and S. Baroni, Comput. Phys. Commun. 196, 460 (2015).


Loss function of bulk silicon and aluminum


I. Timrov, N. Vast, R. Gebauer, and S. Baroni, Phys. Rev. B 88, 064301 (2013).

Loss function of bulk bismuth

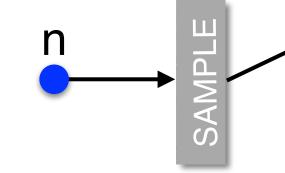

I. Timrov, M. Markov, T. Gorni, M. Raynaud, O. Motornyi, R. Gebauer, and S. Baroni, and N. Vast, Phys. Rev. B 95, 094301 (2017).


Loss function of bulk bismuth

I. Timrov, M. Markov, T. Gorni, M. Raynaud, O. Motornyi, R. Gebauer, and S. Baroni, and N. Vast, Phys. Rev. B 95, 094301 (2017).

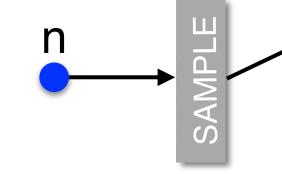
Loss function of bulk bismuth

I. Timrov, M. Markov, T. Gorni, M. Raynaud, O. Motornyi, R. Gebauer, and S. Baroni, and N. Vast, Phys. Rev. B 95, 094301 (2017).


TDDFT@ALDA gives good results for EELS in solids! Limitation: excitons are not captured by ALDA.

Let us consider an external perturbation which is an incoming neutron:

 $\tilde{V}_{ext,\mathbf{q}}'(\mathbf{r},\omega) = -\mu_{\mathrm{B}}\,\boldsymbol{\sigma}\cdot\mathbf{B}(\omega)\,e^{i\mathbf{q}\cdot\mathbf{r}}$



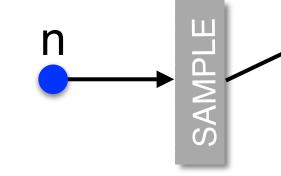
Let us consider an external perturbation which is an incoming neutron:

$$\tilde{V}_{ext,\mathbf{q}}'(\mathbf{r},\omega) = -\mu_{\mathrm{B}}\,\boldsymbol{\sigma}\cdot\mathbf{B}(\omega)\,e^{i\mathbf{q}\cdot\mathbf{r}}$$

The magnetization-density susceptibility (spin-spin response function) reads:

$$\boldsymbol{\chi}_{\mathrm{m}}(\mathbf{q},\omega) = \langle \hat{\mathbf{m}}_{\mathbf{q}} | (\hbar\omega - \hat{\mathcal{L}}_{\mathbf{q}})^{-1} \cdot [\hat{\mathbf{m}}_{\mathbf{q}}, \hat{\rho}^{0}] \rangle$$

Let us consider an external perturbation which is an incoming neutron:


$$\tilde{V}_{ext,\mathbf{q}}'(\mathbf{r},\omega) = -\mu_{\mathrm{B}}\,\boldsymbol{\sigma}\cdot\mathbf{B}(\omega)\,e^{i\mathbf{q}\cdot\mathbf{r}}$$

The magnetization-density susceptibility (spin-spin response function) reads:

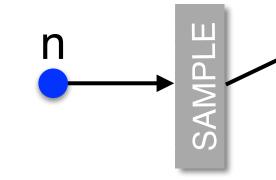
$$\boldsymbol{\chi}_{\mathbf{m}}(\mathbf{q},\omega) = \langle \hat{\mathbf{m}}_{\mathbf{q}} | (\hbar\omega - \hat{\mathcal{L}}_{\mathbf{q}})^{-1} \cdot [\hat{\mathbf{m}}_{\mathbf{q}}, \hat{\rho}^{0}] \rangle$$

This allows us to compute the following quantity:

$$S(\mathbf{q},\omega) = -\operatorname{Im}\operatorname{Tr}\left[\mathbf{P}(\mathbf{q})\,\boldsymbol{\chi}(\mathbf{q},\omega)\right]$$
$$P_{\alpha\beta}(\mathbf{q}) = \delta_{\alpha\beta} - q_{\alpha}q_{\beta}/q^{2}$$

Let us consider an external perturbation which is an incoming neutron:

$$\tilde{V}_{ext,\mathbf{q}}'(\mathbf{r},\omega) = -\mu_{\mathrm{B}}\,\boldsymbol{\sigma}\cdot\mathbf{B}(\omega)\,e^{i\mathbf{q}\cdot\mathbf{r}}$$


The magnetization-density susceptibility (spin-spin response function) reads:

$$\boldsymbol{\chi}_{\mathbf{m}}(\mathbf{q},\omega) = \langle \hat{\mathbf{m}}_{\mathbf{q}} | (\hbar\omega - \hat{\mathcal{L}}_{\mathbf{q}})^{-1} \cdot [\hat{\mathbf{m}}_{\mathbf{q}}, \hat{\rho}^{0}] \rangle$$

This allows us to compute the following quantity: Double-differential cross section:

$$S(\mathbf{q},\omega) = -\operatorname{Im}\operatorname{Tr}\left[\mathbf{P}(\mathbf{q})\,\boldsymbol{\chi}(\mathbf{q},\omega)\right]$$
$$P_{\alpha\beta}(\mathbf{q}) = \delta_{\alpha\beta} - q_{\alpha}q_{\beta}/q^{2}$$

The code to compute INS spectra will be available in the next official release of QE.

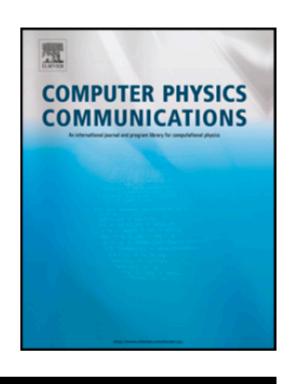
$$\frac{d^2\sigma}{d\Omega d\varepsilon} \propto \frac{S(\mathbf{q},\omega)}{S(\mathbf{q},\omega)}$$

turboMagnon code

Computer Physics Communications 280 (2022) 108500

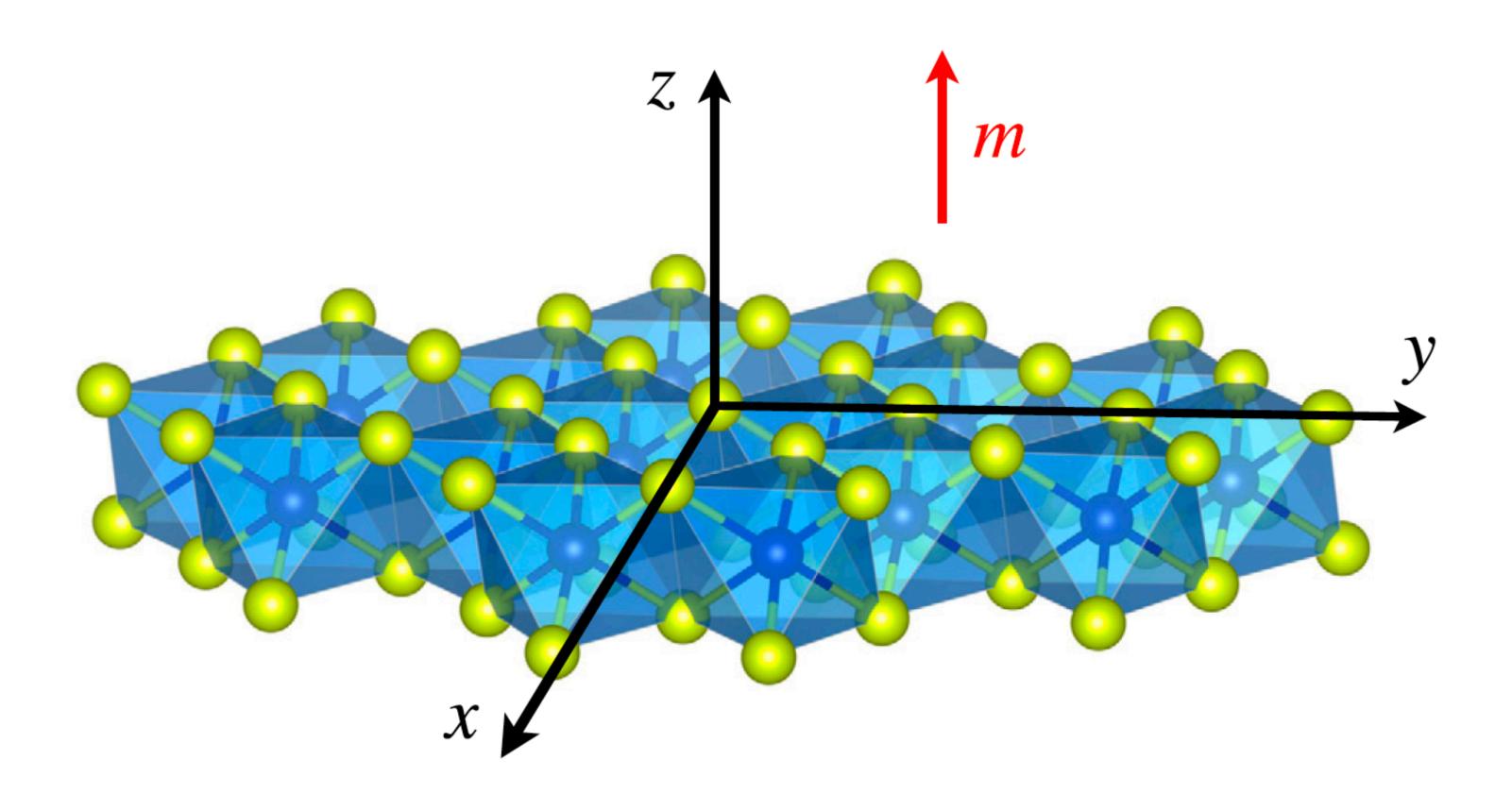
turboMagnon – A code for the simulation of spin-wave spectra using the Liouville-Lanczos approach to time-dependent density-functional perturbation theory $\stackrel{\text{def}}{\Rightarrow}, \stackrel{\text{def}}{\Rightarrow}$

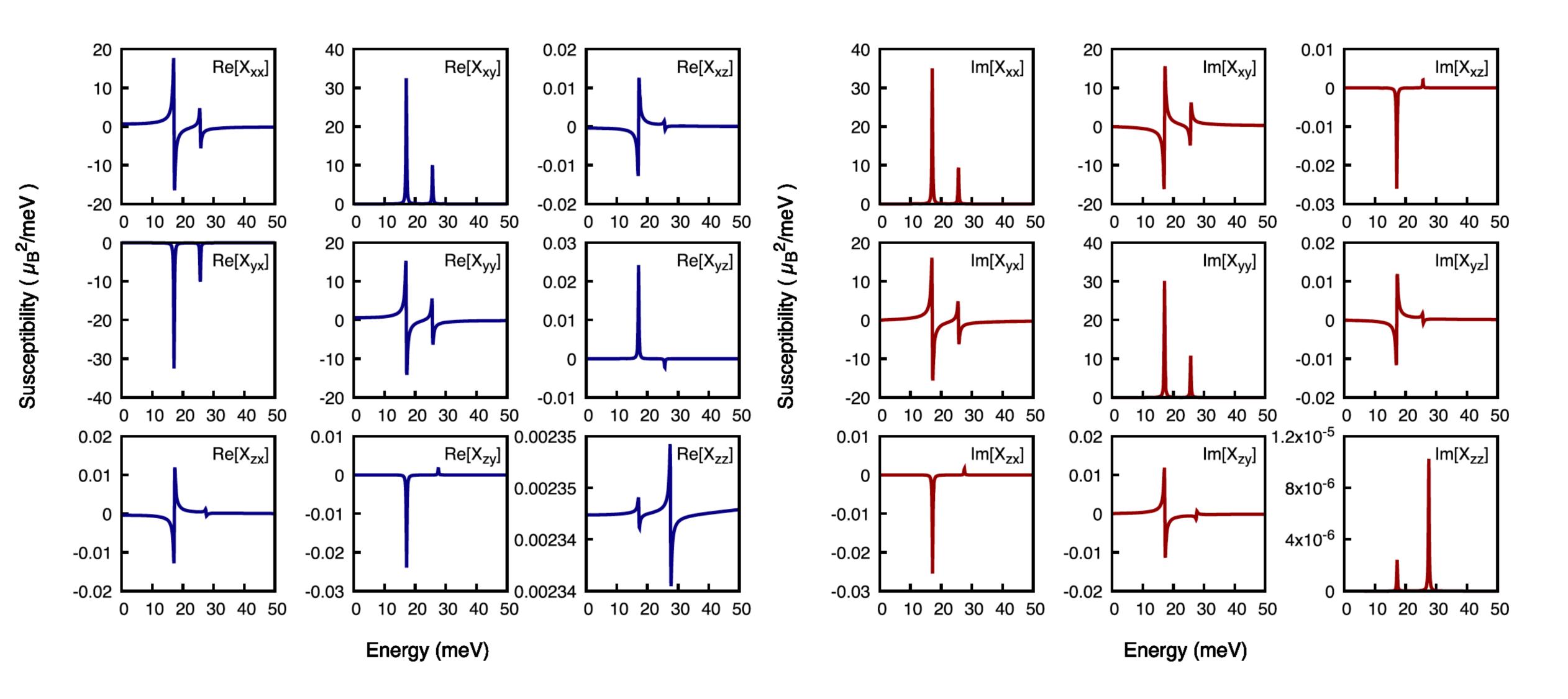
Tommaso Gorni^{a,*}, Oscar Baseggio^b, Pietro Delugas^b, Stefano Baroni^b, Iurii Timrov^{c,**}


Contents lists available at ScienceDirect

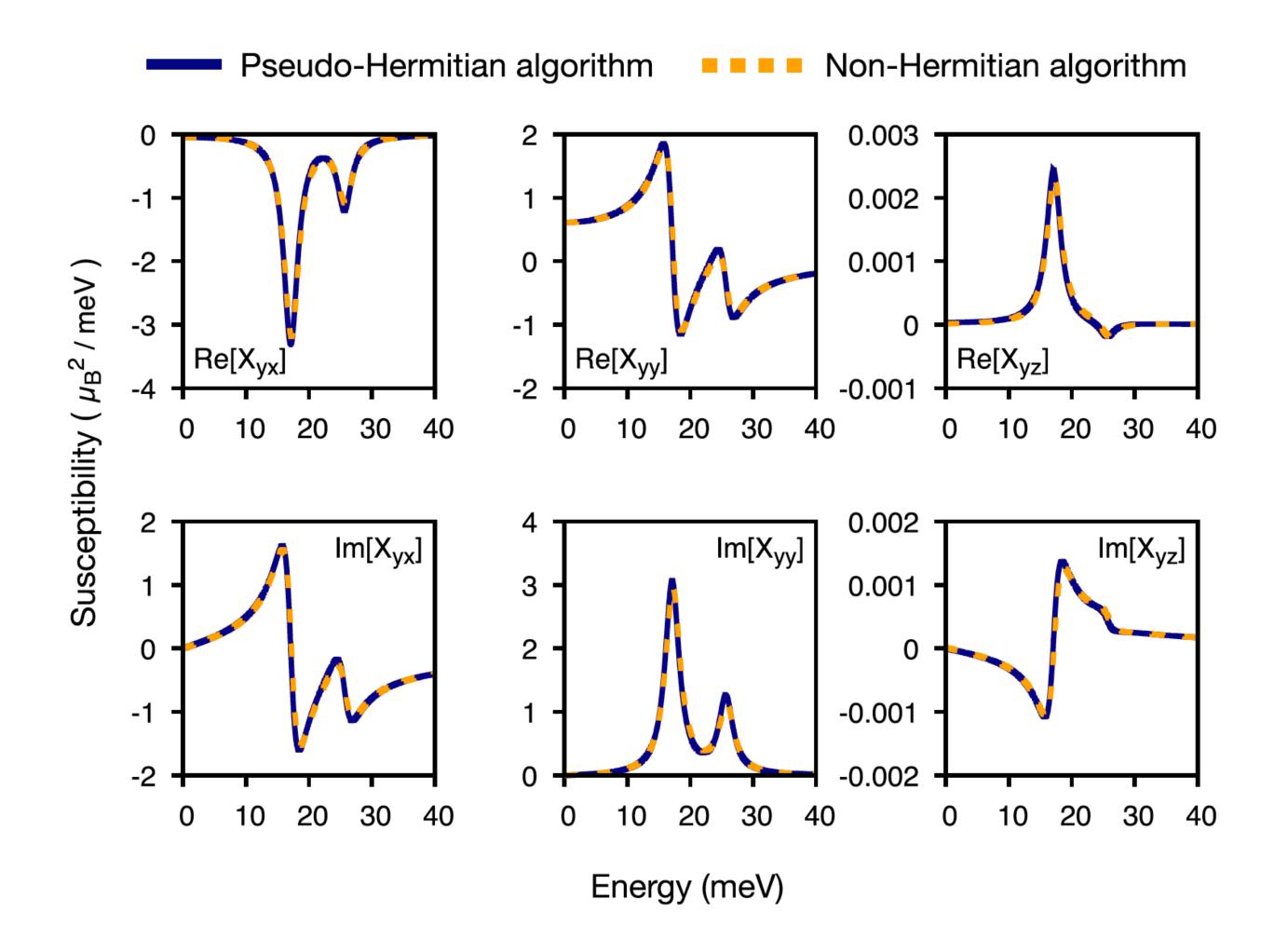
Computer Physics Communications

www.elsevier.com/locate/cpc



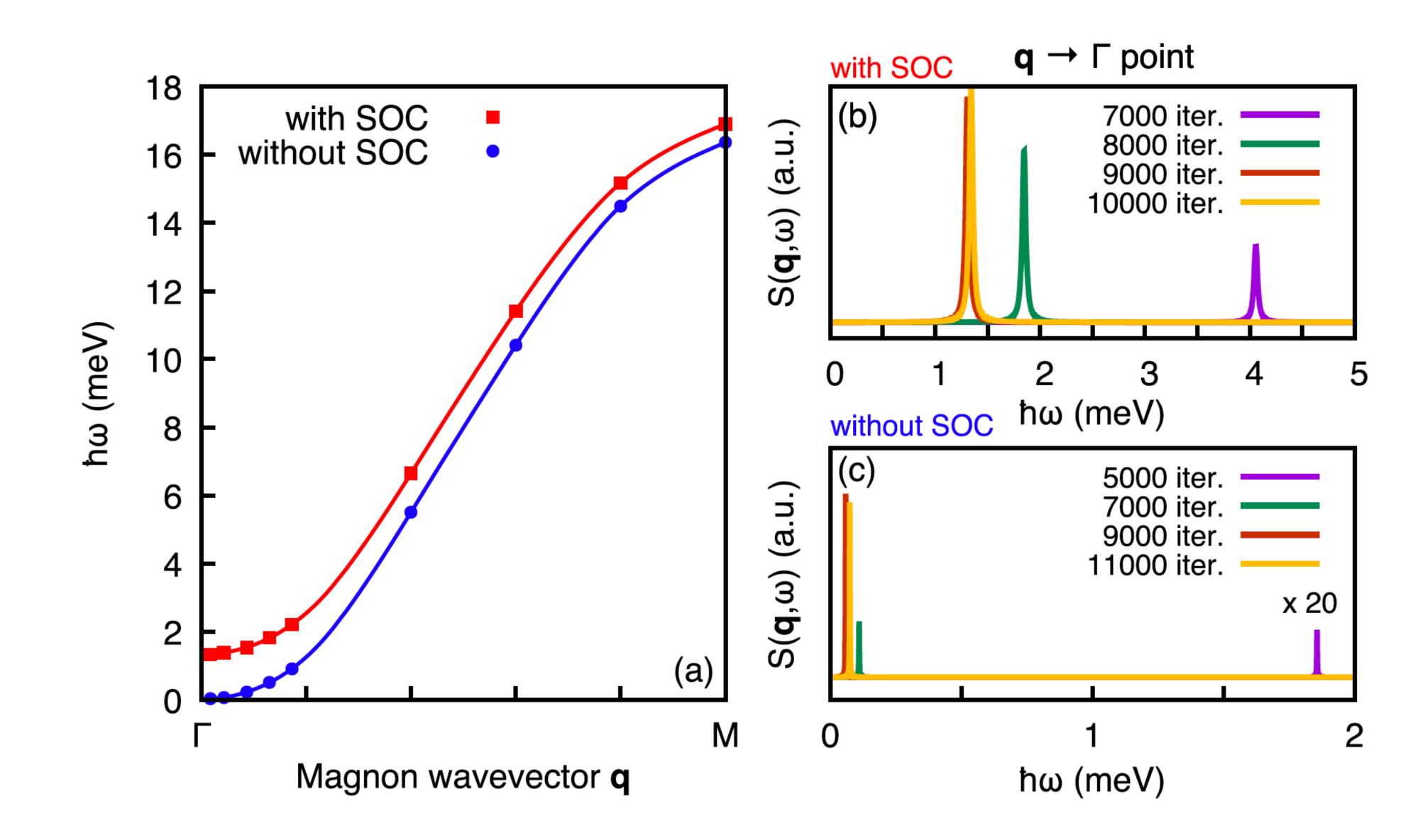


Crl₃ monolayer


Spin susceptibility matrix of a Crl₃ monolayer

T. Gorni, O. Baseggio, P. Delugas, S. Baroni, I. Timrov, Comput. Phys. Commun. 280, 108500 (2022).

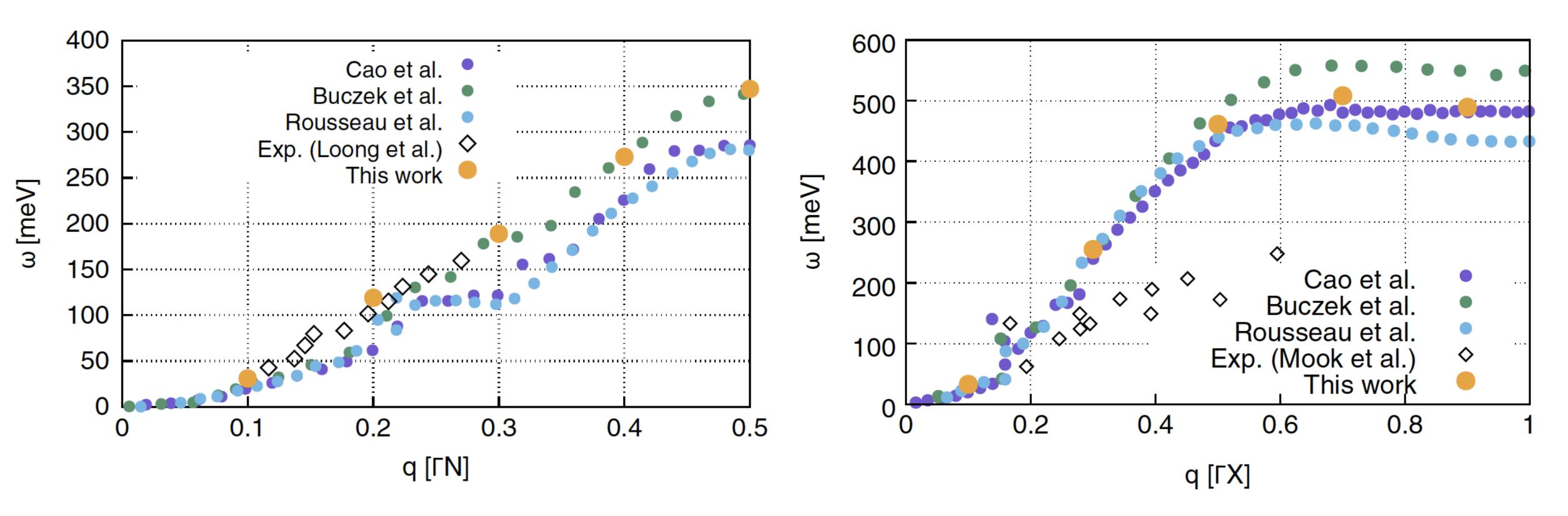
Pseudo-Hermitian vs Non-Hermitian Lanczos algorithms



Pseudo-Hermitian algorithm is 2 times faster than then Non-Hermitian algorithm

T. Gorni, O. Baseggio, P. Delugas, S. Baroni, I. Timrov, Comput. Phys. Commun. 280, 108500 (2022).

Magnon dispersion of a Crl₃ monolayer

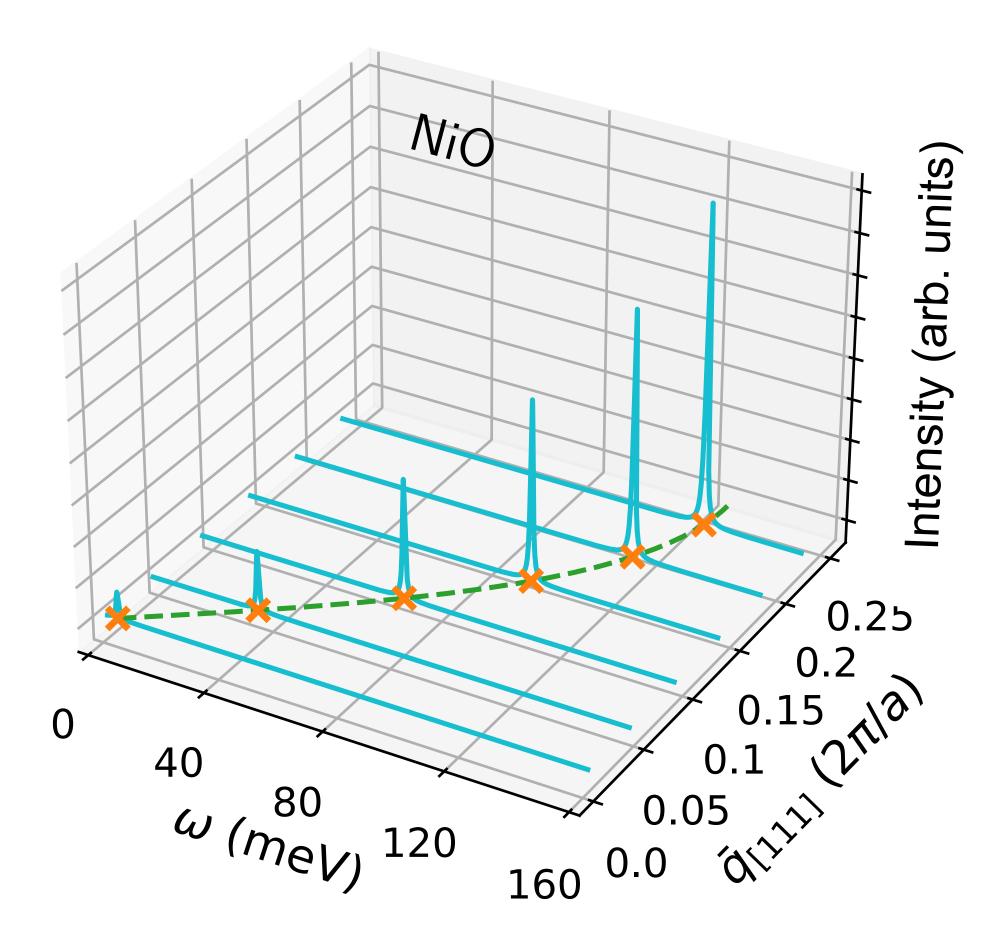


T. Gorni, O. Baseggio, P. Delugas, S. Baroni, I. Timrov, Comput. Phys. Commun. 280, 108500 (2022).

Magnon dispersion of bulk Fe and Ni

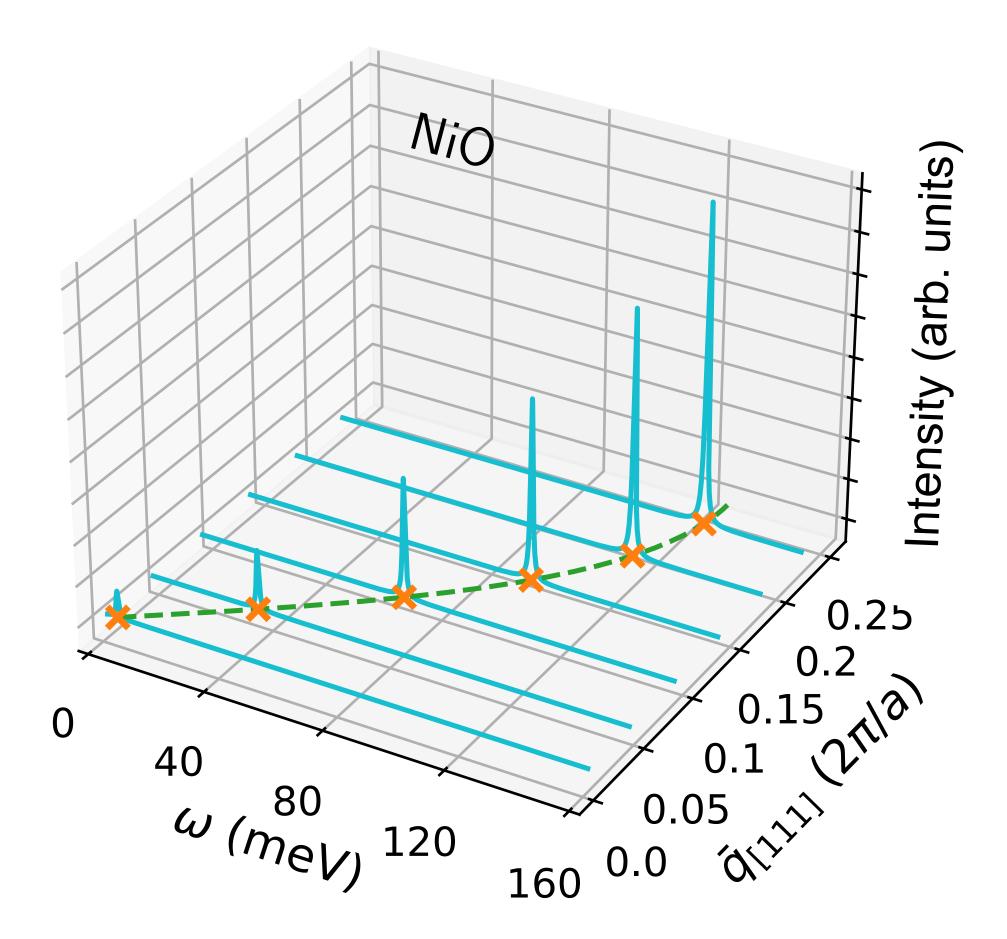
Magnon dispersion in bulk iron

TDDFT@ALDA gives excellent results for Fe but overestimates magnon energies by a factor of 2 for Ni.

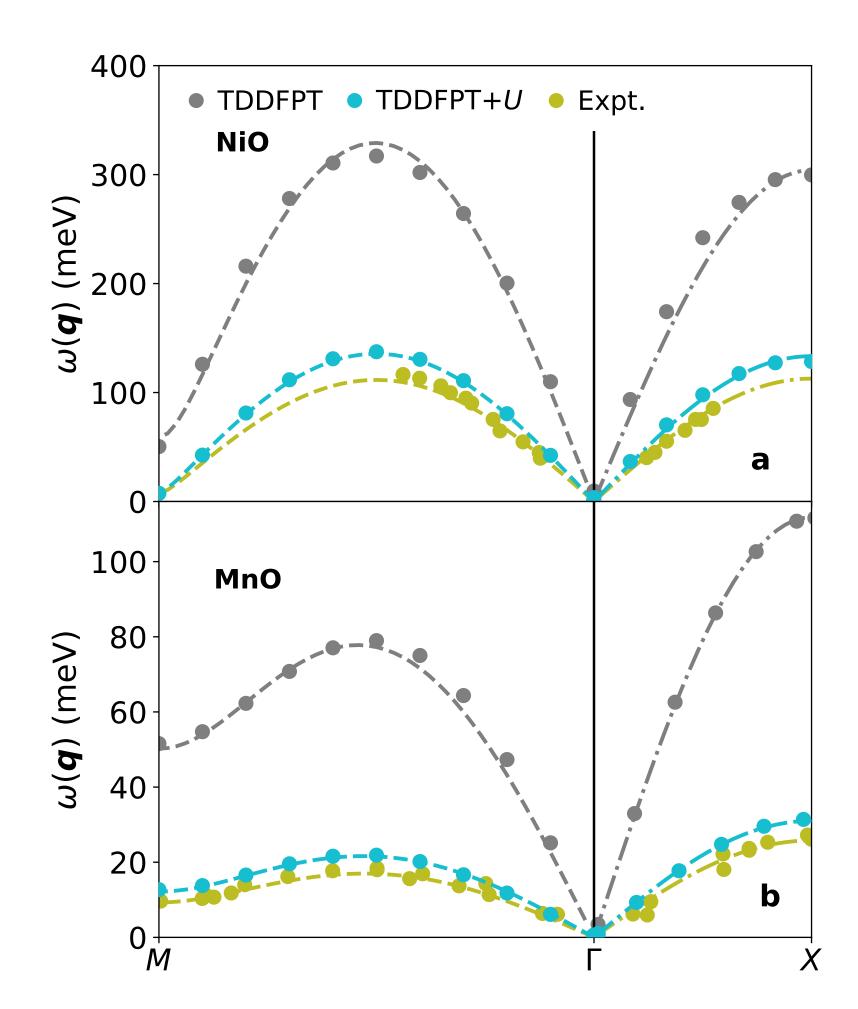

T. Gorni, I. Timrov, and S. Baroni, Eur. Phys. J. B 91, 249 (2018) - Special edition (in honor of Hardy Gross).

TDDFT+U magnon dispersions

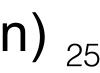
Dynamical spin susceptibility



Binci, Marzari, Timrov, npj Comput. Mater. (2025).

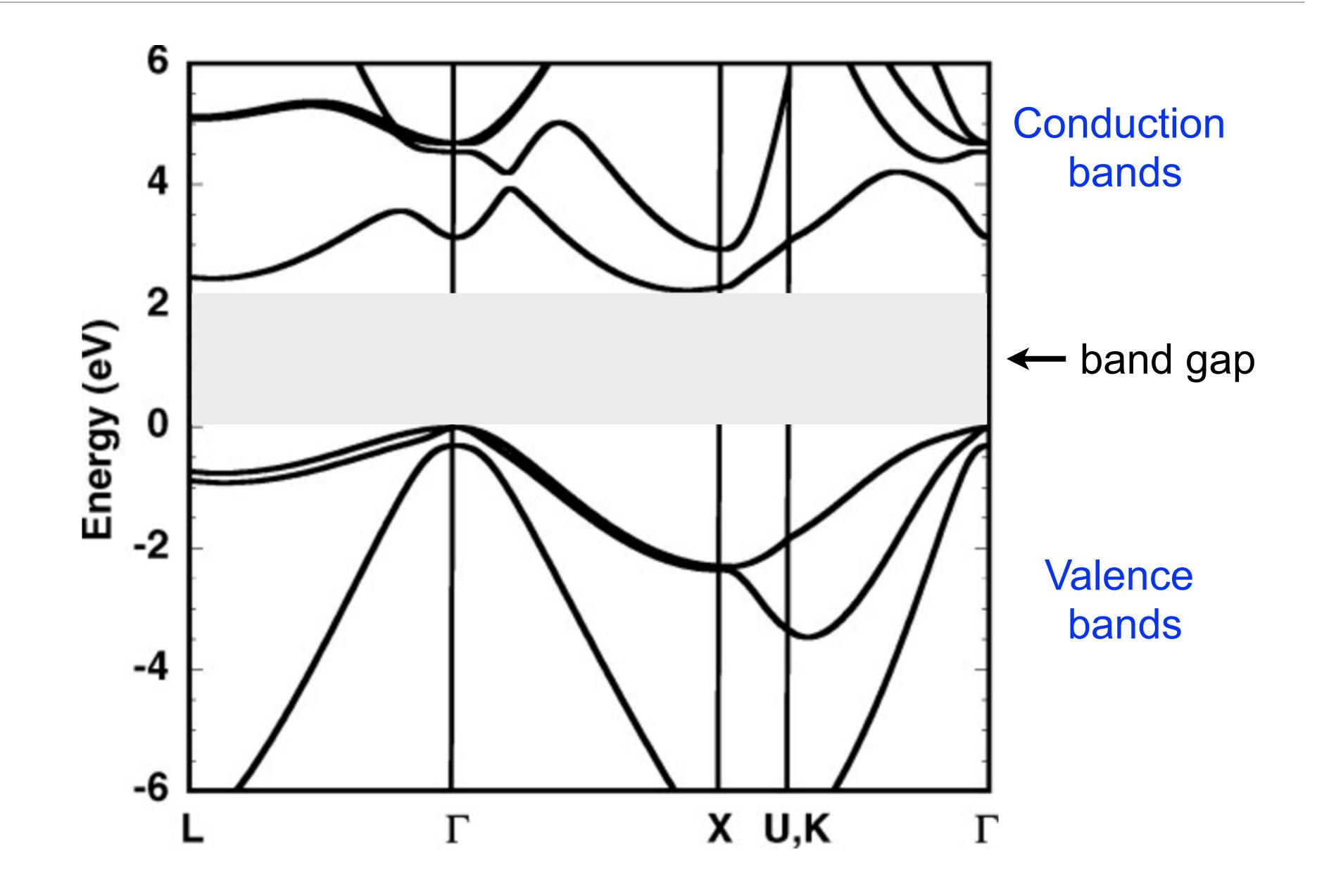

TDDFT+U magnon dispersions

Dynamical spin susceptibility

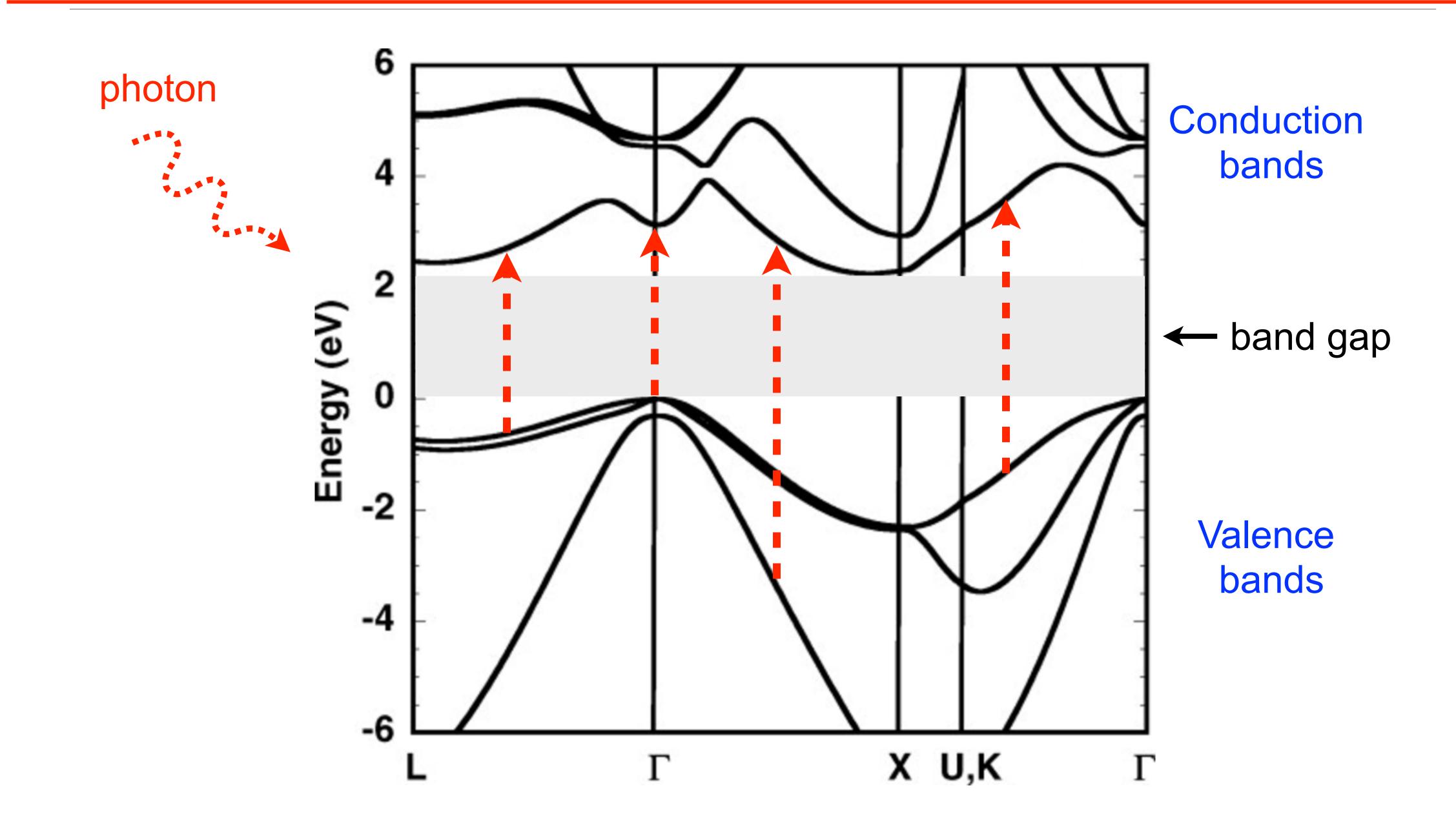


Binci, Marzari, Timrov, npj Comput. Mater. (2025).

Magnon dispersions


U from first principles (6.26 eV for Ni, 4.29 eV for Mn) 25

Backup slides



Computational spectroscopy: from ground state to excited state

Computational spectroscopy: from ground state to excited state

The evolution of a non-relativistic interacting many-electron system is governed by the time-dependent Schrödinger equation:

$$i\hbar \frac{\partial}{\partial t} \Psi_{\rm el}(\{\mathbf{r}_i\},t)$$

$$\hat{H}(\{\mathbf{r}_i\}, t) = -\frac{\hbar^2}{2m_0} \sum_i \mathbf{\nabla}_i^2 + \frac{1}{2} \sum_{i \neq j} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|} + \sum_i V_{ext}(\mathbf{r}_i, t)$$

By analogy to the static case, instead of considering the electronic wavefunction of 3N+1variables we can consider the electronic charge density which is a function of only 4 variables:

$$n(\mathbf{r},t) = N \int |\Psi_{\rm el}(\mathbf{r},\mathbf{r}_2,\ldots,\mathbf{r}_N,t)|^2 d\mathbf{r}_2\ldots d\mathbf{r}_N$$

Time-dependent Schrödinger equation

$$= \hat{H}(\{\mathbf{r}_i\}, t) \Psi_{\rm el}(\{\mathbf{r}_i\}, t)$$

Can we use the same approach as in DFT?

DFT: one-to-one mapping between static charge density and static external potential (minimization principle of the total energy).

TDDFT: straightforward extension of this idea to the time-dependent domain is not possible, because the total energy is no longer a conserved quantity.

For any system of interacting particles in an external time-dependent potential $V_{ext}(\mathbf{r}, t)$, which can be expanded in Taylor series with respect to time, and given an initial state $\Psi(\mathbf{r},t_0) = \Psi_0(\mathbf{r})$, there is a one-to-one correspondence between $V_{ext}(\mathbf{r},t)$ and the timedependent density $n(\mathbf{r}, t)$, apart from a trivial function of time.

A quantum-mechanical action functional

$$\mathcal{A}[n] = \int_{t_0}^{t_1} dt \, \langle \Psi(t) | i\hbar \frac{\partial}{\partial t} - \hat{H}(t) | \Psi(t) \rangle,$$

becomes stationary at the exact time-dependent density $n_0(\mathbf{r},t)$ which corresponds to the external potential $V_{ext}(\mathbf{r},t)$ given the initial state $\Psi_0(\mathbf{r})$ at t_0 :

> $\delta \mathcal{A}[n]$ $\overline{\delta n(\mathbf{r}, \mathbf{r})}$

$$\frac{n!}{t}\Big|_{n_0} = 0.$$

Quantum-mechanical action functional and TD Kohn-Sham equations

$$\mathcal{A}[n] = \mathcal{T}_0[n] + \mathcal{A}_H[n] + \mathcal{A}_{\mathrm{xc}}[n] - \int_{t_0}^{t_1} dt \int d\mathbf{r} \, V_{ext}(\mathbf{r}, t) n(\mathbf{r}, t)$$

$$\mathcal{A}_H[n] = -\frac{e^2}{2} \int_{t_0}^{t_1} dt \iint \frac{n(\mathbf{r}, t) n(\mathbf{r}', t)}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r} d\mathbf{r}'$$

Time-dependent Kohn-Sham equations:

$$i\hbar\frac{\partial}{\partial t}\varphi_i(\mathbf{r},t) = \left(-\frac{\hbar^2}{2m_0}\nabla^2 + V_{KS}(\mathbf{r},t)\right)\varphi_i(\mathbf{r},t)$$

 $V_{KS}(\mathbf{r},t)$

$$= V_{H}(\mathbf{r},t) + V_{xc}(\mathbf{r},t) + V_{ext}(\mathbf{r},t)$$
$$= e^{2} \int \frac{n(\mathbf{r}',t)}{|\mathbf{r}-\mathbf{r}'|} d\mathbf{r}' + \frac{\delta \mathcal{A}_{xc}[n]}{\delta n(\mathbf{r},t)} + V_{ext}(\mathbf{r},t)$$
$$n(\mathbf{r},t) = \sum_{i}^{N} |\varphi_{i}(\mathbf{r},t)|^{2}$$

 $\mathbf{2}$

31

Let us assume that the time-dependent external potential is weak, and that it can be written as:

 $V_{ext}(\mathbf{r},t) = V_{ext}^0(\mathbf{r}) + V_{ext}'(\mathbf{r},t)$

$$V_{ext}(\mathbf{r},t) = V$$

- Let us assume that the time-dependent external potential is weak, and that it can be written as:
 - $V_{ext}^0(\mathbf{r}) + V_{ext}'(\mathbf{r},t)$

$$V_{ext}(\mathbf{r},t) = V$$

$$n(\mathbf{r},t) = n^0(\mathbf{r}) + n'(\mathbf{r},t) + n''(\mathbf{r},t) + \dots$$

- Let us assume that the time-dependent external potential is weak, and that it can be written as:
 - $V_{ext}^0(\mathbf{r}) + V_{ext}'(\mathbf{r},t)$

$$V_{ext}(\mathbf{r},t) = V$$

$$n(\mathbf{r},t) = n^0(\mathbf{r}) + n'(\mathbf{r},t) + n''(\mathbf{r},t) + \dots$$

- Let us assume that the time-dependent external potential is weak, and that it can be written as:
 - $V_{ext}^0(\mathbf{r}) + V_{ext}'(\mathbf{r},t)$

$$V_{ext}(\mathbf{r},t) = V$$

$$n(\mathbf{r},t) = n^0(\mathbf{r}) + n'(\mathbf{r},t) + n''(\mathbf{r},t) + \dots$$

$$n'(\mathbf{r},t) = \int_{-\infty}^{\infty} dt' \int d\mathbf{r}' \, \chi(\mathbf{r},\mathbf{r}',t-t') V'_{ext}(\mathbf{r}',t')$$

- Let us assume that the time-dependent external potential is weak, and that it can be written as:
 - $V_{ext}^0(\mathbf{r}) + V_{ext}'(\mathbf{r},t)$

$$V_{ext}(\mathbf{r},t) = V$$

$$\begin{split} n(\mathbf{r},t) &= n^0(\mathbf{r}) + n'(\mathbf{r},t) + n''(\mathbf{r},t) + \dots \\ \mathbf{r},t) &= \int_{-\infty}^{\infty} dt' \int d\mathbf{r}' \, \chi(\mathbf{r},\mathbf{r}',t-t') V'_{ext}(\mathbf{r}',t') \end{split}$$
 Susceptibility

$$\begin{split} n(\mathbf{r},t) &= n^0(\mathbf{r}) + n'(\mathbf{r},t) + n''(\mathbf{r},t) + \dots \\ n'(\mathbf{r},t) &= \int_{-\infty}^{\infty} dt' \int d\mathbf{r}' \, \chi(\mathbf{r},\mathbf{r}',t-t') V'_{ext}(\mathbf{r}',t') \end{split}$$
 Susceptibility

- Let us assume that the time-dependent external potential is weak, and that it can be written as:
 - $V_{ext}^0(\mathbf{r}) + V_{ext}'(\mathbf{r},t)$
- Therefore, the density $n(\mathbf{r}, t)$ can be expanded in Taylor series with respect to the perturbation:

$$V_{ext}(\mathbf{r},t) = V$$

$$\begin{split} n(\mathbf{r},t) &= n^0(\mathbf{r}) + n'(\mathbf{r},t) + n''(\mathbf{r},t) + \dots \\ \mathbf{r},t) &= \int_{-\infty}^{\infty} dt' \int d\mathbf{r}' \, \chi(\mathbf{r},\mathbf{r}',t-t') V'_{ext}(\mathbf{r}',t') \end{split}$$
 Susceptibility

$$\begin{split} n(\mathbf{r},t) &= n^0(\mathbf{r}) + n'(\mathbf{r},t) + n''(\mathbf{r},t) + \dots \\ n'(\mathbf{r},t) &= \int_{-\infty}^{\infty} dt' \int d\mathbf{r}' \, \chi(\mathbf{r},\mathbf{r}',t-t') V'_{ext}(\mathbf{r}',t') \end{split}$$
 Susceptibility

response TDDFT.

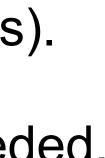
Linear-response TDDFT (TDDFPT)

- Let us assume that the time-dependent external potential is weak, and that it can be written as:
 - $V_{ext}^0(\mathbf{r}) + V_{ext}'(\mathbf{r},t)$
- Therefore, the density $n(\mathbf{r}, t)$ can be expanded in Taylor series with respect to the perturbation:

Time-dependent density functional perturbation theory (TDDFPT) is TDDFT in conjunction with perturbation theory. If we keep only the first-order term in the Taylor expansion, then this is linear-

BSE) when used with the adiabatic approximation.

but the cost of TDDFPT with such kernels increases very rapidly.


tic solids, and inelastic neutron scattering spectra of magnetic solids.

• Linear response TDDFT (or TDDFPT) is a well-established theory for modelling various spectroscopies. It owes its popularity to its relatively low computational cost (compared to many-body theories as e.g.

• Adiabatic approximation gives satisfactory results for many properties (e.g. plasmons and magnons). But certain properties come out to be unsatisfactory in adiabatic approximation (e.g. no excitons). Hence, spatial non-locality and/or frequency-dependence in the exchange-correlation kernel is needed,

• The Quantum ESPRESSO distribution contains a TDDFPT module which can be used for calculations of optical absorption spectra of finite systems (molecules), electron energy loss spectra of non-magne-

