

Quantum Spin Liquid and Quantum Spin Ice: Introduction II

Yong Baek Kim
University of Toronto

ICTP
August 8, 2025

Thermodynamic signatures in quantum spin liquids

Does spinon pairing exist?

U(1) Spin Liquid Emergent U(1) gauge field

Z₂ Spin Liquid (BCS of spinons) U(1) gauge field gapped (Meissner effect)

gapped spinon

gapless spinon

gapped spinon $C(T) \sim e^{-\Delta/T}$ gapless spinon

$$C_{\text{gauge}}^{3D}(T) \sim T^3$$
 $C_{\text{dirac}}(T) \sim T^2$

$$C_{\mathrm{dirac}}(T) \sim T^2$$

$$C_{\mathrm{d-wave}}(T) \sim T^2$$

(unstable in 2D) $C_{\mathrm{FS}}(T) \sim T$ mean field

$$C_{FS}^{2D} \sim T^{2/3}$$
 including $C_{FS}^{3D} \propto T \ln T$ fluctuations

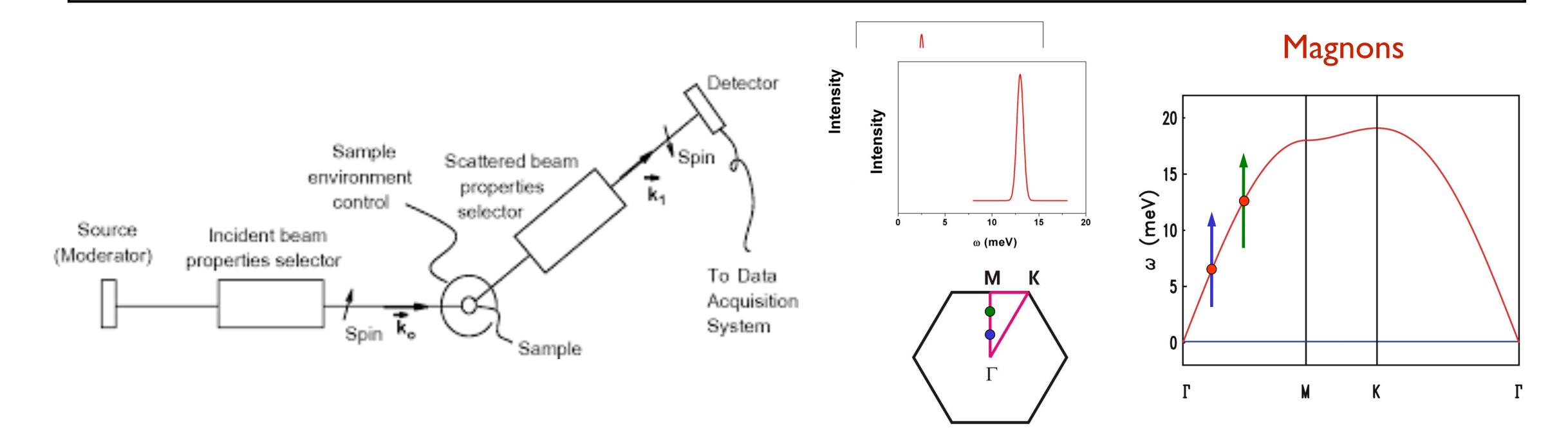
Neutron Scattering

Time-dependent correlator

$$\sum_{\alpha=x,y,z} \langle S^{\alpha}(\mathbf{x},t) S^{\alpha}(\mathbf{x}=0,t=0) \rangle$$

Dynamical spin structure factor (DSSF)

$$\longrightarrow$$
 $S(\mathbf{q}, \omega) \sim \int dt \int d^3\mathbf{x} \ e^{i\omega t} \ e^{i\mathbf{q}\cdot\mathbf{x}} \sum_{\alpha=x,y,z} \langle S^{\alpha}(\mathbf{x}, t) S^{\alpha}(\mathbf{x} = 0, t = 0) \rangle$



How to detect excitations in quantum spin liquids?

Neutron Scattering: Spin-I excitations

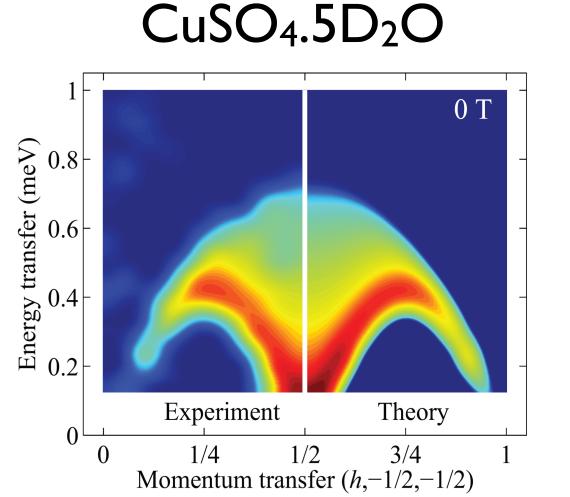
Spinon-Antispinon pair excitations

Scattering continuum

$$\omega_{\mathbf{q}} \sim \min_{\mathbf{z}} \left[\varepsilon_{\frac{\mathbf{q}}{2} + \frac{\mathbf{p}}{2}} + \varepsilon_{\frac{\mathbf{q}}{2} - \frac{\mathbf{p}}{2}} \right]$$
 for all possible P

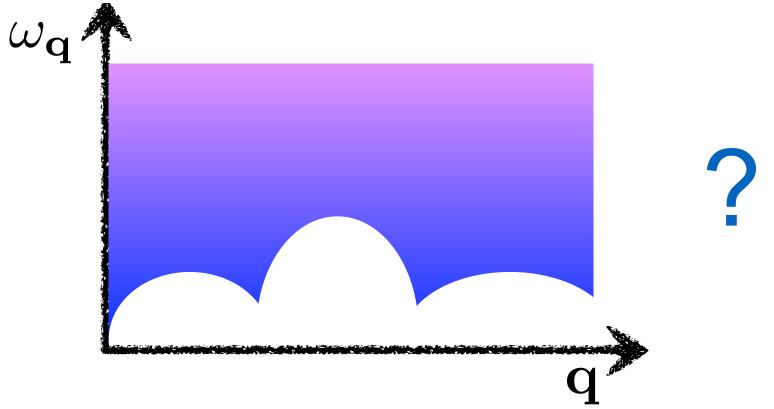
Harder to confirm in 2D and 3D Energy resolution may not be good enough

Well-defined dispersion -->
Threshold energy for pair excitations



One dimensional spin liquid

Mourigal et al, Nat. Phys. (2013)



Spin flip excitations in Kitaev Model

Define bond fermions

$$\chi^{\alpha}_{\langle jk\rangle} = \frac{1}{2} \left(b^{\alpha}_j + ib^{\alpha}_k \right)$$

$$\chi_{\langle jk\rangle}^{\alpha\dagger} = \frac{1}{2} \left(b_j^{\alpha} - ib_k^{\alpha} \right)$$

Baskaran, Mandal, Shankar (2007)

$$\widetilde{H} = \sum_{\alpha \text{-bond}} i \hat{u}_{jk}^{\alpha} c_j c_k$$

$$\hat{u}_{jk}^{\alpha} = 2\chi_{\langle jk \rangle_{\alpha}}^{\dagger} \chi_{\langle jk \rangle_{\alpha}} - 1$$

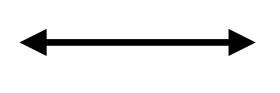
Ground state

$$\chi^{\dagger}_{\langle jk \rangle_{\alpha}} \chi_{\langle jk \rangle_{\alpha}} = 1 \qquad \hat{u}^{\alpha}_{jk} = +1$$

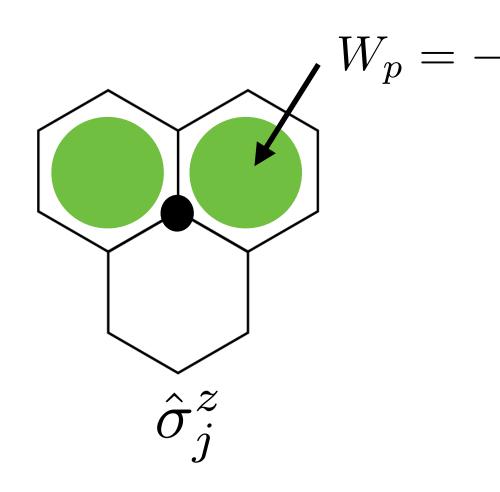
$$\chi^{\dagger}_{\langle jk \rangle_{\alpha}} \chi_{\langle jk \rangle_{\alpha}} = 1, 0 \longleftrightarrow \hat{u}^{\alpha}_{jk} = \pm 1$$

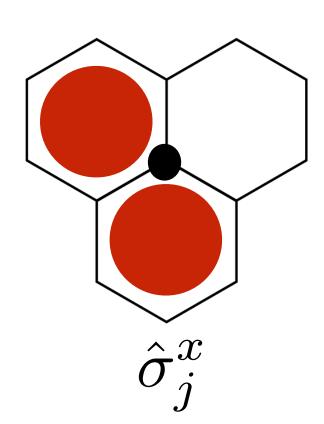
Single spin flip
$$\sigma_j^{lpha}=ic_j\left(\chi_{\langle jk
angle}^{lpha}+\chi_{\langle jk
angle}^{lpha\dagger}
ight)$$
 $\hat{u}_{jk}^{lpha}\longrightarrow -\hat{u}_{jk}^{lpha}$

$$\hat{u}_{jk}^{\alpha} \longrightarrow -\hat{u}_{jk}^{\alpha}$$



one fermion and two fluxes



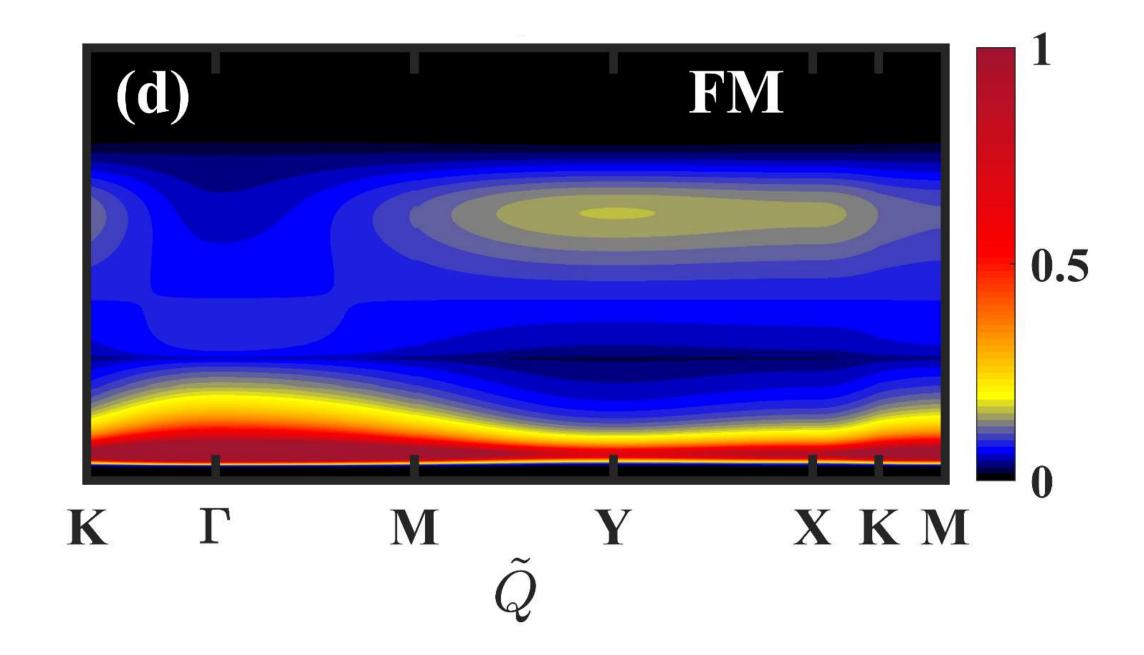


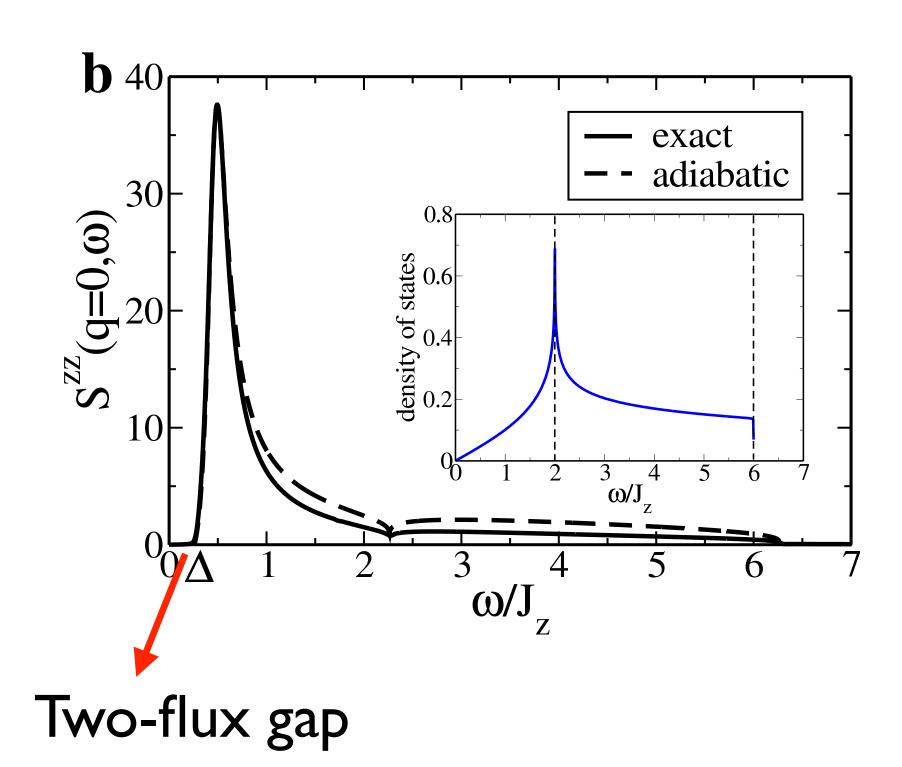


Dynamical Spin Structure Factor

$$S_{ij}^{ab}(t) = \langle 0|\hat{\sigma}_i^a(t)\hat{\sigma}_j^b(0)|0\rangle \xrightarrow{\text{F.T.}} S^{ab}(\mathbf{q},\omega)$$

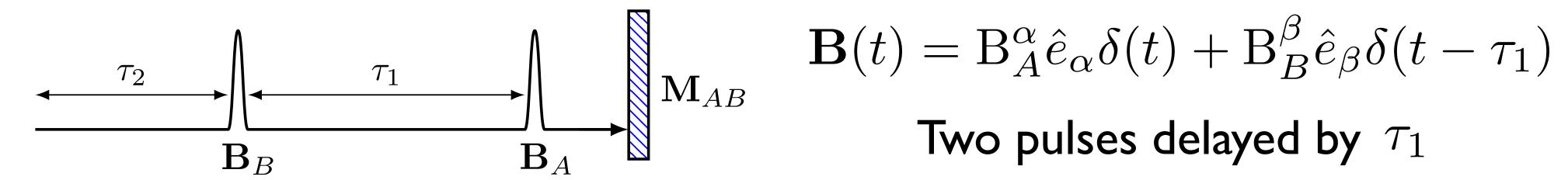
$$S(\mathbf{q},\omega) = \sum_{a} S^{aa}(\mathbf{q},\omega)$$





J. Knolle, D.L.Kovrizhin, J.T.Chalker, R. Moessner, PRL (2013)

2D nonlinear spectroscopy



Measure the nonlinear part of the transient magnetization

$$\mathbf{M}_{NL}(t) = \mathbf{M}_{AB}(t) - \mathbf{M}_{A}(t) - \mathbf{M}_{B}(t) \qquad t = \tau_1 + \tau_2$$

Nonlinear transient magnetization - nonlinear susceptibilities

$$\begin{split} H_{\rm tot} &= H - \mathbf{B}(t) \cdot \mathbf{M}(t) \\ M_{NL}^{\gamma}(\tau_1 + \tau_2)/N &= \underbrace{\chi_{\alpha\beta}^{(2),\gamma}(\tau_2,\tau_1)} B_A^{\alpha} B_B^{\beta} \quad \mathsf{AB} \\ &+ \underbrace{\chi_{\alpha\alpha\beta}^{(3),\gamma}(\tau_2,\tau_1,0)} B_A^{\alpha} B_A^{\alpha} B_B^{\beta} + \underbrace{\chi_{\alpha\beta\beta}^{(3),\gamma}(\tau_2,0,\tau_1)} B_A^{\alpha} B_B^{\beta} B_B^{\beta} + \mathcal{O}(B^4) \end{split}$$

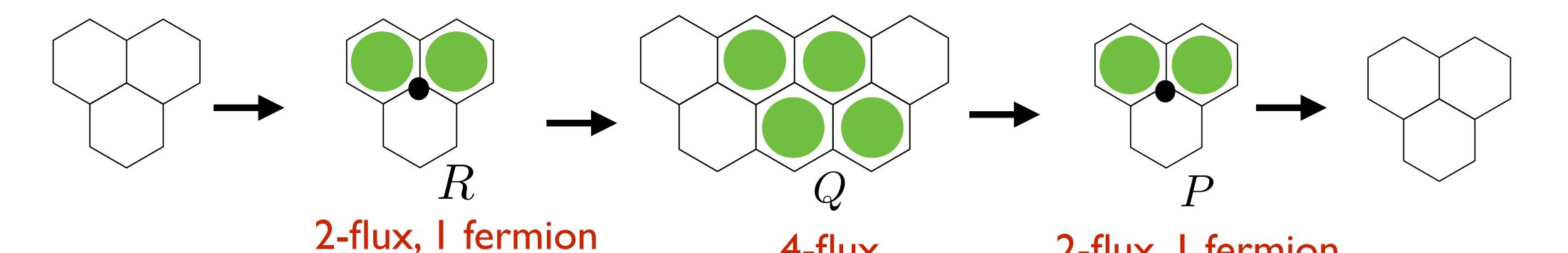
$$\mathsf{AAB} \qquad \mathsf{ABB} \qquad \mathsf{ABB}$$

$$\alpha, \beta, \gamma = z, z, z$$
 case

3rd order susceptibility

$$\frac{R_{zzz}^{(1),z}(\tau_2,0,\tau_1)}{\mathsf{ABB}} = \sum_{jklm} \sum_{PQR} \langle 0|\hat{\sigma}_j^z|P\rangle \langle P|\hat{\sigma}_k^z|Q\rangle \langle Q|\hat{\sigma}_l^z|R\rangle \langle R|\hat{\sigma}_m^z|0\rangle e^{-i(E_R-E_0)\tau_2-i(E_p-E_0)\tau_1}$$

4-flux



$$(\omega_2, \omega_1) = (E_R - E_0, E_P - E_0) = ((E_2 - E_0) + \varepsilon_R, (E_2 - E_0) + \varepsilon_P)$$

2-flux, I fermion

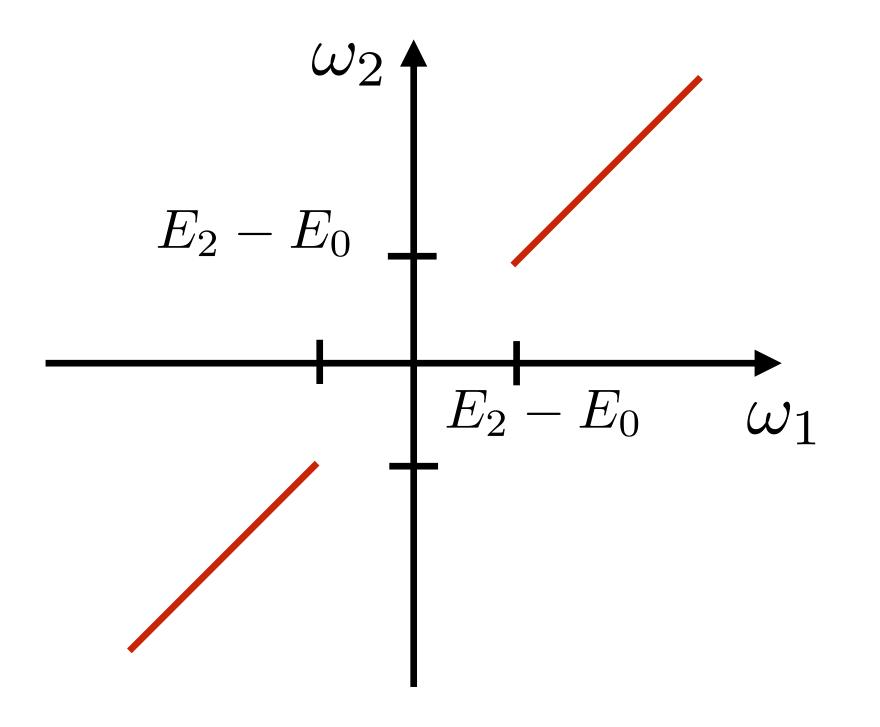
$$E_R=E_2+arepsilon_R$$
 E_2 Two flux energy $arepsilon_P=E_2+arepsilon_P$ $arepsilon_R$ Fermion energy

$$\alpha, \beta, \gamma = z, z, z$$
 case

$\alpha, \beta, \gamma = z, z, z$ case 3rd order susceptibility

$$\frac{R_{zzz}^{(1),z}(\tau_2,0,\tau_1)}{\mathsf{ABB}} = \sum_{jklm} \sum_{PQR} \langle 0|\hat{\sigma}_j^z|P\rangle \langle P|\hat{\sigma}_k^z|Q\rangle \langle Q|\hat{\sigma}_l^z|R\rangle \langle R|\hat{\sigma}_m^z|0\rangle e^{-i(E_R-E_0)\tau_2-i(E_p-E_0)\tau_1}$$

$$(\omega_2, \omega_1) = (E_R - E_0, E_P - E_0) = ((E_2 - E_0) + \varepsilon_R, (E_2 - E_0) + \varepsilon_P)$$



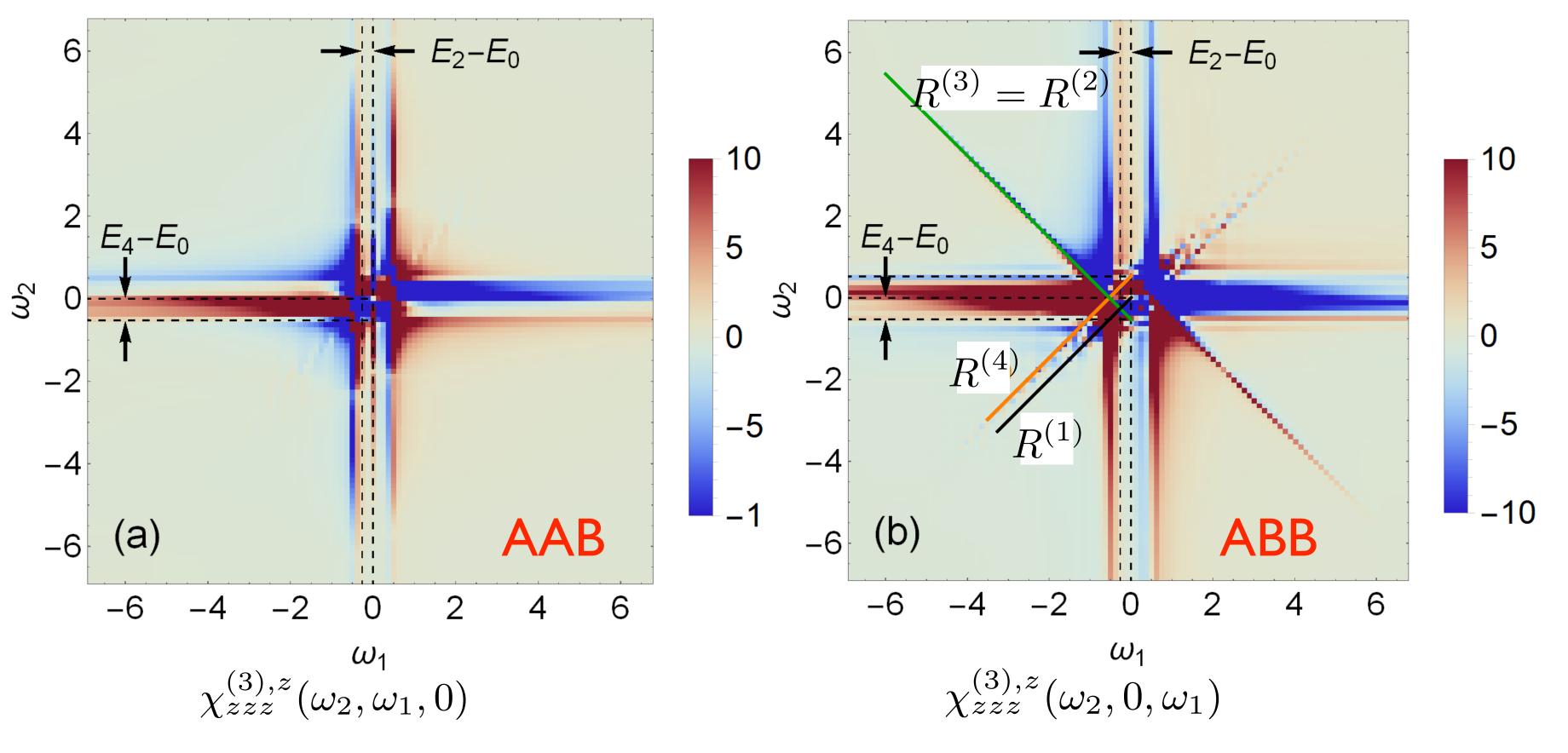
For
$$\varepsilon_R = \varepsilon_P$$

$$\omega_2 = \omega_1 \ge E_2 - E_0$$

 E_2 Two flux energy

2D Nonlinear susceptibility

3rd order susceptibility



 E_2-E_0 Two-flux gap E_4-E_0 Four-flux gap

Wonjune Choi, Ki Hoon Lee, YBK, PRL 124, 117205, (2020)

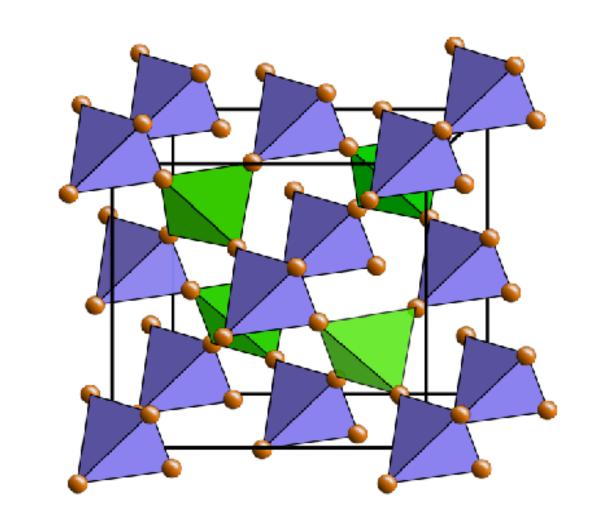
Emily Z. Zhang, Ciaran Hickey, YBK, PRB 110, 104415, (2024)

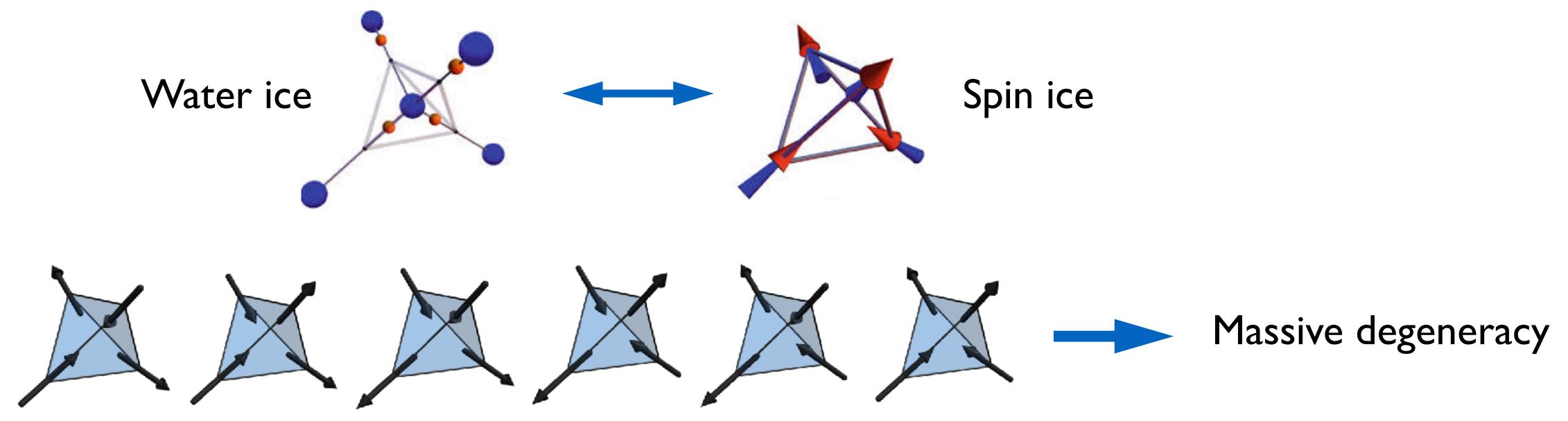
Quantum Spin Ice: a primer

Classical Spin Ice

$$\mathcal{H}_I = J_z \sum_{\langle ij \rangle} S_i^z S_j^z = \frac{J_z}{2} \sum_{\sqrt{}} (S_{\sqrt{}}^z)^2 + \text{constant}$$

$$S_{\sqrt{i}}^z = \sum_{i \in \sqrt{i}} S_i^z = 0 \quad \text{2-in/2-out}$$

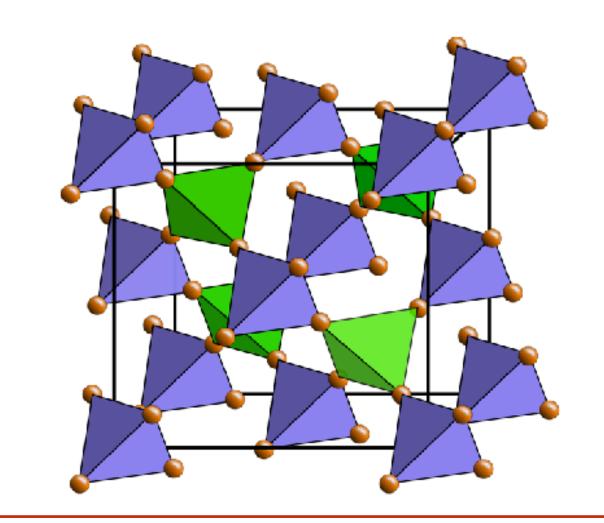




Quantum Spin Ice

$$\mathcal{H}_I = J_z \sum_{\langle ij \rangle} S_i^z S_j^z = \frac{J_z}{2} \sum_{\square} (S_{\square}^z)^2 + \text{constant}$$

$$S_{\sqrt{i}}^z = \sum_{i \in \sqrt{i}} S_i^z = 0 \quad \text{2-in/2-out}$$

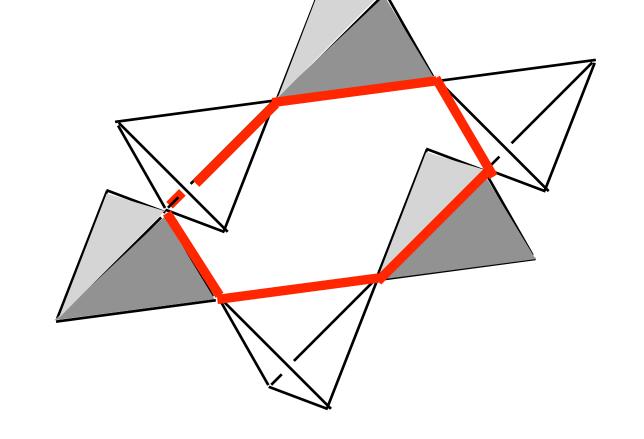


$$\mathcal{H}' = -rac{J_{\perp}}{2} \sum_{\langle ij \rangle} (S_i^+ S_j^- + h.c.)$$
 Hermele, Balents, Fisher '03

 $J_z \gg J_{\perp}$ degenerate perturbation theory

$$\mathcal{H}_{eff} = -J_{ring} \sum_{\Omega} (S_1^+ S_2^- S_3^+ S_4^- S_5^+ S_6^- + h.c.)$$

$$J_{ring} = 12J_{\perp}^3/J_z^2$$



Banerjee, Isakov, Damle, YBK '08 Benton, Sikora, Shannon '12

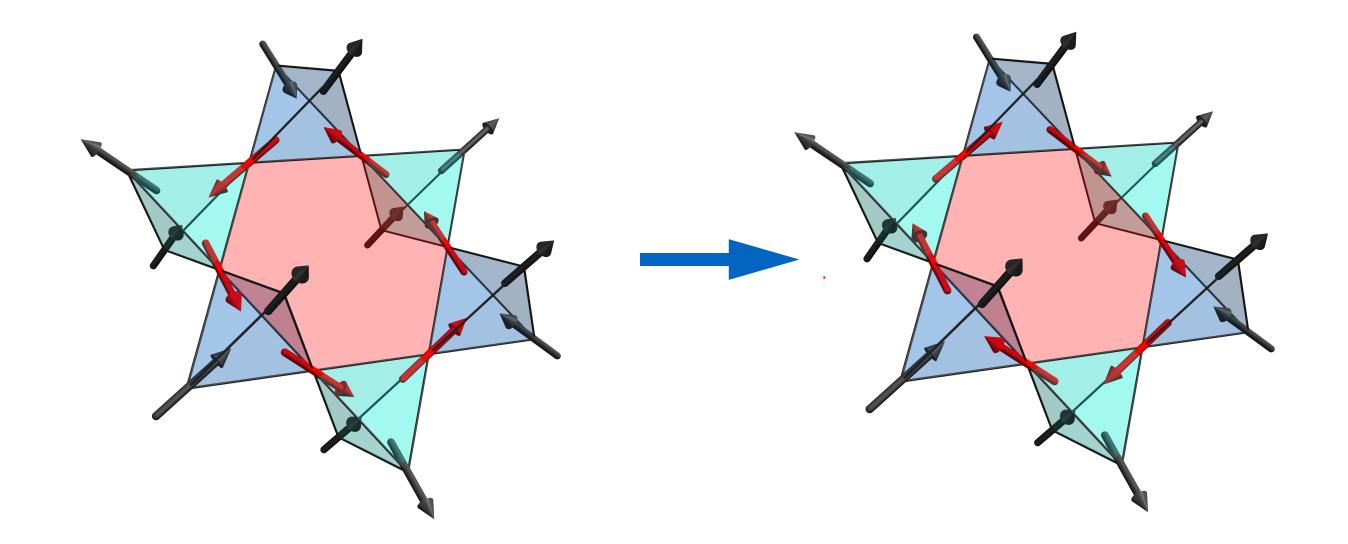
QMC

Connecting classically degenerate ground states

$$\mathcal{H}_{eff} = J_{ring} \sum_{\bigcirc} (S_1^+ S_2^- S_3^+ S_4^- S_5^+ S_6^- + h.c.) \qquad K \sim -J_{ring} \propto -J_{\perp}^3 /J_{\parallel}^2$$

$$K \sim -J_{ring} \propto -J_{\perp}^3/J_{\parallel}^2$$

Hermele, Balents, Fisher '03



Quantum ground state = massive superposition of classically degenerate states => Quantum Spin Liquid

Quantum Electrodynamics

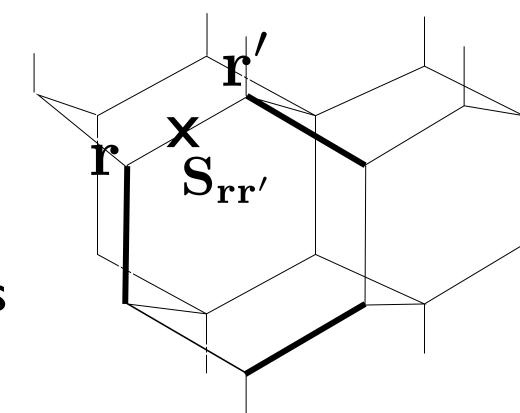
$$S_i^z = E_{rr'}$$

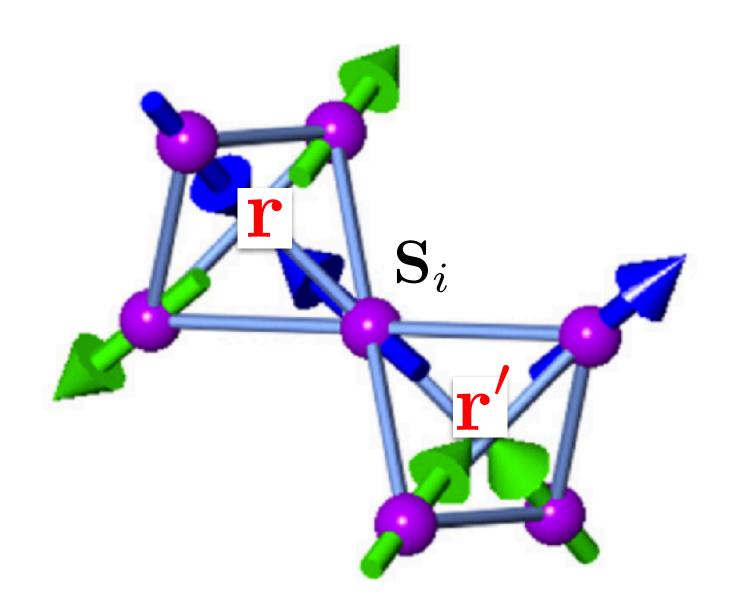
$$(\nabla \cdot E)_{\mathbf{r}} = \sum_{\mathbf{r}' \leftarrow \mathbf{r}} E_{\mathbf{r}\mathbf{r}'} = \pm S_{\mathbf{v}}^{z}$$

$$(\nabla \cdot E)_{\mathbf{r}} = 0$$
 Gauss's law

$$\mathbf{S}_i = \mathbf{S_{rr'}}$$

link on the dual diamond lattice sites





$$\nabla \cdot E = 0$$

Quantum Electrodynamics

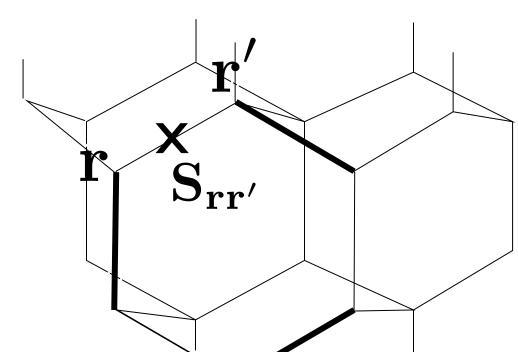
$$S_i^z = E_{rr'}$$
 $S_i^+ = \Phi_r^\dagger e^{iA_{rr'}} \Phi_{r'} \pm \mathbf{r} \in A/B$ $[S^+, S^z] = -S^+ \longrightarrow [A_{\mathbf{rr'}}, E_{\mathbf{rr'}}] = i$

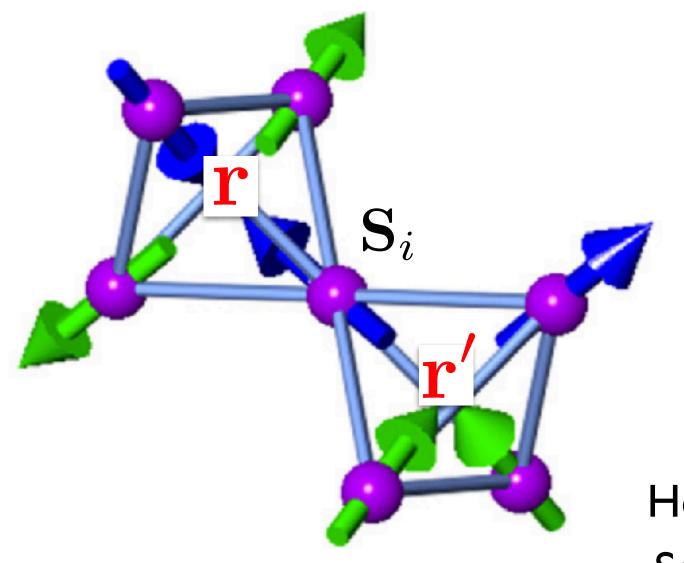
$$(\nabla \cdot E)_{\mathbf{r}} = \sum_{\mathbf{r}' \leftarrow \mathbf{r}} E_{\mathbf{r}\mathbf{r}'} = \pm S_{\mathbf{v}}^z$$

$$(\nabla \cdot E)_{\mathbf{r}} = 0$$
 Gauss's law

$$\mathbf{S}_i = \mathbf{S_{rr'}}$$

link on the dual diamond lattice sites



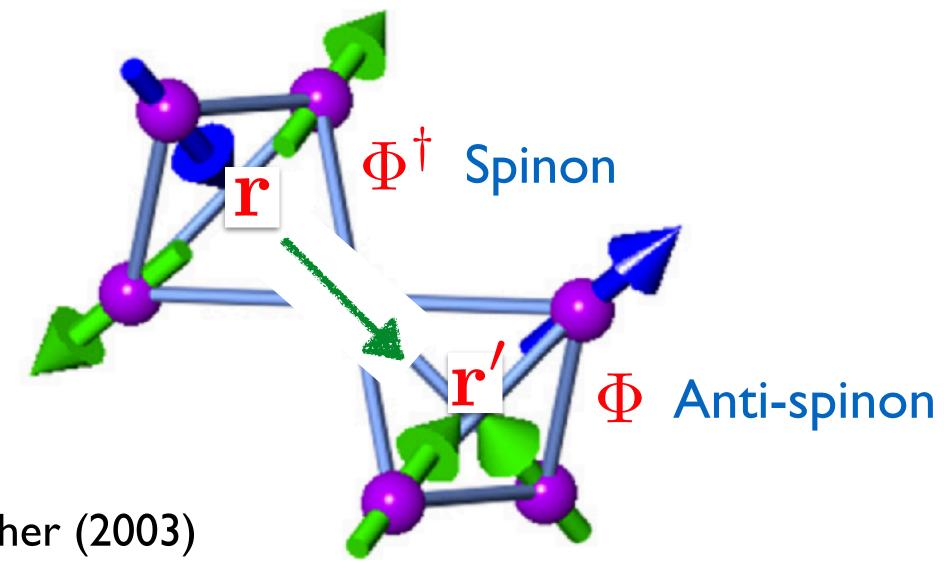


$$\nabla \cdot E = 0$$

Hermele, Balents, Fisher (2003)

Savary + Balents (2012)

S Lee, Onoda, Balents (2012)



Quantum Electrodynamics

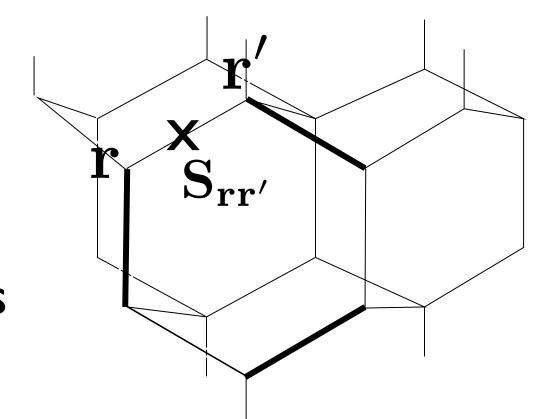
$$S_i^z = E_{rr'}$$
 $S_i^+ = \Phi_r^\dagger e^{iA_{rr'}} \Phi_{r'} \pm \mathbf{r} \in A/B$ $[S^+, S^z] = -S^+ \longrightarrow [A_{\mathbf{rr'}}, E_{\mathbf{rr'}}] = i$

$$(\nabla \cdot E)_{\mathbf{r}} = \sum_{\mathbf{r}' \leftarrow \mathbf{r}} E_{\mathbf{r}\mathbf{r}'} = \pm S_{\mathbf{v}}^{z}$$

$$(\nabla \cdot E)_{\mathbf{r}} = 0$$
 Gauss's law

$$\mathbf{S}_i = \mathbf{S_{rr'}}$$

 $\mathbf{S}_i = \mathbf{S_{rr'}}$ link on the dual diamond lattice sites



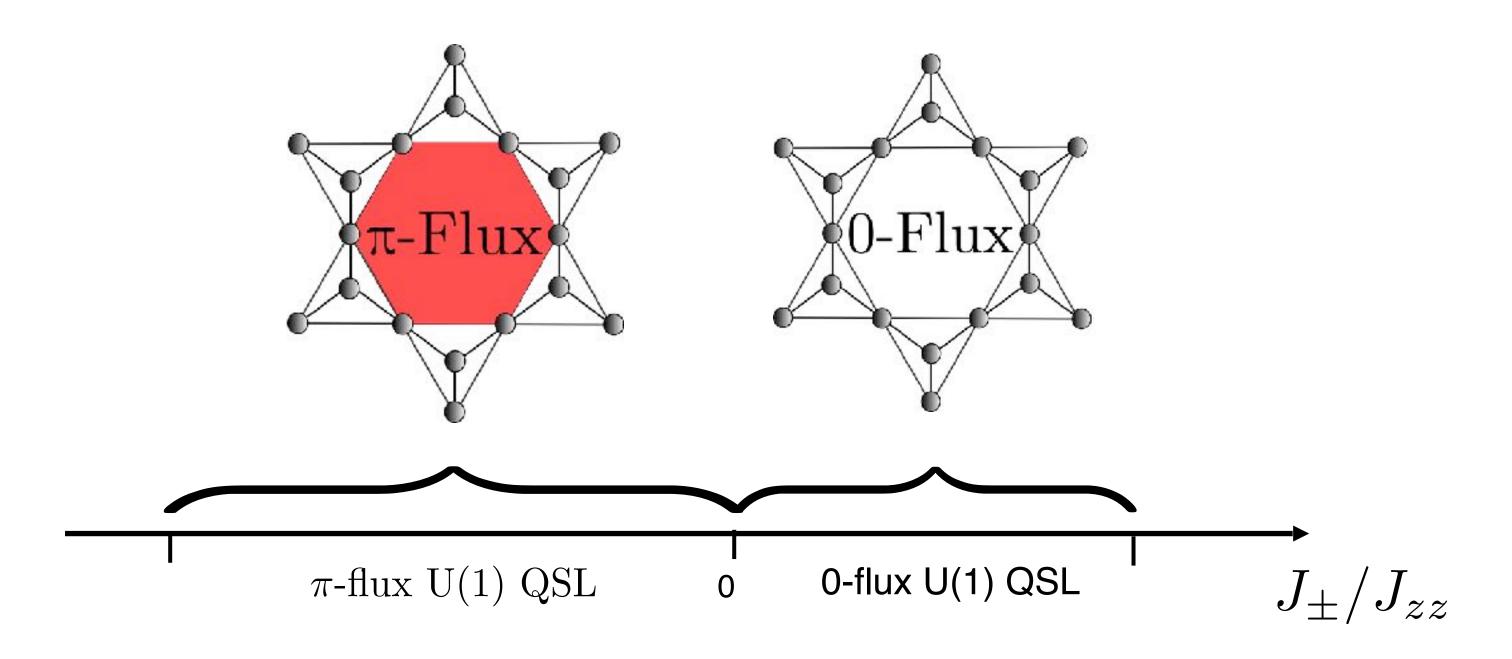
$$\mathcal{H}_{eff} = -J_{ring} \sum_{\bigcirc} (S_1^+ S_2^- S_3^+ S_4^- S_5^+ S_6^- + h.c.) \longrightarrow \sum_{\bigcirc} 2\cos(\nabla \times A)_{\bigcirc}$$

$$\mathcal{H} = \frac{U}{2} \sum_{\langle \mathbf{rr'} \rangle} \left(E_{\mathbf{rr'}}^2 - \frac{1}{4} \right) - K \sum_{\square} \cos(\nabla \times A)_{\square}$$

large
$$U$$
 $K \propto \frac{J_{\pm}^3}{J_{zz}^2}$

0-flux and π-flux Quantum Spin Ice

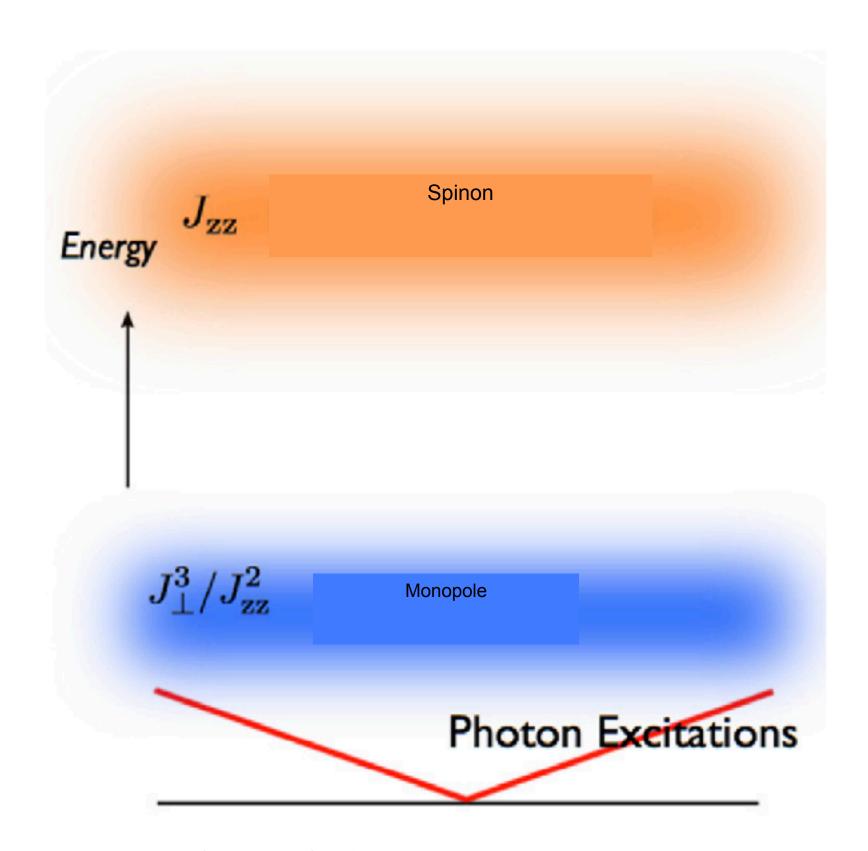
$$\mathcal{H} = \frac{U}{2} \sum_{\langle \mathbf{rr'} \rangle} \left(E_{\mathbf{rr'}}^2 - \frac{1}{4} \right) - K \sum_{\bigcirc} \cos(\nabla \times A)_{\bigcirc} \qquad K \propto \frac{J_{\pm}^3}{J_{zz}^2}$$



M. Hermele, et al. PRB (2004)

Excitations in the deconfined phase: U(I) quantum spin liquid (Quantum Spin Ice)

$$\mathcal{H} = \frac{U}{2} \sum_{\langle \mathbf{rr'} \rangle} \left(E_{\mathbf{rr'}}^2 - \frac{1}{4} \right) + \frac{K}{2} \sum_{\bigcirc} \left[(\nabla \times A)_{\bigcirc} \right]^2$$



electric monopoles (spinons)

$$2\Delta_{\rm spinon} \sim J_z$$

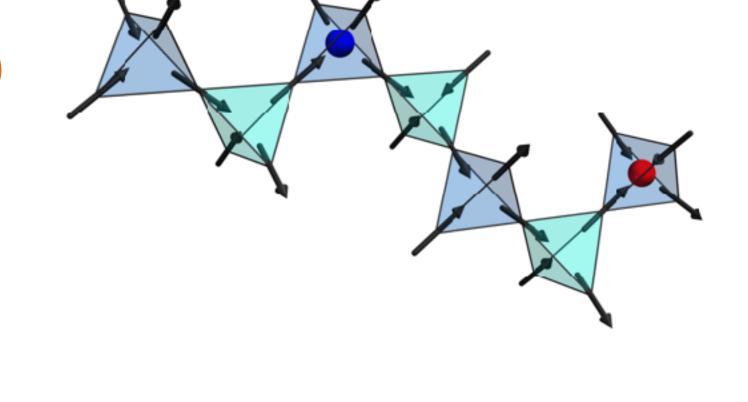
magnetic monopoles (visons)

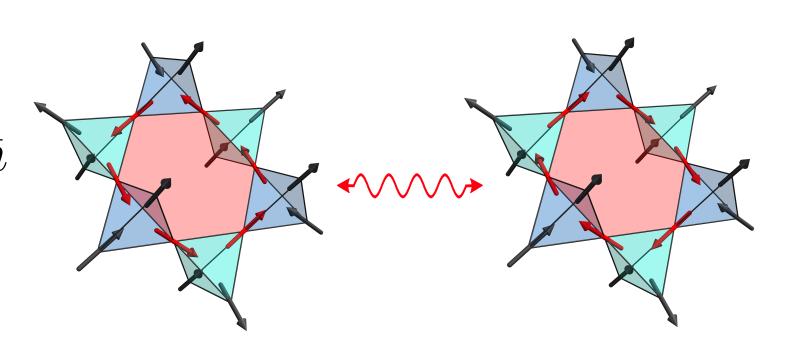
$$\Delta_{\mathrm{mon}} \sim J_{\pm}^3/J_z^2$$

emergent photons

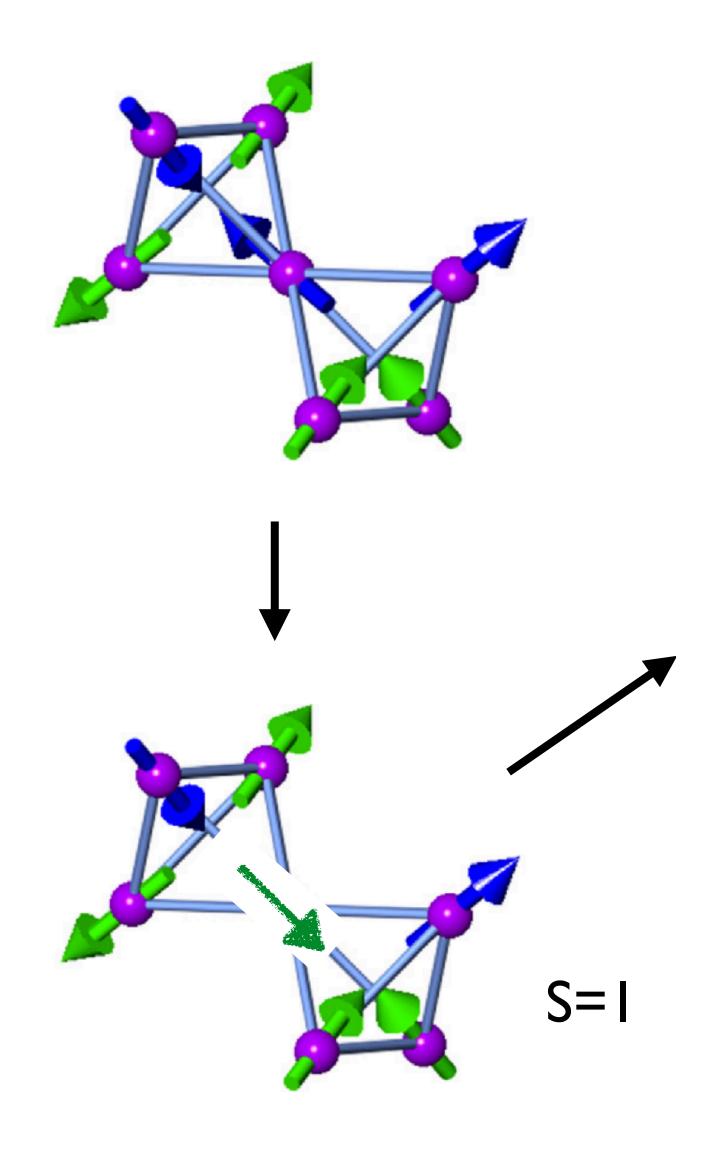
$$\omega(\mathbf{k}) \approx c|\mathbf{k}| \quad c \propto \sqrt{UK}a_0/\hbar$$

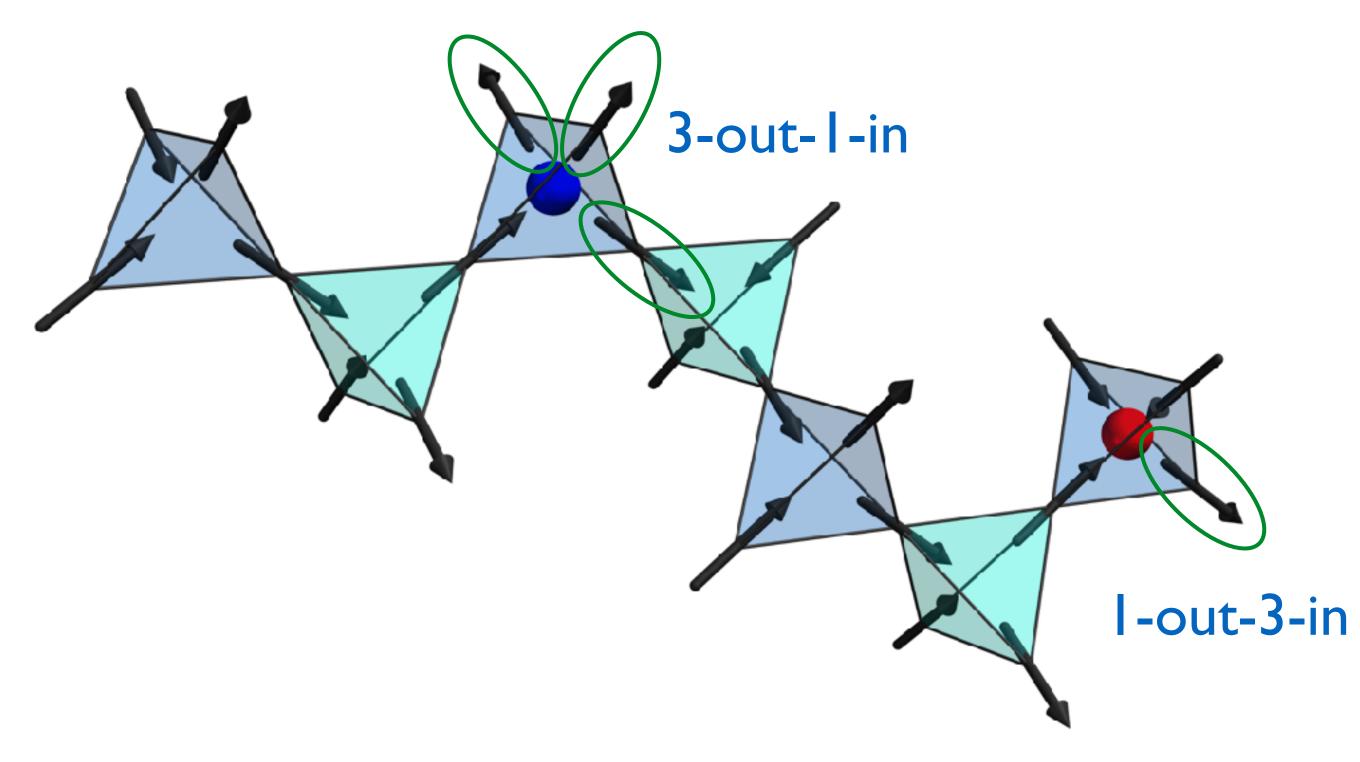
$$C(T) \propto \frac{1}{c^3} T^3$$





Spinons





"Two" S=1/2 excitations

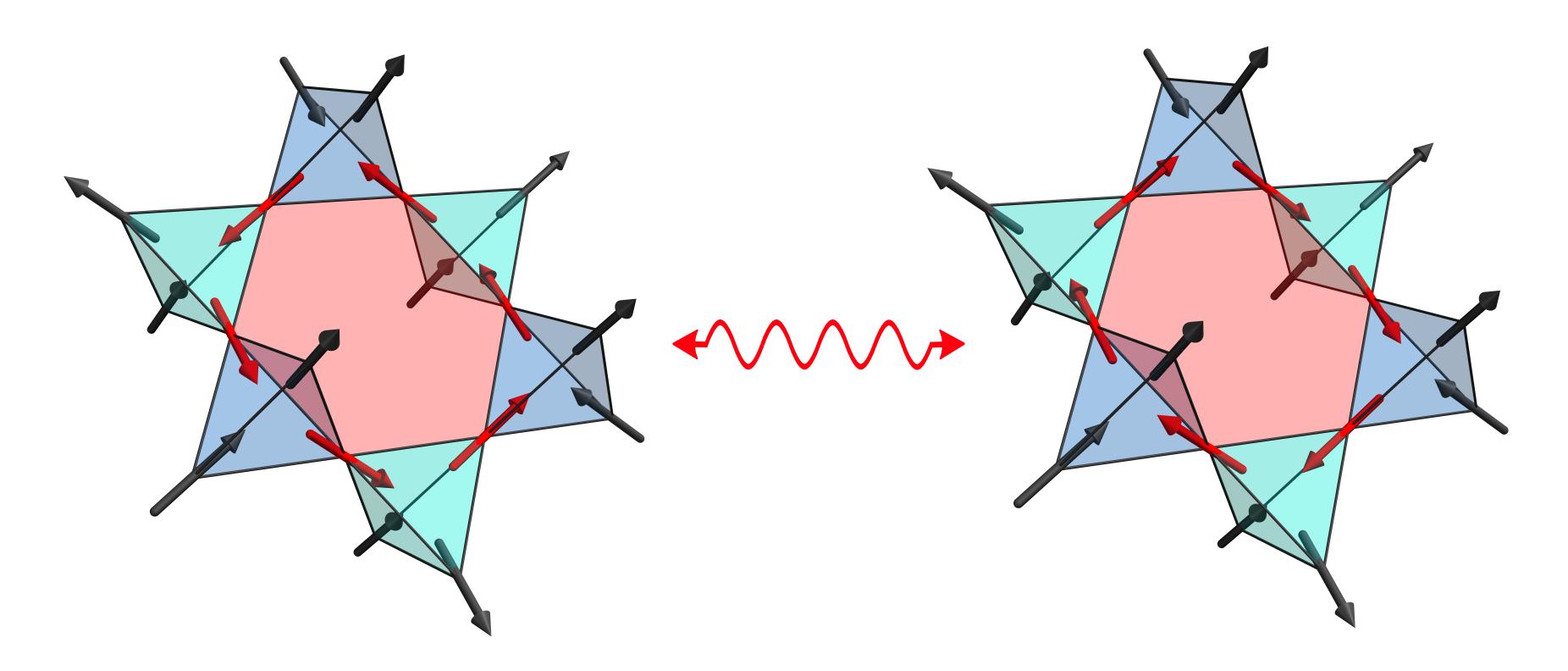
Spinon-Antispinon pair

Emergent Photons

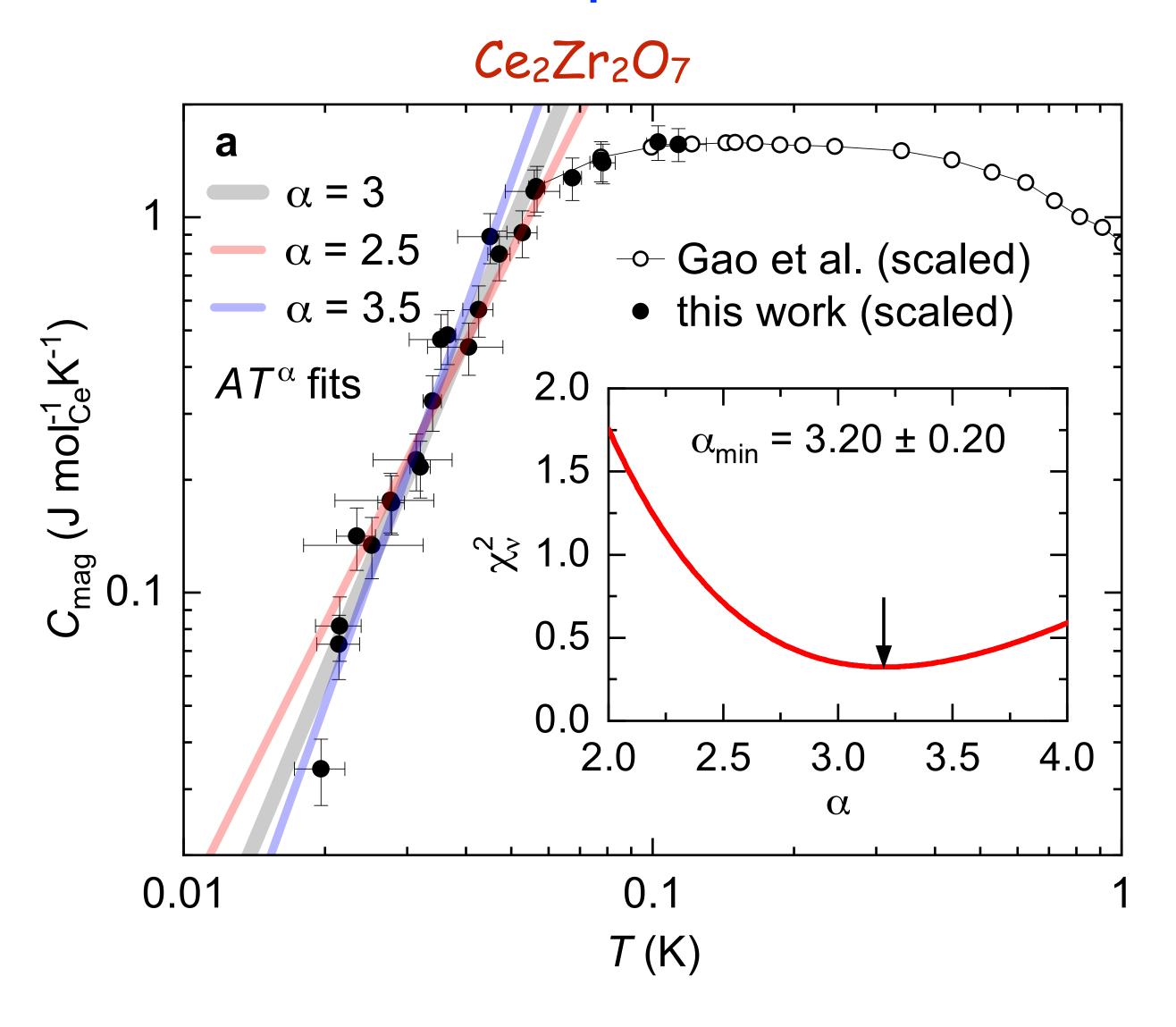
$$\mathcal{H}_{eff} = J_{ring} \sum_{\bigcirc} (S_1^+ S_2^- S_3^+ S_4^- S_5^+ S_6^- + h.c.) \longrightarrow -K \cos(\nabla \times A)$$

$$K \sim -J_{ring} \propto -J_{\perp}^3/J_{\parallel}^2$$

Hermele, Balents, Fisher '03



Specific heat data at low temperatures



T³ from emergent photons?

Photon velocity comparable to the estimation from neutron scattering

$$c_{QSI} = 7.9 \pm 0.4 \text{ m/s}$$

B.Gao, F.Desrochers, ... S.Paschen, YBK, P.Dai. arXiv:2404.04207, Nature Physics (2025)

Different routes to QSL: candidate materials

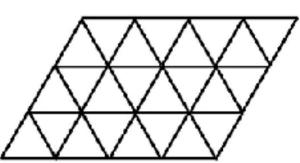
Candidate Materials (incomplete list)

 κ -(BEDT-TTF)₂Cu₂(CN)₃

Geometric

 $EtMe_3Sb[Pd(dmit)_2]_2$

Organic Materials Triangular Lattice

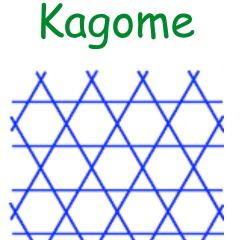


 κ -(BEDT-TTF)₂Ag₂(CN)₃ κ -H₃(Cat-EDT-TTF)₂

 $ZnCu_3(OH)_6Cl_2$ herbertsmithtite

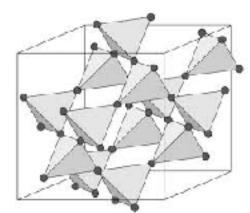
 $Cu_3Zn(OH)_6FBr$ $Cu_4(OH)_6FBr$ barlowite

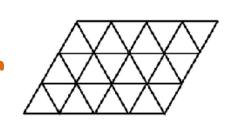
 $Cu_3Zn(OH)_6FCl$. $Cu_4(OH)_6FCl$ claringbullite



PbCuTe₂O₆

Na₄Ir₃O₈ hyper-kagome





Kitaev Materials

honeycomb

hyper-honeycomb

Spin-orbit

Different Routs to Quantum Spin Liquid

1. Geometric Frustration

Herbertsmithite ZnCu₃(OH)₆Cl₂

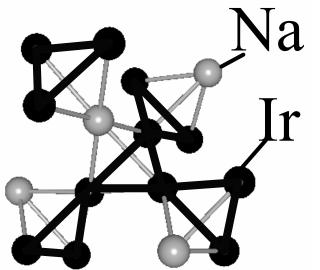
"Ideal" Kagome lattice

Hyperkagome Na₄Ir₃O₈

Na

D. G. Nocera, Y. S. Lee

P. Mendels

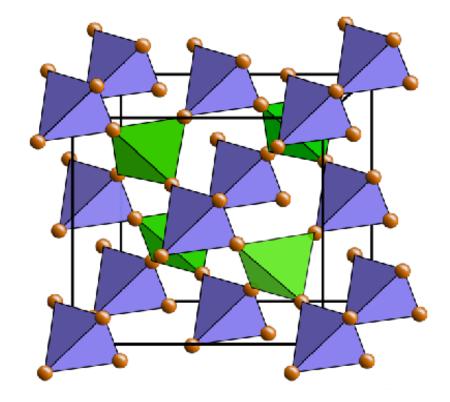


H. Takagi (2007)

Y. Singh, Y. Tokiwa, P. Gegenwart (2013)

Pyrochlore systems

Quantum spin ice Ce₂Zr₂O₇



Pengcheng Dai, Bruce Gaulin, Romain Sibille, Elsa Lhotel, Sylvain Petit ... Different Routs to Quantum Spin Liquid

2. Frustrating Interactions

Kitaev Materials

a-Na₂IrO₃

Bond-dependent interaction

a-RuCl₃

 $S_i^x S_j^x$

 $S_i^y S_i^y$

 $S_i^z S_i^z$

120°

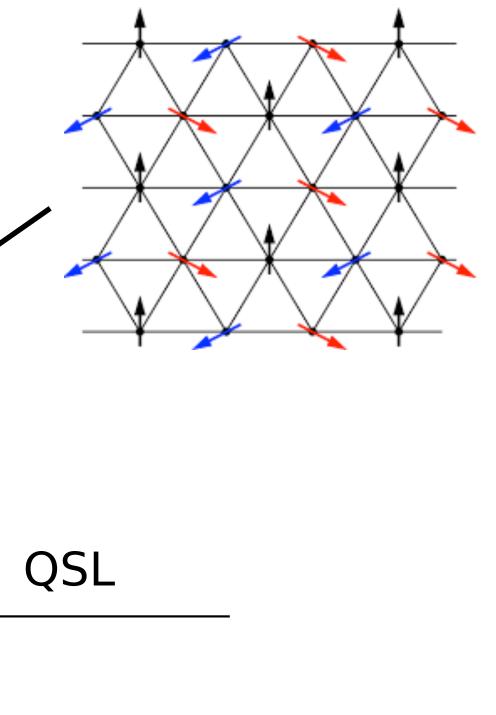
order

 $\lesssim 0.063$

 J_2/J_1

NaYbSe₂

H. Takagi, R. Coldea, P. Geggenbart, YJ Kim, S. Nagler, ...



Longer range interactions

J₁-J₂ model

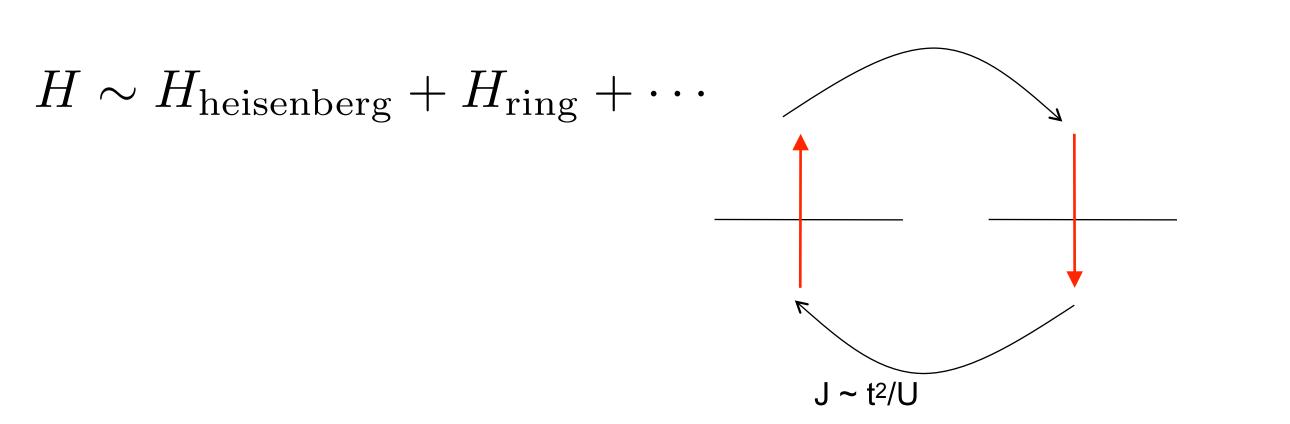
NaYbSe2

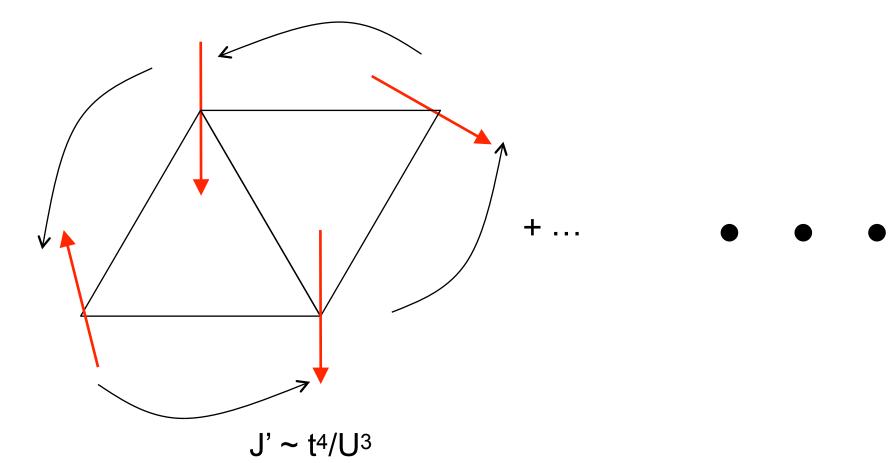
Different Routs to Quantum Spin Liquid

3. Weak Mott Insulator (charge fluctuations)

$$\kappa$$
-(BEDT-TTF)₂Cu₂(CN)₃
EtMe₃Sb[Pd(dmit)₂]₂

K. Kanoda M. Yamashita, R. Kato Y. Matsuda, Organic Material Triangular Lattice





Metal spin liquid AF U/t

Charge fluctuations are important near the Mott transition even in the insulating phase

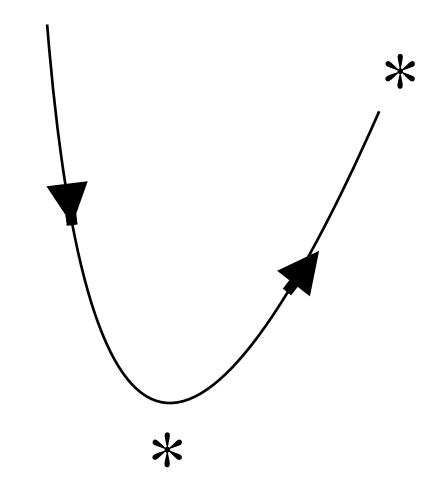
Fermi liquid behavior

Superconductor CDW *

Fermi liquid

Spin liquid behavior?

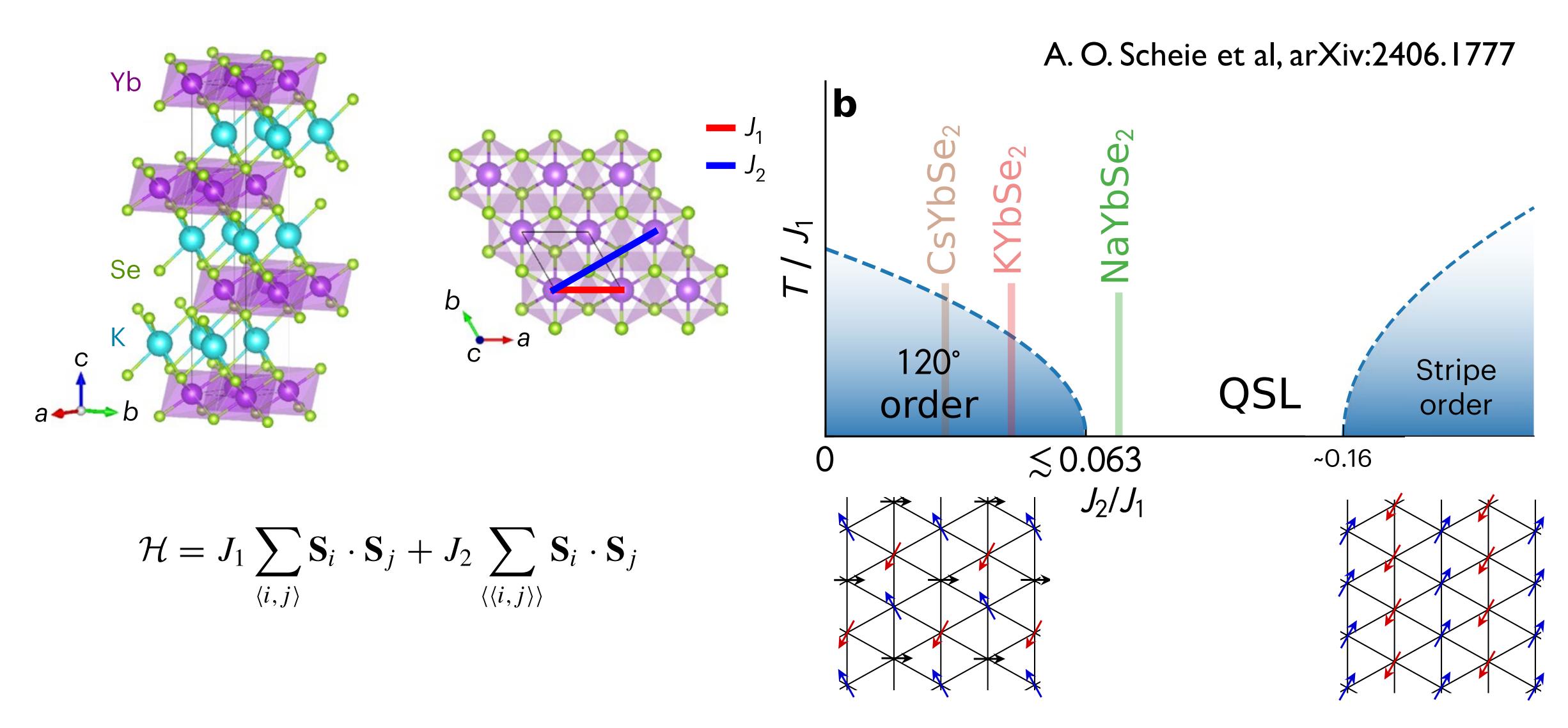
Magnetic order Spin Nematic ...



Spin liquid

Triangular Lattice J1-J2

AYbSe₂ A=Cs, K, Na



AYbSe₂ A=Cs, K, Na

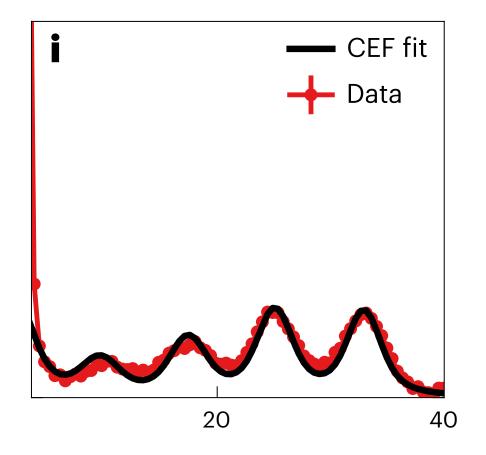
Yb³⁺
$$4f^{13}$$
 $S=1/2$ $L=3$ $J=7/2$

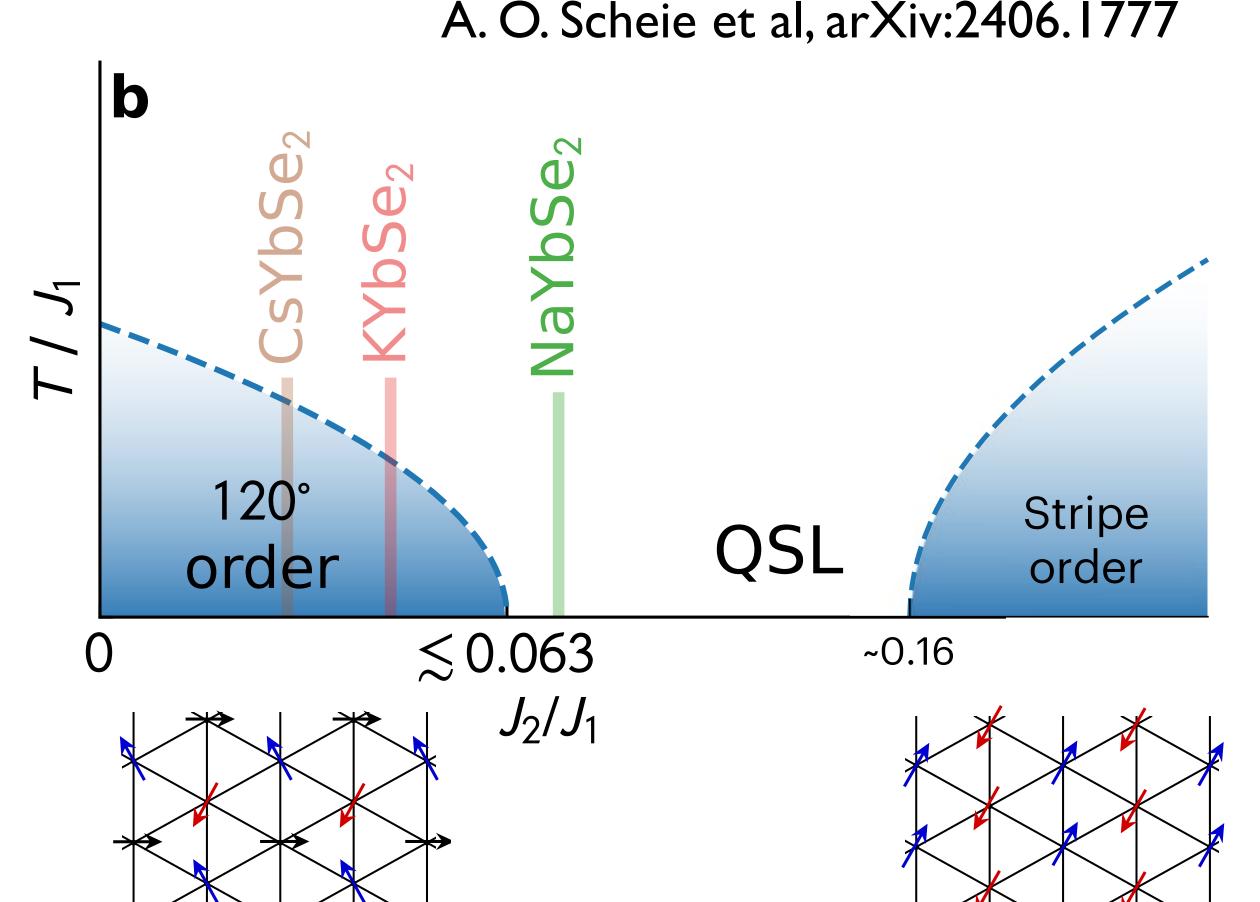
Lowest Kramers doublet in CEF Pseudospin 1/2

$$|\psi_{\pm}\rangle = 0.78(3) \left| \mp \frac{5}{2} \right\rangle \mp 0.44(4) \left| \pm \frac{1}{2} \right\rangle - 0.44(3) \left| \pm \frac{7}{2} \right\rangle$$

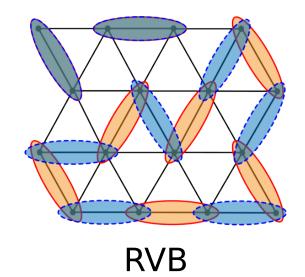
$$g_{xx} = g_{yy} = 3.0(2) \qquad g_{zz} = 1.8(6)$$

Easy plane anisotropy





AYbSe₂ A=Cs, K, Na



Gapped Z₂ SL

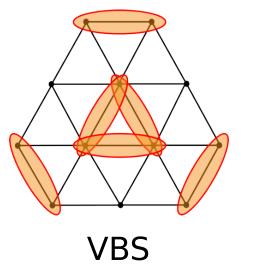
S. Sachdev, PRB 1992

Z. Zhu, S.R. White, PRB 2015 (DMRG)

U(I) Dirac SL

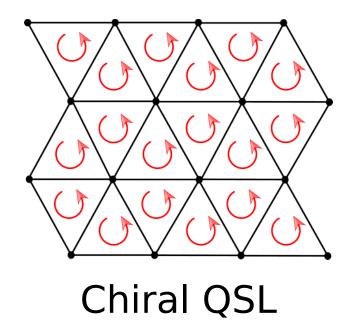
Y. Iqbal et al, PRB 2016 (VMC)

S. Hu et al, PRL 2019 (DMRG)



Valence Bond Solid

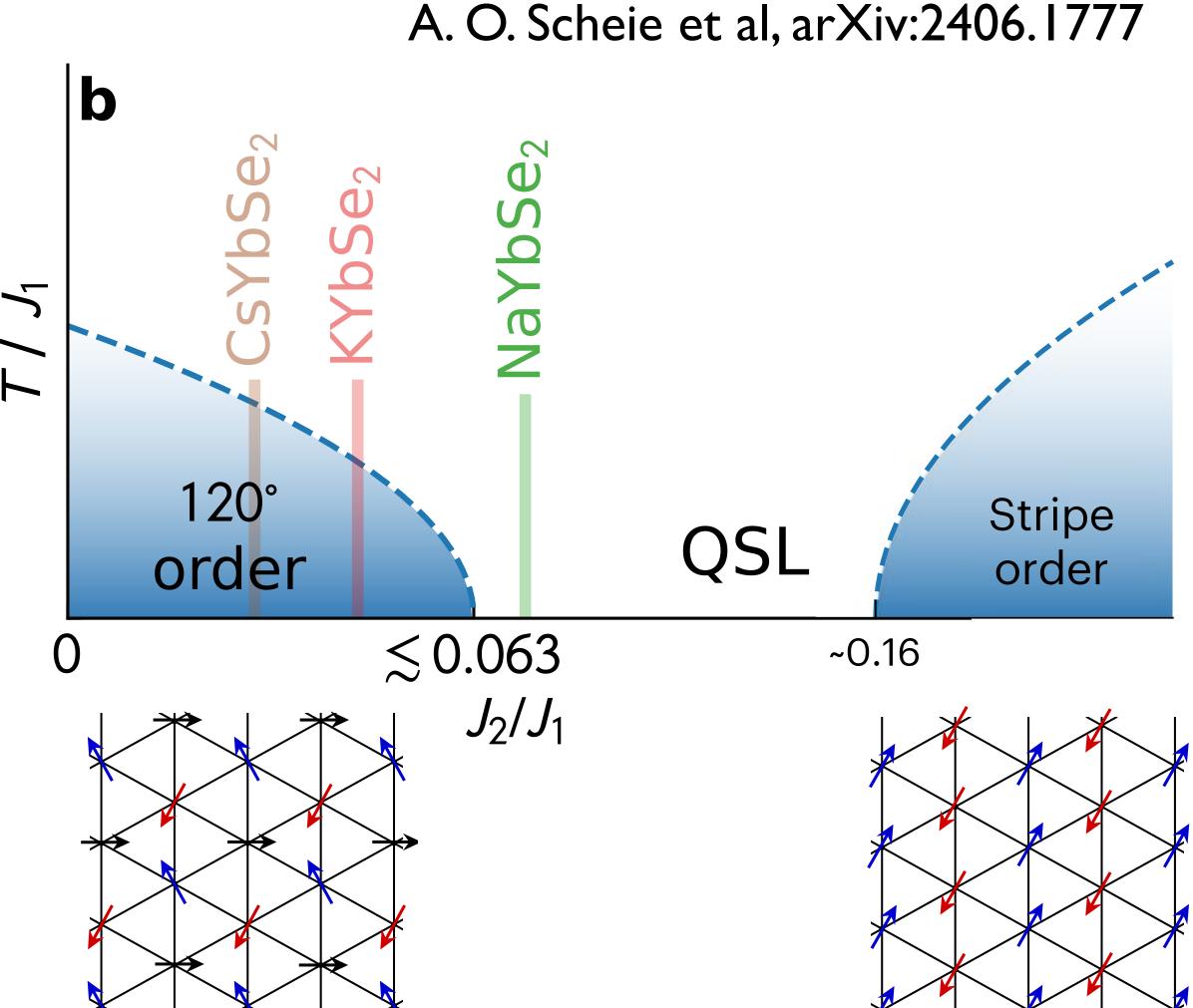
U. F. P. Seifert et al, arXiv:2307.12295



Hubbard Model Chiral Spin Liquid

A. Szasz et al, PRX (2020)

B.-B.Chen et al, PRB (2022)



Schwinger boson theory

$$H = J_1 \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j + J_2 \sum_{\langle \langle ij \rangle \rangle} \mathbf{S}_i \cdot \mathbf{S}_j + \cdots \qquad S_i^a = \frac{1}{2} \sum_{\alpha,\beta} b_{i\alpha}^{\dagger} \sigma_{\alpha\beta}^a b_{i\beta} \qquad \sum_{\alpha} b_{i\alpha}^{\dagger} b_{i\alpha} = 1$$

$$H_{MF} \sim \frac{1}{2} \sum_{ij} J_{ij} \left(-A_{ij}^* \sum_{\alpha,\beta} \epsilon_{\alpha\beta} b_{i\alpha} b_{j\beta} + B_{ij}^* \sum_{\alpha} b_{i\alpha}^{\dagger} b_{j\alpha} + h.c. \right)$$

$$A_{ij} = \frac{1}{2} \sum_{\alpha,\beta} \epsilon_{\alpha\beta} \langle b_{i\alpha} b_{j\beta} \rangle \qquad B_{ij} = \frac{1}{2} \sum_{\alpha} \langle b_{i\alpha}^{\dagger} b_{j\alpha} \rangle$$

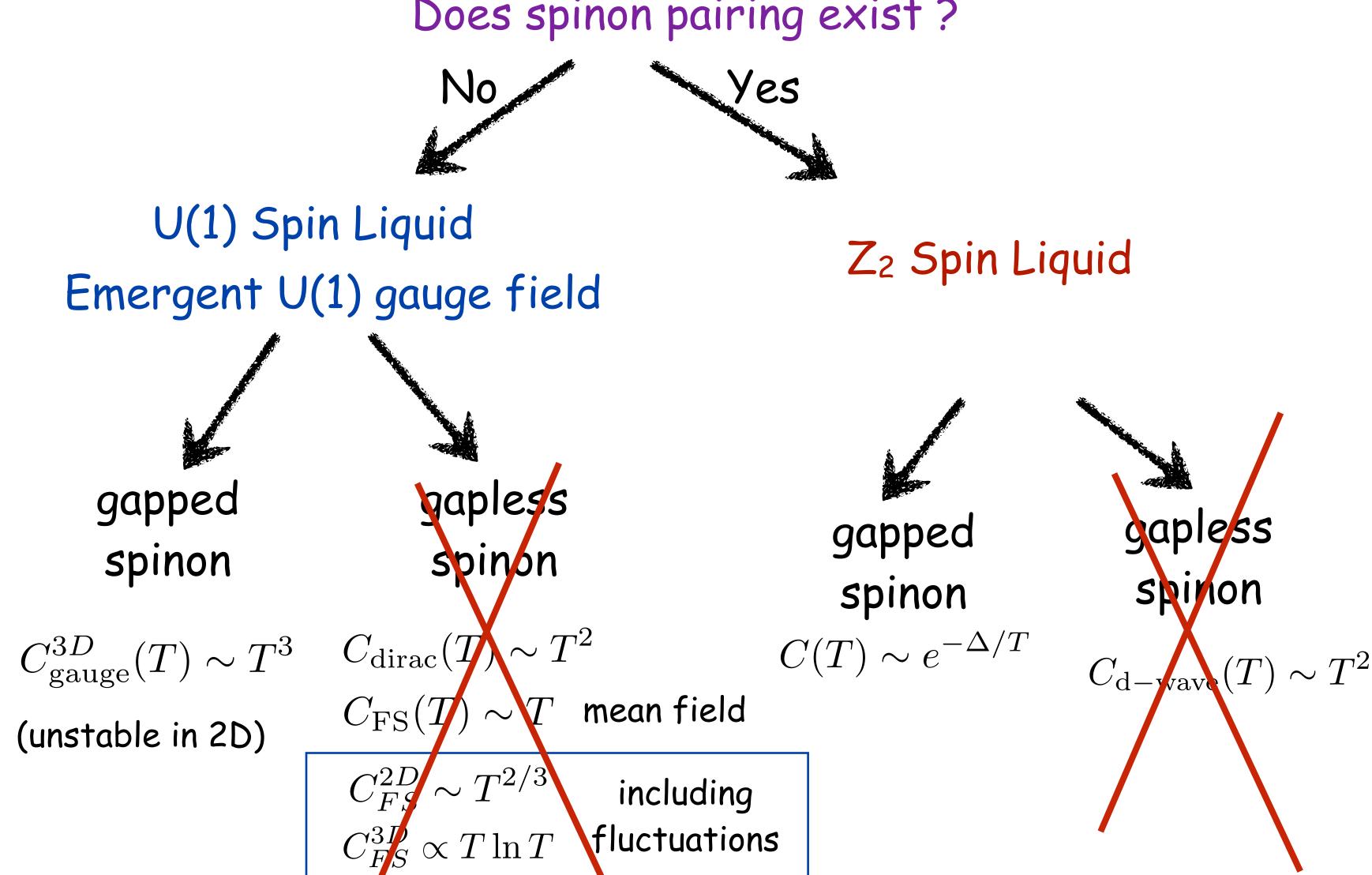
$$A_{ij} = 0$$
 U(I) spin liquid

$$A_{ij} \neq 0$$
 Z₂ spin liquid

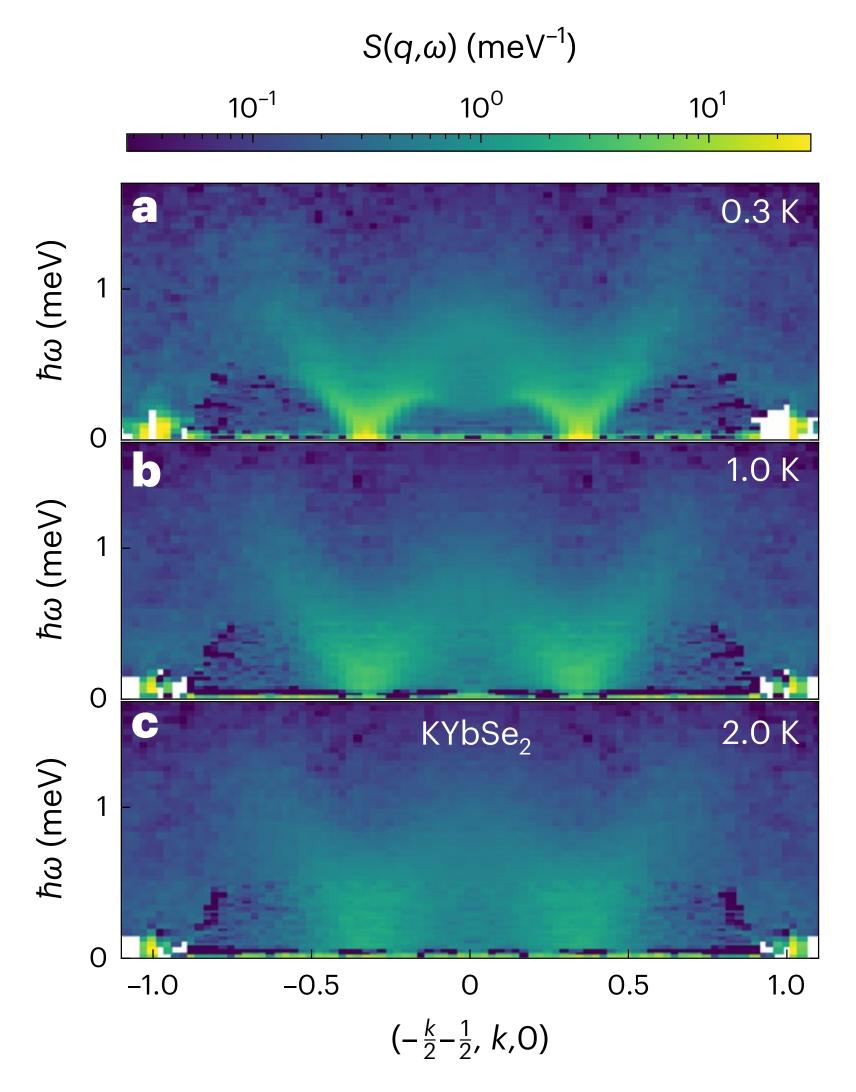
Bose condensation leads to magnetic ordering

Only gapped spin liquids are allowed U(1) spin liquid possible only in 3D

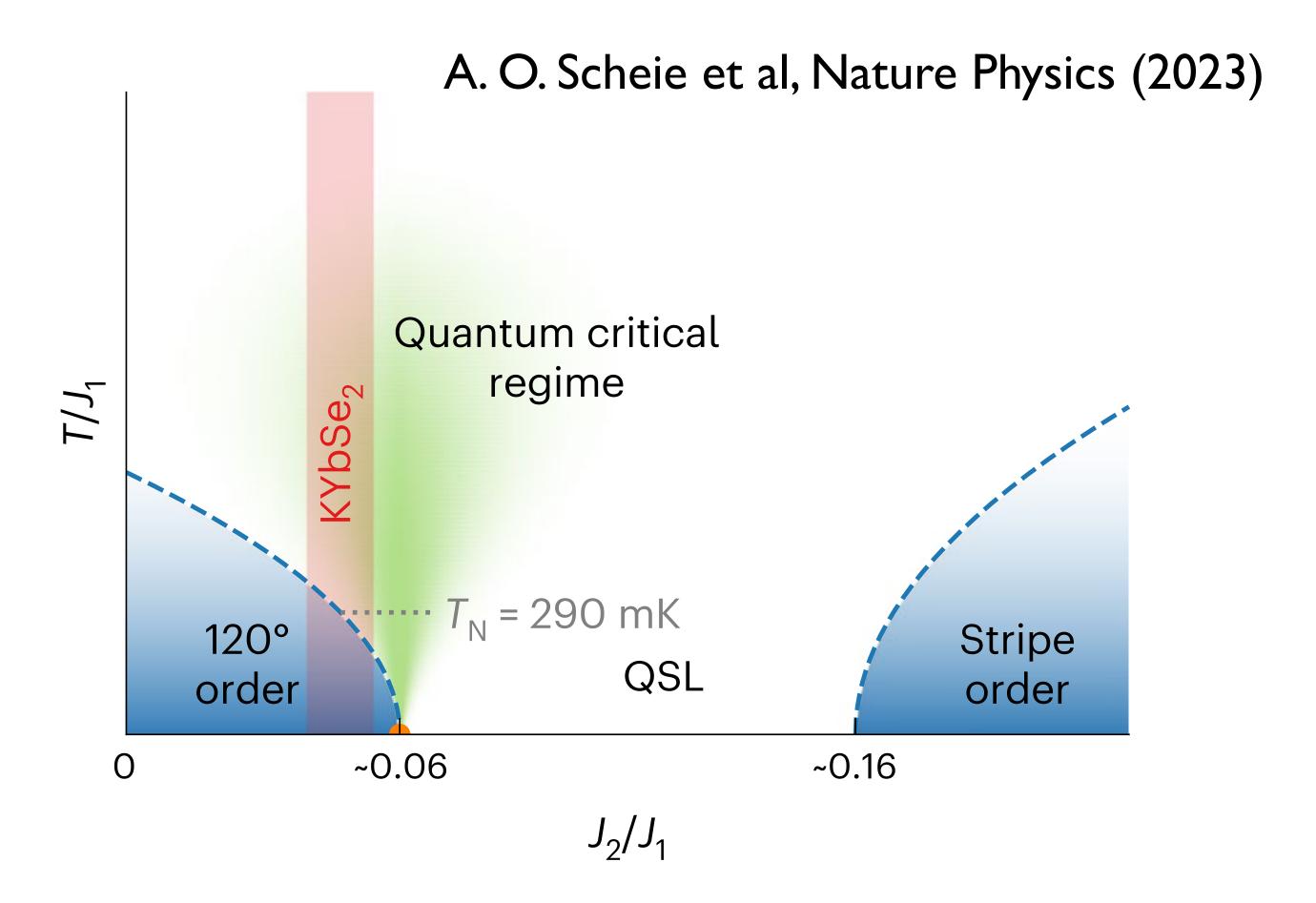
Thermodynamic signatures in quantum spin liquids



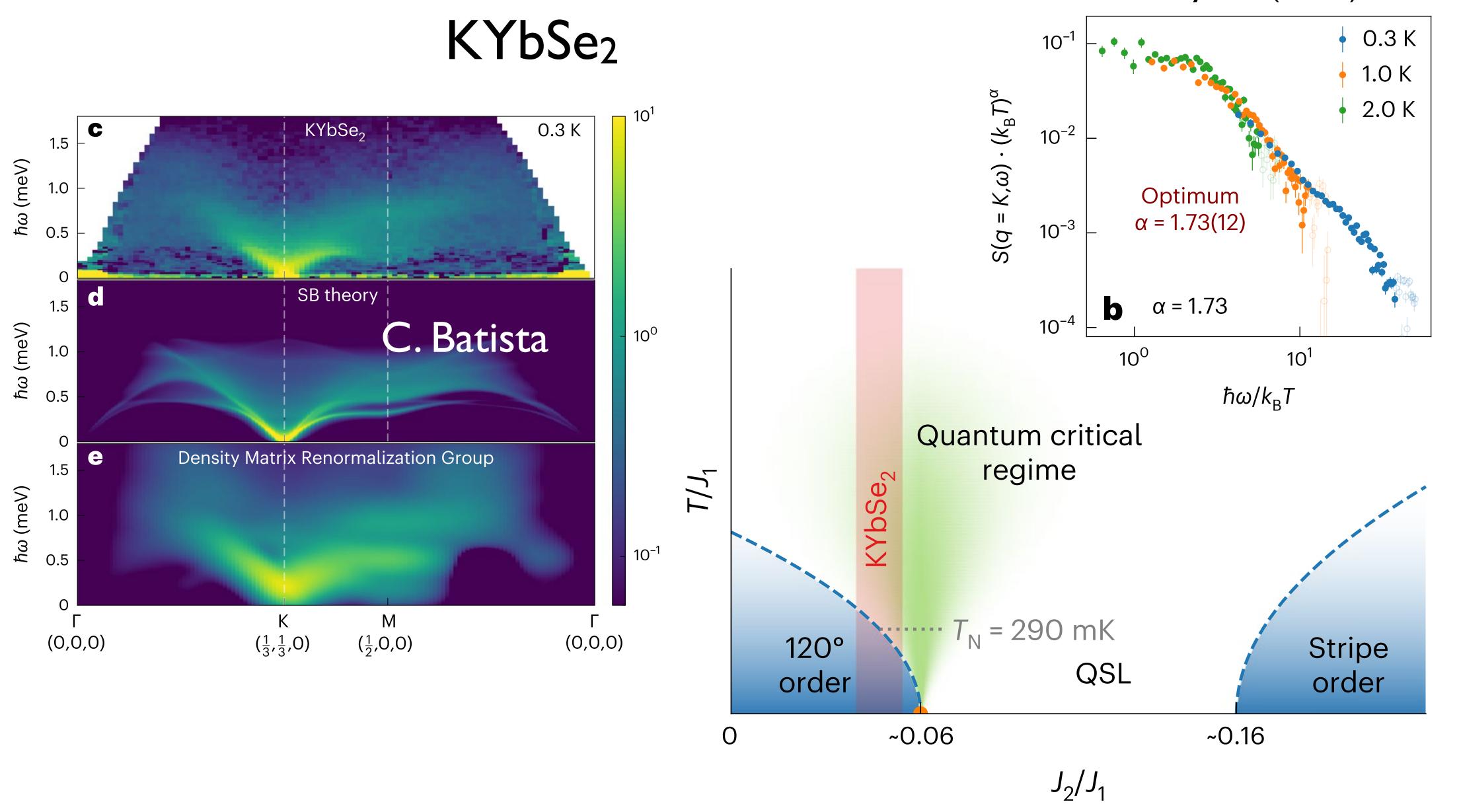
KYbSe₂



Theoretical technique	J_1 (meV)	J_2/J_1
Nonlinear spin waves	0.456 ± 0.013	0.043 ± 0.010
Heat capacity	0.429 ± 0.010	0.037 ± 0.013

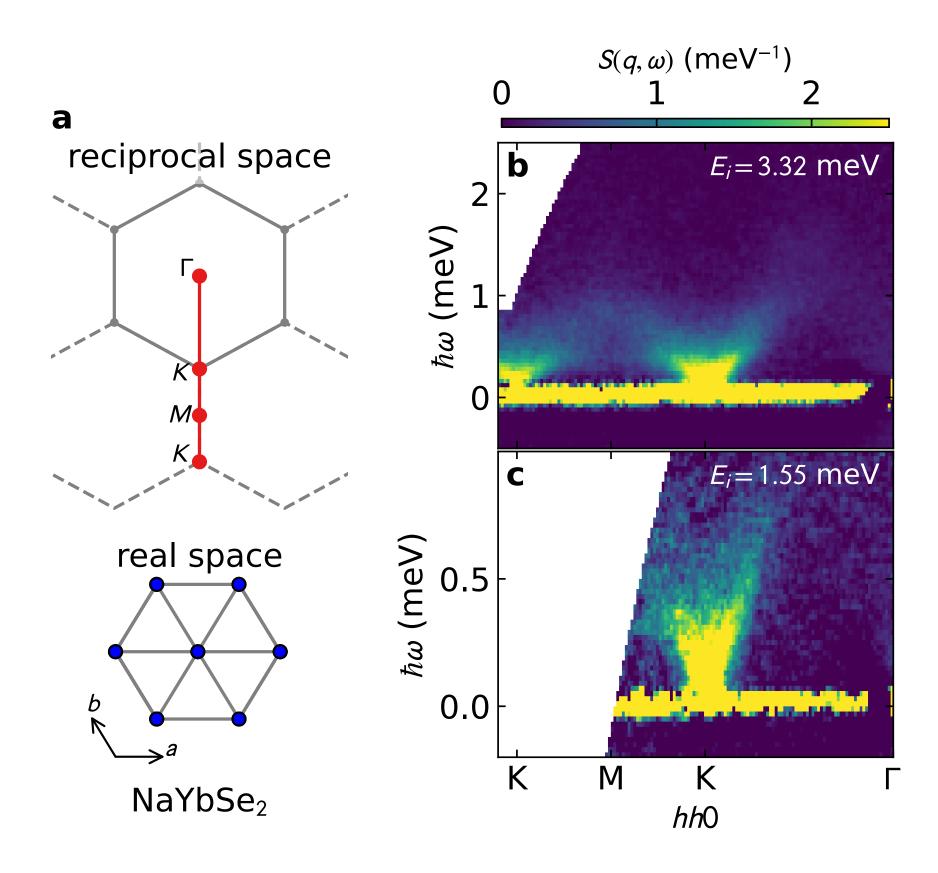


A. O. Scheie et al, Nature Physics (2023)



NaYbSe₂

No order down to $100 \ mK$



$$H = J_{1} \sum_{\langle i,j \rangle} (S_{i}^{x} S_{j}^{x} + S_{i}^{y} S_{j}^{y} + \Delta S_{i}^{z} S_{j}^{z}) + J_{2} \sum_{\langle \langle i,j \rangle \rangle} (S_{i}^{x} S_{j}^{x} + S_{i}^{y} S_{j}^{y} + \Delta S_{i}^{z} S_{j}^{z})$$

$$J_{2}/J_{1} = \bar{0}.071$$

