Motivation Description of the Model Equilibrium vs Nonquilibrium Ising Mode

Machine Learning Nonequilibrium Phase Transition

Dagne Wordofa Tola 1,2 and Mulugeta Bekele 1

¹ Department of Physics, Addis Ababa University, 1176, Addis Ababa, Ethiopia ² Department of Physics, Dire Dawa University, 1362, Dire Dawa, Ethiopia (Presenting author underlined) ©ICTP-EAIFR, StatPhys Kigali July 04-10, 2025

July 05, 2025

・ 同 ト ・ ヨ ト ・ ヨ ト

Motivation Description of the Model Equilibrium vs Nonquilibrium Ising Mode

Contents

- Motivation
- The Ising Model
- Equilibrium vs Nonquilibrium Ising Model
- 2 Method
 - MC Method to Generate Data for ML
 - Supervized ML-CNN
- 3 Results
 - Training Validation: $L = \{10, 20, 40, 60\}$
 - Testing: $L = \{10, 20, 40, 60\}$

4 Conclusions

- Summary of the main results
- Concluding Remarks

・ 同 ト ・ ヨ ト ・ ヨ ト

Motivation Description of the Model Equilibrium vs Nonquilibrium Ising Mode

Introduction

1. Introduction

Dagne Wordofa Tola^{1,2} and Mulugeta Bekele¹ ML Nonequilibrium Phase Transition (doi.org/10.3390/condma

< 同 > < 国 > < 国 >

Motivation Description of the Model Equilibrium vs Nonquilibrium Ising Mode

Introduction

The study applies <u>Convolutional Neural Networks</u>
 CNN
 to identify and classify phase transitions in an Ising mode

to identify and classify phase transitions in an Ising model under nonequilibrium conditions.

- Nonequilibrium systems do NOT obey the DBC.
 (-More complex compared to the equilibrium systems)
- However, advancements in ML provides a **data-driven** approach (Motivation)

くロ と く 同 と く ヨ と 一

Motivation Description of the Model Equilibrium vs Nonquilibrium Ising Mode

Motivation

CNN can detect configurations of spin system-akin to imgs.

That is;

■ If a CNN is able to identify imgs of **cats** from that of **dogs**,

it can be used to classify d/t states of spin confg.

- \therefore We aim to evaluate the generalization scope of this model.
- \Rightarrow Train on EPT and Test on NEPT

Motivation Description of the Model Equilibrium vs Nonquilibrium Ising Mode

... Motivation: CNN can detect configurations

We can use CNN to classify the d/t states (≅phases).
 E.g: ordered and disordered states of spin configurations.

One of previous studies [Carrasquilla, 2017]-that inspiring:

It was studed that CNN can recognize phases and phase transision of equilibrium Ising model.

Contribution of the present study:

? Can CNN recognize nonequilibrium phase transition?
 Method: MC+Supervised ML (≅Modified Metropolis + CNN)

Supervised ML – learns a function that maps the input to the output by learning how inputs correlate to outputs.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Motivation Description of the Model Equilibrium vs Nonquilibrium Ising Mode

Description of the Ising Model $(\mathscr{B} = 0)$

• Define model of the ferromagnet by Hamiltonian

$$\mathscr{H} = -J\sum_{\langle i,j
angle} s_i s_j, \quad ext{where } s_i = \pm 1 (\textit{up or down}) \quad (1)$$

The system undergoes a second order PT at critical *T_c*.
 ▷ For *T* < *T_c*, the system is in ordered(FM) state.

- ▷ For $T > T_c$, the system is in disordered(PM) state.
- ◄ Recall: CNN classifies d/t states—"FM" & "PM" here.
- For an infinite 2D lattice T_c was derived [Onsager, 1944]

$$T_c = 2/\ln(1+\sqrt{2}) \approx \underline{2.2692}, \text{in units}[J/K_B],$$
 (2)

and ML was studied [Carrasquilla, 2017]

□ Set $k_B = 1$, $\implies T$ in J, & T/J is dimensionless.

ML Nonequilibrium Phase Transition (doi.org/10.3390/condma

Equilibrium vs Nonquilibrium Ising Model

- System in contact with hb-generates *stochastic* spin flips.
- ► The Modified Metropolis: $\left| \mathbb{M} = MIN \left[1, e^{-\beta \Delta E_{eff}} \right] \right|$
- ✓ M = Modified rate of transition from **old** to a **new** state, ✓ $\beta = 1/T$,
- $\checkmark \ \ \boxed{\Delta E_{\tt eff} = \Delta E + \varepsilon} \equiv {\tt Effective \ Energy \ change[This \ work]},$
- $\checkmark \quad \overline{\Delta E} = \{-8, -4, 0, 4, 8\} \equiv \text{Known Energy change [Litrature]}, \\ Varepsilon[-8 \le \varepsilon \le 8] \equiv \text{Non-zero parameter to break DB.} \end{cases}$

Equilibrium vs Nonquilibrium Ising Model (this study context)

•	
Equilibrium (with DB)	Nonquilibrium (without DB)
▶ Obeys DB condition($\varepsilon = 0$)	▶ Violates DB condition($\varepsilon \neq 0$)
$\Delta E_{ t eff} = \Delta E$	$\Delta E_{ t eff} eq \Delta E$
	e.g. $arepsilon=\pm2$ and $\Delta E_{ textsf{eff}}=\Delta E\pm2$

Dagne Wordofa Tola^{1,2} and Mulugeta Bekele¹

ML Nonequilibrium Phase Transition (doi.org/10.3390/condmat

MC Method to Generate Data for ML Supervized ML-CNN

Method

2. Method

Dagne Wordofa Tola^{1,2} and Mulugeta Bekele¹ ML Nonequilibrium Phase Transition (doi.org/10.3390/condma

< ロ > < 回 > < 回 > < 回 > < 回 >

э

MC Method to Generate Data for ML Supervized ML-CNN

MC Generate 200,000 Image Snapshots (Imgs)

■ We perform MC simulation of Ising model using the MMA.

Square lattice of $L = \{10, 20, 40, 60\}$ $N = I \times I$ MC sweeps = 10NStart: Thigh = 4.5End: Tlow = 0.5Tbin = 200 data points Ensemble of 800 samples ∴160kimgs 16k is for validation. More 40k test dataset

MC Method to Generate Data for ML Supervized ML-CNN

Samples of Imgs

MC Method to Generate Data for ML Supervized ML-CNN

CNN-is a DL algorithm

- CNN is a DL algorithm-used for the image type data.
- In our case, we use imgs of Ising spin configurations.

ANN - a subset of ML and the backbone of DL.

- called "neural" b/c mimic how neurons in brain.

Dagne Wordofa Tola^{1,2} and Mulugeta Bekele¹

ML Nonequilibrium Phase Transition (doi.org/10.3390/condmat

MC Method to Generate Data for ML Supervized ML-CNN

TenserFlow integrated with Keras API

Build & train a CNN using TensorFlow Keras sequential model.

Optimization = Adam, Loss function = categorical cross-entropy, Activation function = ReLU, Final Dense = 2 nodes, Activation function= Softmax.

- The first part of model consists of two conv. layers. Each of these layers has 64 output filters of kernel size 3 × 3.
- The data are flattened & passed to Dense layer, +ReLU.
- Apply Softmax on last Dense layer so that the output for each sample is a probability distribution over the outputs.

Introduction
Method
Results
Conclusions

Training Validation: $L = \{10, 20, 40, 60\}$ Testing: $L = \{10, 20, 40, 60\}$

Results

3. Results

Dagne Wordofa Tola^{1,2} and Mulugeta Bekele¹ ML Nonequilibrium Phase Transition (doi.org/10.3390/condma

< ロ > < 回 > < 回 > < 回 > < 回 >

Training Validation: $L = \{10, 20, 40, 60\}$ Testing: $L = \{10, 20, 40, 60\}$

Result: Training–& Validation ($\varepsilon = 0$), L = 40

• Plot shows the average output layer vs temperatures

Fully connected layer Plot of output layer • Crossing point refers point of maximal (POM) confusion • Critical T at POM confusion is almost \cong to analytical T_c .

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction Method Results

Training Validation: $L = \{10, 20, 40, 60\}$ Testing: $L = \{10, 20, 40, 60\}$

ML the equilibrium model: $L = \{10, 20, 40, 60\}$.

Figure: (a) Output layer prediction as a function of T ($\varepsilon = 0$). The vertical dashed line signals $T_c^0 \approx 2.267$. (b) Plot showing FSS of the av. output layer versus $(T - T_c)L^{1/\nu}$. **Note:** The prediction is indpendent of L at POM confusion -consistent with TD response function.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Training Validation: $L = \{10, 20, 40, 60\}$ Testing: $L = \{10, 20, 40, 60\}$

ML Nonequilibrium Model: $L = \{10, 20, 40, 60\}$

Figure: Output layer prediction vs *T* for ($\varepsilon = \pm 2$). The vertical dashed line signals (a & b) $T_c(\varepsilon = -2) \approx 1.385$, and (c & d) $T_c(\varepsilon = +2) \approx 3.106$

Dagne Wordofa Tola^{1,2} and Mulugeta Bekele¹

Training Validation: $L = \{10, 20, 40, 60\}$ Testing: $L = \{10, 20, 40, 60\}$

< ロ > < 同 > < 三 > < 三 >

Key Findings

- The CNN successfully identifies the critical temperature.
- Furthermore, a disagreement b/n CNN and graphical calculation has been observed for $\varepsilon < -2$.

- The figure shows that the variant becomes **bolder** for $\varepsilon < -2$, and even CNN totally fails for $\varepsilon \leq -4$.
- This discrepancy has been resolved by introducing the effective parameter $|h| \le 1$.

Introduction	
Method	
Results	
Conclusions	

Testing: $L = \{10, 20, 40, 60\}$ Testing: $L = \{10, 20, 40, 60\}$

Conclusions

4. Conclusions

Dagne Wordofa Tola^{1,2} and Mulugeta Bekele¹ ML Nonequilibrium Phase Transition (doi.org/10.3390/condma

伺 ト イヨト イヨト

ntroduction		
Method	Testing:	$L = \{10\}$
Results	Testing:	
Conclusions		

.20.40.60}

Summary

• For $\varepsilon = \pm 2$: ML(this) and MC(Literature) are almost in agreement

	ML(This Work)	
ε	Analytical	$T_c(\varepsilon)^{ML}$ in $[J]$
-2	$5/4\ln(1+\sqrt{2}) \approx 1.4182$	1.3769(87)
+2	$11/4\ln(1+\sqrt{2})pprox 3.1201$	3.1071(175)
	MC (Literature)	
	$T_c(\varepsilon)^{MC}$ in $[J]$	
	1.3604(3)	
	3.1267(4)]

Dagne Wordofa Tola^{1,2} and Mulugeta Bekele¹

ML Nonequilibrium Phase Transition (doi.org/10.3390/condmat

► < Ξ > <</p>

-

Introduction	
Method	
Results	
Conclusions	

Testing: $L = \{10, 20, 40, 60\}$ Testing: $L = \{10, 20, 40, 60\}$

Conclusions

- By using supervised ML, we have studied nonequilibrium phase transitions in a 2D Ising model on square lattice.
- Result shows that CNN can identify nonequilibrium phase transitions. [More Information:] https://doi.org/10.3390/condmat8030083

an Open Access Journal by MDPI Machine Learning of Nonequilibrium Phase Transition in an Ising Model on Square Lattice

Dagne Wordofa Tola; Mulugeta Bekele

Condens. Matter 2023, Volume 8, Issue 3, 83

- (同) - (目) - (目)

Acknowledgments

Acknowledgments

Thanks to ICTP-EAIFR and the organizers of StatPhys Kigali for the opportunity given to present our research findings. The authors thank The **International Science Programme (ISP)**,¹ Uppsala University, Uppsala, Sweden for the support in providing the facilities of Computational & Statistical Physics lab.

THANKYOU

¹Promoting basic sciences in LDC since 1961 (http://www.isp.uu.se/) ∽ < Dagne Wordofa Tola^{1,2} and Mulugeta Bekel¹ ML Nonequilibrium Phase Transition (doi.org/10.3390/condma