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Introduction

The study applies Convolutional Neural Networks︸ ︷︷ ︸
CNN

to identify and classify phase transitions in an Ising model
under nonequilibrium conditions.

Nonequilibrium systems do NOT obey the DBC.
(−More complex compared to the equilibrium systems)

However, advancements in ML provides a data-driven
approach (Motivation)
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Motivation

CNN can detect configurations of spin system−akin to imgs.

That is;
■ If a CNN is able to identify imgs of cats from that of dogs,
it can be used to classify d/t states of spin confg.
∴ We aim to evaluate the generalization scope of this model.
⇒ Train on EPT and Test on NEPT
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... Motivation: CNN can detect configurations

We can use CNN to classify the d/t states (∼=phases).
E.g: ordered and disordered states of spin configurations.

One of previous studies [Carrasquilla, 2017]−that inspiring:
√

It was studed that CNN can recognize phases and phase

transision of equilibrium Ising model.

Contribution of the present study:

? Can CNN recognize nonequilibrium phase transition?

Method: MC+Supervised ML (∼=Modified Metropolis + CNN)

Supervised ML −learns a function that maps the input to the

output by learning how inputs correlate to outputs.
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Description of the Ising Model (B = 0)

Define model of the ferromagnet by Hamiltonian

H =−J ∑
⟨i ,j⟩

si sj , where si =±1(up or down) (1)

The system undergoes a second order PT at critical Tc .
▷ For T < Tc , the system is in ordered(FM) state.
▷ For T > Tc , the system is in disordered(PM) state.
◀ Recall: CNN classifies d/t states−“FM” & “PM” here.

For an infinite 2D lattice Tc was derived [Onsager, 1944]

Tc = 2/ln(1+
√
2)≈ 2.2692,in units[J/KB ], (2)

and ML was studied [Carrasquilla, 2017]

2 Set kB = 1, =⇒ T in J , & T/J is dimensionless.
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Equilibrium vs Nonquilibrium Ising Model

System in contact with hb−generates stochastic spin flips.

▶ The Modified Metropolis: M= MIN
[
1,e−β∆Eeff

]
,

✓ M= Modified rate of transition from old to a new state,
✓ β = 1/T ,

✓ ∆Eeff =∆E + ε ≡ Effective Energy change[This work],

✓ ∆E = {−8,−4,0,4,8} ≡Known Energy change [Litrature],

Varepsilon[−8≤ ε ≤ 8]≡Non-zero parameter to break DB.︸ ︷︷ ︸
Equilibrium vs Nonquilibrium Ising Model (this study context)

Equilibrium (with DB) Nonquilibrium (without DB)

▶ Obeys DB condition(ε = 0) ▶ Violates DB condition(ε ̸= 0)
∆Eeff =∆E ∆Eeff ̸=∆E

e.g. ε =±2 and ∆Eeff =∆E ±2
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2. Method
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MC Generate 200,000 Image Snapshots (Imgs)

■ We perform MC simulation of Ising model using the MMA.

Square lattice of

L= {10,20,40,60}
N = L×L.
MC sweeps= 10N
Start: Thigh= 4.5
End: Tlow= 0.5
Tbin= 200 data points

Ensemble of 800 samples

∴160kimgs
16k is for validation.

More 40k test dataset
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Samples of Imgs

(a) ε = 0︸ ︷︷ ︸ (b) ε =−2 (c) ε =+2︸ ︷︷ ︸
Equilibrium Nonequilibrium Representative

(Train Dataset) (Test Datasets)︸ ︷︷ ︸
Reptv. (40×40) configurations: Training(a), & Test(b,c) datasets.

The low temperature (T < Tc(ε)) configurations tend to be

predominately aligned in either “up”/“down”.
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CNN-is a DL algorithm

AI cloud team at IBM explains
AI, ML, ANN, DL︸ ︷︷ ︸
computer science terms

as a series of AI system
DL→ ANN→ ML→ AI

each encompassing the next.

CNN is a DL algorithm−used for the image type data.

In our case, we use imgs of Ising spin configurations.

ANN − a subset of ML and the backbone of DL.

− called “neural” b/c mimic how neurons in brain.

Dagne Wordofa Tola1,2 and Mulugeta Bekele1 ML Nonequilibrium Phase Transition (doi.org/10.3390/condmat8030083)

doi.org/10.3390/condmat8030083


Introduction
Method
Results

Conclusions

MC Method to Generate Data for ML
Supervized ML-CNN

TenserFlow integrated with Keras API

Build & train a CNN using TensorFlow Keras sequential model.

Optimization = Adam,
Loss function = categorical cross-entropy,
Activation function = ReLU,
Final Dense = 2 nodes,
Activation function= Softmax.

The first part of model consists of two conv. layers.
Each of these layers has 64 output filters of kernel size 3×3.

The data are flattened & passed to Dense layer, +ReLU.

Apply Softmax on last Dense layer so that the output for
each sample is a probability distribution over the outputs.
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3. Results
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Result: Training−& Validation (ε = 0), L = 40

Plot shows the average output layer vs temperatures

Fully connected layer Plot of output layer

Crossing point refers point of maximal (POM) confusion

Critical T at POM confusion is almost ∼= to analytical Tc .
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ML the equilibrium model: L = {10,20,40,60}.

Figure: (a) Output layer prediction as a function of T (ε = 0).
The vertical dashed line signals T 0

c ≈ 2.267.

(b) Plot showing FSS of the av. output layer versus (T −Tc)L
1/ν .

Note: The prediction is indpendent of L at POM confusion
−consistent with TD response function.
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Training Validation: L= {10,20,40,60}
Testing: L= {10,20,40,60}

ML Nonequilibrium Model: L = {10,20,40,60}

Figure: Output layer prediction vs T for (ε =±2). The vertical
dashed line signals (a & b) Tc(ε =−2)≈ 1.385, and (c & d)
Tc(ε =+2)≈ 3.106
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Key Findings

The CNN successfully identifies the critical temperature.

Furthermore, a disagreement b/n CNN and graphical
calculation has been observed for ε <−2.
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The figure shows that the variant becomes bolder for
ε <−2, and even CNN totally fails for ε ≤−4.

This discrepancy has been resolved by introducing the
effective parameter |h| ≤ 1.
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Summary

For ε =±2: ML(this) and MC(Literature) are almost in
agrement

ML(This Work)

ε Analytical Tc(ε)
ML in [J]

-2 5/4 ln(1+
√
2)≈ 1.4182 1.3769(87)

+2 11/4 ln(1+
√
2)≈ 3.1201 3.1071(175)

MC (Literature)

Tc(ε)
MC in [J]

1.3604(3)
3.1267(4)
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Conclusions

By using supervised ML, we have studied nonequilibrium
phase transitions in a 2D Ising model on square lattice.

▷ Result shows that CNN can identify nonequilibrium phase
transitions. [More Information:]
https://doi.org/10.3390/condmat8030083
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