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Thermodynamic signatures in quantum spin liquids



Neutron Scattering
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Time-dependent correlator

Dynamical spin structure factor (DSSF)

Using neutrons to measure a dispersion surface

Using neutrons to measure a dispersion surface
Using neutrons to measure a dispersion surface

Magnons
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Well-defined dispersion --> 

Threshold energy for pair excitations
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How to detect excitations in quantum spin liquids ?

Neutron Scattering: Spin-1 excitations

Spinon-Antispinon pair excitations

Quantum Spin Liquids in Insulating Magnets
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q In 1D, quantum spin-liquids are realized and well-understood

Entanglement Fractional Excitations
Not a product state

Intrinsically a quantum superposition

q Correlated spin states with beautiful theoretical structure 

Savary & Balents, Rep. Prog. Phys. 80, 016502 (2017)

≈ +

Mourigal, Enderle, Rønnow et al. Nat. Phys. 9, 435-441 (2013) 

CuSO4.5D2O

T >TN=92mK

Hs = 3.6T

J = 2.9 K

J’/J ~ 0.1

CuSO4.5D2O

Mourigal et al, 
Nat. Phys. (2013)

Scattering continuum

Harder to confirm in 2D and 3D
?

One dimensional spin liquid

Energy resolution may not be  
good enough
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PHYSICAL HILBERT SPACE OF THE KITAEV MODEL

The Kitaev model is solved exactly by the Majorana fermion representation of the spin operators, �̂↵

j
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, b�

k
} = 2�jk�↵� , {b↵j , ck} = 0, and {cj , ck} = 2�jk. Since the Z2 gauge fields û↵

jk
commute with eH and

themselves, the fermionic Hilbert space H = HF ⌦HM is factorized into the gauge or flux sector HF and the matter
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where site j, k belongs to the sublattice s = A and s = B, respectively [2]. Then û↵

jk
= 2�†

hjki↵�hjki↵�1. Therefore, the
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is equivalent to the 2
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|F0i (S13)

with nhjki↵ = 0, 1 and the zero-flux sector |F0i such that �↵†
hjki|F0i = 0 for all bonds hjki.

After we fix the gauge for a given flux sector, eH becomes an exactly solvable free fermion Hamiltonian
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where a real matrix Mµ⌫ = 2u↵
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for the ↵-bond and zero otherwise, and µ, ⌫ = 1, ..., N label the unit cell, i.e.,
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where cs = [c1,s, c2,s, ..., cN,s]
T
for s = A,B. b0

m
, b00

m
are the normal modes, and a†
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1
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are the creation and annihilation operators of the complex matter fermion. The special orthogonal transformation

Q =


U 0

0 V

�
is derived from the singular value decomposition of M = USV T

[4]. The matter fermion excitation

energies "m � 0 are the singular values S = diag("1, ..., "N ), and the 2
N
-dimensional matter fermion Hilbert space

HM is spanned by
Q

N

m=1

�
a†
m

�nm |M0i, nm = 0, 1 with the matter vacuum |M0i satisfying am|M0i = 0 for all m. The

matter vacuum and the creation and annihilation operators are implicitly dependent on the background gauge field

configuration
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o
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�
nhjki

 
.

It is important to note that eigenstates of the gauge-fixed Hamiltonian eHu are not physical eigenstates of the original
Hamiltonian Ĥ. After we represent the spin operators with Majorana fermions, we enlarged the 2

2N
-dimensional

Hilbert space Hphys for the spins �̂↵

j
to the 4

2N
-dimensional Hilbert space HF ⌦HM for the bond fermions �↵

hjki in

HF and the matter fermions am in HM . So not every wavefunction in the enlarged Hilbert space can be physically

relevant. The gauge theory eH is a faithful representation of Ĥ only if we restrict the theory to the gauge invariant

subspace, i.e., a physical wavefunction | physi needs to be gauge invariant such that D̂j | physi = +| physi under a
Z2 gauge transformation D̂j = bx

j
by
j
bz
j
cj for every site j [3]. Since the gauge transformation D̂j flips sign of the gauge
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Ĥ = �
X

↵-bond

�↵

j
�↵

k
) eH =

X

↵-bond

(ib↵
j
b↵
k
)(icjck) ⌘

X

↵-bond

iû↵
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jk
}, we introduce a complex bond fermion at each bond

�↵

hjki =
1

2

�
b↵
j
+ ib↵

k

�
, �↵†

hjki =
1

2

�
b↵
j
� ib↵

k

�
, (S12)

where site j, k belongs to the sublattice s = A and s = B, respectively [2]. Then û↵
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Spin flip excitations in Kitaev Model 

Define bond fermions Baskaran, Mandal, Shankar (2007)
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Ĥ = �
X

↵-bond

�↵

j
�↵

k
) eH =

X

↵-bond

(ib↵
j
b↵
k
)(icjck) ⌘

X

↵-bond

iû↵
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jk
}, we introduce a complex bond fermion at each bond

�↵

hjki =
1

2

�
b↵
j
+ ib↵

k

�
, �↵†

hjki =
1

2

�
b↵
j
� ib↵

k

�
, (S12)

where site j, k belongs to the sublattice s = A and s = B, respectively [2]. Then û↵
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jk
= 2�†

hjki↵�hjki↵�1. Therefore, the

Hilbert space for the Z2 gauge fields û↵
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Hamiltonian Ĥ. After we represent the spin operators with Majorana fermions, we enlarged the 2

2N
-dimensional

Hilbert space Hphys for the spins �̂↵

j
to the 4

2N
-dimensional Hilbert space HF ⌦HM for the bond fermions �↵

hjki in

HF and the matter fermions am in HM . So not every wavefunction in the enlarged Hilbert space can be physically

relevant. The gauge theory eH is a faithful representation of Ĥ only if we restrict the theory to the gauge invariant
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[4]. The matter fermion excitation
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It is important to note that eigenstates of the gauge-fixed Hamiltonian eHu are not physical eigenstates of the original
Hamiltonian Ĥ. After we represent the spin operators with Majorana fermions, we enlarged the 2

2N
-dimensional

Hilbert space Hphys for the spins �̂↵

j
to the 4

2N
-dimensional Hilbert space HF ⌦HM for the bond fermions �↵

hjki in

HF and the matter fermions am in HM . So not every wavefunction in the enlarged Hilbert space can be physically

relevant. The gauge theory eH is a faithful representation of Ĥ only if we restrict the theory to the gauge invariant

subspace, i.e., a physical wavefunction | physi needs to be gauge invariant such that D̂j | physi = +| physi under a
Z2 gauge transformation D̂j = bx
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by
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bz
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cj for every site j [3]. Since the gauge transformation D̂j flips sign of the gauge
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where site j, k belongs to the sublattice s = A and s = B, respectively [2]. Then û↵
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with nhjki↵ = 0, 1 and the zero-flux sector |F0i such that �↵†
hjki|F0i = 0 for all bonds hjki.

After we fix the gauge for a given flux sector, eH becomes an exactly solvable free fermion Hamiltonian
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for the ↵-bond and zero otherwise, and µ, ⌫ = 1, ..., N label the unit cell, i.e.,

j = (µ, s). eHu can be block-diagonalized by a special orthogonal transformation Q 2 O(2N) [3, 4]. To be specific,

eHu =
i

4

⇥
cT
A

cT
B

⇤  0 M
�MT

0

� 
cA
cB

�
=

i

4

⇥
cT
A

cT
B

⇤  0 USV T

�V SUT
0

� 
cA
cB

�
(S15)

=
i

4

⇥
cT
A

cT
B

⇤ U 0

0 V

� 
0 S
�S 0

� 
U 0

0 V

�T 
cA
cB

�
⌘ i

4

⇥
cT
A

cT
B

⇤
Q


0 S
�S 0

�
QT


cA
cB

�
(S16)

=
i

4

⇥
(b0

)
T

(b00
)
T
⇤  0 S

�S 0

� 
b0

b00

�
=

i

2

NX

m=1

"mb0
m
b00
m

=

NX

m=1

"m

✓
a†
m
am � 1

2

◆
, (S17)

where cs = [c1,s, c2,s, ..., cN,s]
T
for s = A,B. b0

m
, b00

m
are the normal modes, and a†

m
=

1
2 (b

0
m
� ib00

m
), am =

1
2 (b

0
m
+ ib00

m
)

are the creation and annihilation operators of the complex matter fermion. The special orthogonal transformation
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[4]. The matter fermion excitation

energies "m � 0 are the singular values S = diag("1, ..., "N ), and the 2
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�nm |M0i, nm = 0, 1 with the matter vacuum |M0i satisfying am|M0i = 0 for all m. The
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It is important to note that eigenstates of the gauge-fixed Hamiltonian eHu are not physical eigenstates of the original
Hamiltonian Ĥ. After we represent the spin operators with Majorana fermions, we enlarged the 2
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jk
}, we introduce a complex bond fermion at each bond

�↵

hjki =
1

2

�
b↵
j
+ ib↵

k

�
, �↵†

hjki =
1

2

�
b↵
j
� ib↵

k

�
, (S12)

where site j, k belongs to the sublattice s = A and s = B, respectively [2]. Then û↵
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Two-dimensional coherent terahertz spectroscopy (2DCS) emerges as a valuable tool to probe the
nature, couplings, and lifetimes of excitations in quantum materials. It thus promises to identify
unique signatures of spin liquid states in quantum magnets by directly probing properties of their
exotic fractionalized excitations. Here, we calculate the second-order 2DCS of the Kitaev honeycomb
model and demonstrate that distinct spin liquid fingerprints appear already in this lowest-order
nonlinear response �(2)

yzx(!1,!2) when using crossed light polarizations. We further relate the o↵-
diagonal 2DCS peaks to the localized nature of the matter Majorana excitations trapped by Z2 flux
excitations and show that 2DCS thus directly probes the inverse participation ratio of Majorana
wavefunctions. By providing experimentally observable features of spin liquid states in the 2D
spectrum, our work can guide future 2DCS experiments on Kitaev magnets.

Introduction.– Spectroscopic techniques are among the
most powerful interrogation methods of quantum materi-
als by directly measuring electronic Green’s functions [1–
5]. While much insight can be gained in linear response,
nonlinear response functions often provide a wealth of
additional information that is inaccessible in the lin-
ear regime. Examples include nonlinear conductivities
that probe the Berry phase and quantum geometry of
the electronic wavefunction in solids [6–9] and second-
harmonic generation that is extremely sensitive to a sys-
tem’s symmetry [10–12]. Another striking example is
two-dimensional coherent spectroscopy (2DCS), which
exposes the system to a sequence of coherent light pulses
in order to measure a higher-order retarded Green’s func-
tion [5, 13, 14]. It provides a detailed two-dimensional
excitation map of two frequencies that can be used to
extract the nature, couplings and lifetimes of elementary
excitations. This technique has long been used in the
radio and optical frequency range and has only recently
been extended to terahertz (THz) frequencies, which are
ideal for the study of excitations and collective modes in
quantum materials [15–22].

Being able to disentangle di↵erent types of excitations
and to discriminate between intrinsic and inhomogeneous
broadening, THz 2DCS has been proposed to provide
unique fingerprints of fractionalized excitations in exotic
quantum magnets [23–27]. A previous theoretical study
of 2DCS in the Kitaev honeycomb spin liquid [26], for
example, has shown that the third-order diagonal sus-

ceptibility �
(3)
zzzz contains signatures of the two types of

fractionalized excitations in the Kitaev model: static Z2

gauge fluxes and itinerant Majorana fermion excitations.
Here, we demonstrate that marks of fractionalization are
already present in the lower second-order o↵-diagonal re-

sponse tensor element �
(2)
yzx, which is much larger in in-

tensity and thus experimentally easier accessible. We
find clear evidence of the presence of a nonzero flux gap

and a broad continuum of Majorana fermion excitations,
whose intrinsic lifetimes can be extracted from the 2D
spectrum. In addition, we show that �

(2) provides di-
rect evidence of the trapping of Majorana wavefunctions
around static Z2 flux excitations and that the ratio of
second and first-order response, �(2)

/�
(1), is a quantita-

tive measure of the overlap of such localized Majorana
wavefunctions. Our work thus directly links localized
Majorana states trapped around Z2 gauge fluxes to ob-
servable peaks in the 2D spectrum, and we relate the
inverse participation ratios of the wavefunctions to the
peak sizes. Finally, we show how exchange anisotropies
modify the 2D spectrum, which can be used as a sensitive
experimental probe of anisotropies.

FIG. 1. Magnetic field pulse sequence B(t) used to measure
�yzx(⌧1, ⌧2) in the Kitaev honeycomb model. Di↵erent bond
colors denote the a-bonds (a = x, y, z) and p labels plaquettes.
The figure shows e↵ect of the pulses on the flux configuration
in the R1 process. Initially, the system is in the flux-free
ground state |0i, when at t = 0 an x-polarized pulse creates
a pair of x-fluxes (green) next to a spin at site j (black dot),
resulting in state |P i. At ⌧1, a z-polarized pulse creates a
pair of z-fluxes. Since the system needs to return to the flux-
free state in the end, the z-bond must be connected to the
same spin j, resulting in a y-flux pair (blue) in state |Qi.
Measurement of the magnetization My(⌧1 + ⌧2) removes the
y-flux pair and system returns to a flux-free state.
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resulting in state |P i. At ⌧1, a z-polarized pulse creates a
pair of z-fluxes. Since the system needs to return to the flux-
free state in the end, the z-bond must be connected to the
same spin j, resulting in a y-flux pair (blue) in state |Qi.
Measurement of the magnetization My(⌧1 + ⌧2) removes the
y-flux pair and system returns to a flux-free state.
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Two-dimensional coherent terahertz spectroscopy (2DCS) emerges as a valuable tool to probe the
nature, couplings, and lifetimes of excitations in quantum materials. It thus promises to identify
unique signatures of spin liquid states in quantum magnets by directly probing properties of their
exotic fractionalized excitations. Here, we calculate the second-order 2DCS of the Kitaev honeycomb
model and demonstrate that distinct spin liquid fingerprints appear already in this lowest-order
nonlinear response �(2)

yzx(!1,!2) when using crossed light polarizations. We further relate the o↵-
diagonal 2DCS peaks to the localized nature of the matter Majorana excitations trapped by Z2 flux
excitations and show that 2DCS thus directly probes the inverse participation ratio of Majorana
wavefunctions. By providing experimentally observable features of spin liquid states in the 2D
spectrum, our work can guide future 2DCS experiments on Kitaev magnets.

Introduction.– Spectroscopic techniques are among the
most powerful interrogation methods of quantum materi-
als by directly measuring electronic Green’s functions [1–
5]. While much insight can be gained in linear response,
nonlinear response functions often provide a wealth of
additional information that is inaccessible in the lin-
ear regime. Examples include nonlinear conductivities
that probe the Berry phase and quantum geometry of
the electronic wavefunction in solids [6–9] and second-
harmonic generation that is extremely sensitive to a sys-
tem’s symmetry [10–12]. Another striking example is
two-dimensional coherent spectroscopy (2DCS), which
exposes the system to a sequence of coherent light pulses
in order to measure a higher-order retarded Green’s func-
tion [5, 13, 14]. It provides a detailed two-dimensional
excitation map of two frequencies that can be used to
extract the nature, couplings and lifetimes of elementary
excitations. This technique has long been used in the
radio and optical frequency range and has only recently
been extended to terahertz (THz) frequencies, which are
ideal for the study of excitations and collective modes in
quantum materials [15–22].

Being able to disentangle di↵erent types of excitations
and to discriminate between intrinsic and inhomogeneous
broadening, THz 2DCS has been proposed to provide
unique fingerprints of fractionalized excitations in exotic
quantum magnets [23–27]. A previous theoretical study
of 2DCS in the Kitaev honeycomb spin liquid [26], for
example, has shown that the third-order diagonal sus-

ceptibility �
(3)
zzzz contains signatures of the two types of

fractionalized excitations in the Kitaev model: static Z2

gauge fluxes and itinerant Majorana fermion excitations.
Here, we demonstrate that marks of fractionalization are
already present in the lower second-order o↵-diagonal re-

sponse tensor element �
(2)
yzx, which is much larger in in-

tensity and thus experimentally easier accessible. We
find clear evidence of the presence of a nonzero flux gap

and a broad continuum of Majorana fermion excitations,
whose intrinsic lifetimes can be extracted from the 2D
spectrum. In addition, we show that �

(2) provides di-
rect evidence of the trapping of Majorana wavefunctions
around static Z2 flux excitations and that the ratio of
second and first-order response, �(2)

/�
(1), is a quantita-

tive measure of the overlap of such localized Majorana
wavefunctions. Our work thus directly links localized
Majorana states trapped around Z2 gauge fluxes to ob-
servable peaks in the 2D spectrum, and we relate the
inverse participation ratios of the wavefunctions to the
peak sizes. Finally, we show how exchange anisotropies
modify the 2D spectrum, which can be used as a sensitive
experimental probe of anisotropies.

FIG. 1. Magnetic field pulse sequence B(t) used to measure
�yzx(⌧1, ⌧2) in the Kitaev honeycomb model. Di↵erent bond
colors denote the a-bonds (a = x, y, z) and p labels plaquettes.
The figure shows e↵ect of the pulses on the flux configuration
in the R1 process. Initially, the system is in the flux-free
ground state |0i, when at t = 0 an x-polarized pulse creates
a pair of x-fluxes (green) next to a spin at site j (black dot),
resulting in state |P i. At ⌧1, a z-polarized pulse creates a
pair of z-fluxes. Since the system needs to return to the flux-
free state in the end, the z-bond must be connected to the
same spin j, resulting in a y-flux pair (blue) in state |Qi.
Measurement of the magnetization My(⌧1 + ⌧2) removes the
y-flux pair and system returns to a flux-free state.
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Dynamical Spin Structure Factor

2

topological phases.
The model. In the Kitaev model spin-half degrees of free-

dom at sites j of a honeycomb lattice interact via nearest-
neighbour Ising exchange Ja. Frustration and quantum fluctu-
ations stem from linking the anisotropy direction a = x, y, z
in spin space to the bond direction in real space (Fig. 1a), a
form of spin-orbit coupling. With Pauli matrices σ̂a

j and using
〈ij〉a to indicate two sites sharing an a bond, the Hamiltonian
is

H = −Jx
∑

〈ij〉x

σ̂x
i σ̂

x
j − Jy

∑

〈ij〉y

σ̂y
i σ̂

y
j − Jz

∑

〈ij〉z

σ̂z
i σ̂

z
j . (1)

The ground states of Eq. (1) fall into two classes [1] – gapped
and gapless spin-liquids – depending on the relative values of
the Ja (Fig. 1b). Their emergent independent degrees of free-
dom are static Z2 gauge fluxes threading the plaquettes of the
honeycomb lattice and Majorana fermions that hop between
sites in this gauge field.
The model is solved [1] by introducing four Majorana

fermions ĉi, b̂xi , b̂
y
i , b̂

z
i at each site and representing spins as

σ̂a
i = iĉib̂ai . Taking r as a unit cell coordinate, the Majorana
fermions can be combined into two complex species: bond
fermions χ̂†

〈ij〉
a

= 1
2 (b̂

a
i − ib̂aj ) and matter fermions f̂r =

1
2 (ĉAr + iĉBr) [12]. Defining bond operators û〈ij〉a = ib̂ai b̂

a
j ,

which commute with Ĥ , the model in terms of gauge degrees
of freedom and Majorana fermions is

Ĥ = i
∑

a,〈ij〉a

Jaû〈ij〉a ĉiĉj . (2)

The Hamiltonian Ĥ has the Bogoliubov de-Gennes form
when expressed in terms of matter fermion operators f̂ †

r and
f̂r for eigenstates of the gauge fermion operators û〈ij〉. It
therefore conserves fermion parity, but not fermion number.
These features differentiate our spin dynamics problem from
the conventional X-ray edge problems and turn out to be cen-
tral to our findings.
The Hilbert space of the Hamiltonian in Eq. (2) can now

be decomposed into gauge |F 〉 and matter |M〉 sectors, and
we denote the ground state of Ĥ by |0〉 = |F0〉 ⊗ |M0〉, in
which û〈ij〉a |F0〉 = +1|F0〉 for all bonds and |M0〉 is the cor-
responding ground state of theMajorana hopping problem [1],
whose Hamiltonian Ĥ0 is obtained from Ĥ by substituting all
û〈ij〉a with their ground-state eigenvalues+1.
The dynamical structure factor. Our objective is to calculate

the spin correlation function Sab
ij (t) = 〈0|σ̂a

i (t)σ̂
b
j (0)|0〉 and

its Fourier transform in space and time, the dynamical struc-
ture factor Sab(q,ω). The latter is proportional to the cross
section obtained in an inelastic neutron scattering (INS) ex-
periment, and at q = 0 to the signal obtained in electron spin
resonance (ESR).
The measurement process creates a spin flip, which intro-

duces a pair of fluxes in adjacent plaquettes (as illustrated
in Fig. 1) and initiates the dynamical rearrangement of mat-
ter fermions in the modified gauge field. Because fluxes are

static, site off-diagonal spin correlations vanish except for a-
components of a nearest-neighbour pair 〈ij〉a [12]. We in-
dicate this using the symbol δ〈ij〉,a. (In the rest of the pa-
per we show expressions for the nearest neighbour correlator;
the ones for the site-diagonal terms are similar.) Crucially,
the non-zero contributions to the structure factor can be ex-
pressed purely in terms of matter fermions in the ground state
flux sector, subject to a perturbation V̂a = −2iJaĉiĉj , using
the expression [12]

Sab
ij (t) = −i〈M0|e

iĤ0tĉie
−i(Ĥ0+V̂a)tĉj |M0〉δabδ〈ij〉,a . (3)

The Hamiltonians Ĥa = Ĥ0 + V̂a and Ĥ0 differ only in the
sign of the Majorana hopping on the a-bond, representing in-
sertion of the flux pair. The Lehmann representation of Eq. (3)
can be written in the basis of many-body eigenstates of the
Hamiltonian Ĥa, denoted by |λ〉 with the corresponding en-
ergies Eλ, taking E0 as the ground state energy of Ĥ0. We
choose to work in the fixed gauge in which the eigenvalues of
û〈kl〉 are +1 for all bonds except the one linking the pair of
sites i and j that appear in the correlator Sab

ij (t). Then

Sab
ij (ω) = −i

∑

λ

〈M0|ĉi|λ〉〈λ|ĉj |M0〉

× δ [ω − (Eλ − E0)] δ〈ij〉,aδab. (4)

Results. We start our discussion of the results displayed in
Figs. 2 and 3 by explaining the salient qualitative features in
terms of the selection rules imposed by the fractionalisation
of the electrons into fluxes and Majoranas. It is instructive
to do so using Eq. (4), from which the central aspects of the
response can be read off, and we relegate an explanation of
the numerically exact solution of Eq. (3) to the supplementary
material.
First, in both gapped and gapless phases, response vanishes

below the two-flux gap ∆ = Eλ0
− E0, the difference be-

tween the ground state energies in a system with and without
the flux pair. (At the isotropic point ∆ & 0.26J [1].) It is re-
markable that in an INS experiment the response of a gapless
QSL will show an excitation gap which is directly related to
the emergent gauge field.
Above the gap ∆, the response thus reflects the physics of

the matter sector, and our analysis uncovers an entirely new
structure in the phase diagram of the Kitaev model, Fig. 1b.
An important consequence of the fact that Ĥ in Eq. (2) con-
serves matter fermion parity is that the non-zero contributions
to Eq. (4) come only from excited states |λ〉 with parity op-
posite to the ground state |M0〉. As a result, two distinctively
different alternatives arise: either (I) the ground states of Ĥ0

and Ĥa have the same parity, in which case the states |λ〉must
contain an odd number of excitations, or (II) the ground states
have opposite parity and |λ〉 contains an even number of exci-
tations, a condition that is also fulfilled by the ground state of
Ha.
For (I) [Fig. 2 a-d], single particle excitations dominate the

response, which is broad in energy, so that its amplitude is ap-
preciable only within the matter fermion bandwidth. Indeed,
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Figure 2. The exact dynamical structure factor of the Kitaev spin liquids. Total dynamical structure factor S(q,ω) =
∑

a
Saa(q,ω) and

the inequivalent components Saa(0,ω), as would be measured in inelastic neutron scattering and electron spin resonance, respectively, eval-
uated for three points in the phase diagram: (a+b) the symmetric point (Jx=Jy=Jz); (c+d) a gapless asymmetric point (Jx=Jy , Jz=0.7Jx)
and (e+f) a gapped point (Jx=Jy=0.15Jz ). Top: S(q,ω) on a logarithmic colour scale as a function of ω along the cutMΓKM through the
Brillouin zone. Bottom: dynamical susceptibility Saa(0,ω) for a = z, x at the same values of the exchange. Comparison with the adiabatic
response as explained in the main text is given in panel b (black dashed line). The dashed line in (f) indicates the delta-function contribution
to the response, present only in the region of the dynamical phase diagram coloured red in Fig. 1b. The insets to panels (b) and (d) show the
density of states of the matter fermions.

only about 2.5% of the signal at the symmetric point arises
from multi-particle contributions (see supplementary mate-
rial) in stark contrast to the case of the Heisenberg chain [20],
where the corresponding number is almost 30%.
For (II) [Figs. 2 e and f], in striking opposition, the response

includes a finite-weight δ-function component in ω at the dif-
ference ∆ in ground state energies, since the corresponding
matrix element is finite. It is a remarkable and unexpected
finding that – despite fractionalisation – the INS response has
a component sharp in energy (displayed in Fig. 3 b). Note
that the location in the phase diagram of the dynamical transi-
tion at which this sharp response appears is distinct from the
ground state phase boundary: it lies entirely within the gapless
phase (Fig. 1 b).
Discussion. Formally, Eq. (3) represents an example of

a quantum quench: it involves the overlap between a state
〈M0|ĉi that is simple in terms of Ĥ0 (a superposition of
single-particle excitations) and a similar state ĉj |M0〉 after the
latter has evolved for time t under a different Hamiltonian Ĥa.
The broad features of the resulting response of the Majorana
fermions above ∆ are a result of this quench. Quite surpris-
ingly, this can be well approximated by replacing the instan-
taneous flip of the bond by an adiabatic, rather than sudden,
switching-on of the potential V̂a. This amounts to replacing
|M0〉 in Eq. (4) by the Majorana ground state in the presence
of the fluxes. One can show that in the limit of low energies,
the matter fermion eigenstates are, in fact, insensitive to the

flux addition, so that the resulting approximation (dashed line,
Fig. 2 b) becomes exact as ω approaches∆.

It is interesting to compare the energy dependence of the
structure factor with the density of states for matter fermions
(Fig. 2 b and d). Response is substantial over the entire single-
particle band width (shifted in energy by∆), with linear onset
above the gap. However, as a qualitative signature of the ef-
fect of gauge fluxes on matter fermion dynamics, the response
is far from being simply proportional to the density of states.
Instead, the peak in the latter at 2Jz due to the van Hove sin-
gularity [see inset to Fig. 2 b] yields a dip in the response.
Away from the symmetric point there are two van Hove sin-
gularities in the density of states, and in addition there is a
distinct response for differently orientated spin pairs, showing
one or two minima in the corresponding dynamical suscepti-
bility (Fig. 2 d).

Despite the formal similarities between the time-dependent
correlator Eq. (3) and the X-ray edge problem, the physics
arising from it is quite different. First, depending on the ex-
change Ja one can study a local quantum quench in either
gapless or gapped phases, the latter not presenting the pos-
sibility of low-energy fermionic excitations. Second, for in-
equivalent values of Ja the correlators for different spin com-
ponents are different. Third, theMajorana fermions in our cal-
culation arise due to fractionalisation of spin degrees of free-
dom as emergent particles. Fourth, they have not number, but
only parity conservation, and their dispersion exhibits Dirac
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fermions above ∆ are a result of this quench. Quite surpris-
ingly, this can be well approximated by replacing the instan-
taneous flip of the bond by an adiabatic, rather than sudden,
switching-on of the potential V̂a. This amounts to replacing
|M0〉 in Eq. (4) by the Majorana ground state in the presence
of the fluxes. One can show that in the limit of low energies,
the matter fermion eigenstates are, in fact, insensitive to the

flux addition, so that the resulting approximation (dashed line,
Fig. 2 b) becomes exact as ω approaches∆.

It is interesting to compare the energy dependence of the
structure factor with the density of states for matter fermions
(Fig. 2 b and d). Response is substantial over the entire single-
particle band width (shifted in energy by∆), with linear onset
above the gap. However, as a qualitative signature of the ef-
fect of gauge fluxes on matter fermion dynamics, the response
is far from being simply proportional to the density of states.
Instead, the peak in the latter at 2Jz due to the van Hove sin-
gularity [see inset to Fig. 2 b] yields a dip in the response.
Away from the symmetric point there are two van Hove sin-
gularities in the density of states, and in addition there is a
distinct response for differently orientated spin pairs, showing
one or two minima in the corresponding dynamical suscepti-
bility (Fig. 2 d).

Despite the formal similarities between the time-dependent
correlator Eq. (3) and the X-ray edge problem, the physics
arising from it is quite different. First, depending on the ex-
change Ja one can study a local quantum quench in either
gapless or gapped phases, the latter not presenting the pos-
sibility of low-energy fermionic excitations. Second, for in-
equivalent values of Ja the correlators for different spin com-
ponents are different. Third, theMajorana fermions in our cal-
culation arise due to fractionalisation of spin degrees of free-
dom as emergent particles. Fourth, they have not number, but
only parity conservation, and their dispersion exhibits Dirac

�!
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Two-flux gap
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FIG. 2. Comparison of the dynamical structure factor, S (Q,!), in the classical limit (S ! 1) and quantum limit (S = 1/2)
of the pure Kitaev model (J = 0) at T = 0. Panels (a) and (b) show S(Q,!) obtained from LL simulations of the classical
AFM and FM Kitaev models, respectively. Panels (c) and (d) show S(Q,!) at T = 0 for the S = 1/2 Kitaev model obtained
in Ref. 6. Constant energy cuts of (e) AFM and (f) FM classical Kitaev liquids obtained by integrating over the energy range
!/|K| = [0.17, 0.35], corresponding to the low-frequency mode. Similar plots for the high-frequency mode are also shown for
(g) AFM and (h) FM classical Kitaev liquids with the integration energy range !/|K| = [1.4, 1.6].

is obtained by Fourier transforming the real-space corre-
lator hS(ri, t) ·S(r0, 0)i evaluated from the LL dynamics
over a finite period with periodic boundary conditions.

We first focus on the pure Kitaev limit (J = 0). Fig-
ure 2 shows the magnetic structure factor S(Q,!) of the
classical and the quantum models at T = 0 for both
antiferromagnetic (AFM) and ferromagnetic (FM) cases.
S (Q,!) is plotted along the BZ path (K�MYXK) shown
in Fig. 1(b). The calculations in the classical limit (CL),
shown in Figs. 2(a) and 2(b), are averages over 120 LL
simulations on a supercell of 20⇥20 unit cells (800 spins).
The quantum limit (QL) calculations, shown in Figs. 2(c)
and 2(d), correspond to the exact result in the thermo-
dynamic limit [6]. Remarkably, both the classical and
the quantum Kitaev liquids are found to have two di↵er-
ent almost dispersionless modes centered at high and low
frequencies (!) with striking similarities.

The high-energy mode is centered around the � (Y)
point for K > 0 (K < 0) and it is accompanied by a
suppression of the low-energy spectral weight centered
around the same wave vector. This behavior is better
illustrated by the contour plots shown in Figs. 2(e)–2(h).
These panels are constant frequency cuts of S(Q,!),
which show the distribution of spectral weight over mo-
mentum space. Figures 2(e) and 2(f) correspond to the
distribution of low-frequency modes (integral of S(Q,!)
over the interval !/|K| = [0.17, 0.35]), while Figs. 2(g)
and 2(h) show the distribution of high-frequency modes
(integral of S(Q,!) over the interval !/|K| = [1.4, 1.6]).
As it is clear from these panels, the low-energy spec-
tral weight is suppressed in the same region in momen-
tum space where the distribution of high-energy spectral

weight has a peak. This is the center of the first BZ for
K > 0 and the center of the second BZ for K < 0 [see
Fig. 1(b)].
To understand the di↵erences and similarities between

the classical and the quantum limits of the Kitaev model,
it is instructive to go back to the real-space. Figure 3
shows the real space spin-spin correlators for the classical
and the quantum limits of the AFM model. Figures 3(a)
and 3(b) include the on-site correlator for the CL and the
QL, respectively. Similarly, Figs. 3(c) and 3(d) contain
the NN correlator for the CL and the QL, respectively.
As we mentioned before, the local gauge structure shared
by the quantum and the classical models leads to a real
space spin-spin correlator that vanishes beyond NN sites.
This implies that the spin structure factor in the pure
Kitaev model for arbitrary S can be decomposed as

S
⌫⌫(Q,!) = S0(!) + cos(Q · u⌫)S1(!), (5)

where ⌫ = x, y, z and u⌫ is the relative vector between
two NN sites connected by a ⌫⌫ bond; S0(!) and S1(!)
are the Fourier transformations into the frequency do-
main for the on-site and the NN dynamical spin correla-
tors, respectively. This peculiarity leads to the sinusoidal
Q-modulation in the high- and low-energy peak intensi-
ties as illustrated in Figs. 2(e)–2(h). In other words, the
similar wave vector dependence of the di↵erent modes in
the classical and the quantum limits are a direct con-
sequence of the similar real space correlations shown in
Fig. 3.
The real space correlators also exhibit a low and a

high-frequency peak in both models. The low-frequency
peak of the S = 1/2 model appears right above the
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Measure the nonlinear part of the transient magnetization
<latexit sha1_base64="amjtaBlpAyUsvuW76GYB5yvkU7w=">AAAB/HicbZDLSsNAFIYnXmu9Rbt0M1gEQShJEXUjFN24rGAv0IYwmU7aoZNJmDkRQqiv4saFIm59EHe+jdM2C239YeDjP+dwzvxBIrgGx/m2VlbX1jc2S1vl7Z3dvX374LCt41RR1qKxiFU3IJoJLlkLOAjWTRQjUSBYJxjfTuudR6Y0j+UDZAnzIjKUPOSUgLF8uwL4GveBpL6Lz+ZQ9+2qU3NmwsvgFlBFhZq+/dUfxDSNmAQqiNY910nAy4kCTgWblPupZgmhYzJkPYOSREx7+ez4CT4xzgCHsTJPAp65vydyEmmdRYHpjAiM9GJtav5X66UQXnk5l0kKTNL5ojAVGGI8TQIPuGIURGaAUMXNrZiOiCIUTF5lE4K7+OVlaNdr7kWtfn9ebdwUcZTQETpGp8hFl6iB7lATtRBFGXpGr+jNerJerHfrY966YhUzFfRH1ucPPEGTOQ==</latexit>

t = ⌧1 + ⌧2
<latexit sha1_base64="tiAGKBjhJEkQEE0RgCsDVVbQCws=">AAACLXicbZBLS8NAEMc39VXrK+rRy2IR6sGSFFEvQls9eFCpYB/QhrDZbtqlmwe7G6GEfCEvfhURPFTEq1/DbVqKtg4s/Oc3M8zO3wkZFdIwRlpmaXlldS27ntvY3Nre0Xf3GiKIOCZ1HLCAtxwkCKM+qUsqGWmFnCDPYaTpDK7G9eYT4YIG/qMchsTyUM+nLsVIKmTr13HHceFdYsf3twksyGN4CWeoUp2gkxmqzOXVNLf1vFE00oCLwpyKPJhGzdbfOt0ARx7xJWZIiLZphNKKEZcUM5LkOpEgIcID1CNtJX3kEWHF6bUJPFKkC92Aq+dLmNLfEzHyhBh6jur0kOyL+doY/ldrR9K9sGLqh5EkPp4sciMGZQDH1sEu5QRLNlQCYU7VXyHuI46wVAbnlAnm/MmLolEqmmfF0sNpvlyd2pEFB+AQFIAJzkEZ3IAaqAMMnsErGIEP7UV71z61r0lrRpvO7IM/oX3/AN0do5U=</latexit>

MNL(t) = MAB(t)�MA(t)�MB(t)

2

⌧1⌧2

B1 B0

M̂01

(a)

<latexit sha1_base64="13w6RpU+qp20w60+mUZtPgX7iWQ=">AAAB6nicbZDLSsNAFIZPvNZ6q7p0M1iEugmJLWp3RTcuK9oLtKFMppN26GQSZiZCCX0ENy4UcesTufNtnLahXn8YOHz/OZwzvx9zprTjfFhLyyura+u5jfzm1vbObmFvv6miRBLaIBGPZNvHinImaEMzzWk7lhSHPqctf3Q19Vv3VCoWiTs9jqkX4oFgASNYG3Rbwie9QtGxq0ZuFbm2MxPKSHlBipCp3iu8d/sRSUIqNOFYqY7rxNpLsdSMcDrJdxNFY0xGeEA7phQ4pMpLZ6dO0LEhfRRE0jyh0Yx+n0hxqNQ49E1niPVQ/fam8D+vk+jgwkuZiBNNBZkvChKOdISm/0Z9JinRfGwKTCQztyIyxBITbdLJL0Konn2F8Kdontpu2a7cVIq1yyyOHBzCEZTAhXOowTXUoQEEBvAAT/BscevRerFe561LVjZzAD9kvX0CIB+N2Q==</latexit>

(b)(a)

(c)

(iii)

(ii)

(i)

FIG. 1. Magnitude of two-dimensional Fourier spectrum of
the third order susceptibilities (a) �(3),z

zzz (!2,!1, 0) and (b)

�(3),z
zzz (!2, 0,!1) show the sharp vertical line signals at the two-

flux gap, !1 = E2 � E0 (yellow arrow). (b) �(3),z
zzz (!2, 0,!1)

has one sharp diagonal signal (i) at !2 < 0 and two diagonal
signals (ii) and (iii) at !2 > 0 originating from the itinerant
Majorana fermion. The diagonal (i) and (ii) are shifted by
the four-flux gap, ±(E4 � E0). (c) Two incoming pulses sep-
arated by time ⌧1 excites the system (dashed box), and we
measure the induced magnetization M̂01 at later time ⌧2+⌧1.
Repeat the experiments only with the pulse B0 or B1 to get
the nonlinear magnetization M̂NL defined in the main text.

with periodic boundary condition, it can been shown that
the zero-flux and four-flux sectors are comprised of the
physical states with odd matter fermion parity while the
two-flux sectors are comprised of the states with even
fermion parity only [6] (see Supplemental Material for
detailed discussion).

Two-dimensional spectroscopy. — To probe the frac-
tionalized excitations of the Kitaev spin liquid, we con-
sider a nonlinear magnetic resonance spectroscopy with
two linearly polarized, spatially uniform pulses separated
by time ⌧1,

B(t) = B0�(t) + B1�(t � ⌧1), (3)

where the two incident pulses B0 and B1 arrive the sys-
tem at t = 0 and t = ⌧1, respectively [Figure 1 (c)].
These magnetic fields linearly interact with the local mo-
ments Ĥtot(t) = Ĥ �

P
j B(t) · �̂j = Ĥ � B(t) · M̂ and

induce finite transient magnetization M̂01(t) measured
at later time t = ⌧2 + ⌧1. To discard the leading con-

tributions from the linear response, two subsequent ex-
periments measure M̂0(t) and M̂1(t) due to only a single
pulse B0 or B1, respectively. The nonlinear induced mag-
netization defined as M̂NL(t) = M̂01(t)� M̂0(t)� M̂1(t)
at later time t = ⌧1 + ⌧2 depends only on the nonlinear
dynamical responses [7],

M
↵
NL(⌧1 + ⌧2)/2N = �

(2),↵
↵2↵1

(⌧2, ⌧1)B
↵2
1 B

↵1
0 (4)

+ �
(3),↵
↵3↵2↵1

(⌧2, ⌧1, 0)B↵3
1 B

↵2
0 B

↵1
0 (5)

+ �
(3),↵
↵3↵2↵1

(⌧2, 0, ⌧1)B
↵3
1 B

↵2
1 B

↵1
0 + O(B4), (6)

where the time-dependent perturbation theory gives the
nth order susceptibility (we choose the unit ~ = 1)

�
(n),↵
↵n,...,↵1

(⌧n, ..., ⌧1) =
i
n

2N
h[[...[M̂↵1(⌧n + ... + ⌧1),

M̂
↵2(⌧n�1 + ... + ⌧1)], ...], M̂

↵(0)]i. (7)

Second order susceptibility. — Although the second
order response in Eq. (4) is generally the leading contri-
bution to the nonlinear magnetization M̂NL, the isotropic
Kitaev spin liquid has the vanishing second order suscep-

tibility �
(2),↵
↵2↵1(⌧2, ⌧1), which can be calculated from the

three-point correlation functions,

�
(2),↵
↵2↵1

(⌧2, ⌧1) =
i
2

N

2X

l=1

Re
h
Q

(l),↵
↵2↵1

(⌧2, ⌧1)
i
, (8)

where

Q
(1),↵
↵2↵1

(⌧2, ⌧1) = hM̂↵1(⌧2 + ⌧1)M̂
↵2(⌧1)M̂

↵(0)i, (9)

Q
(2),↵
↵2↵1

(⌧2, ⌧1) = �hM̂↵2(⌧1)M̂
↵1(⌧2 + ⌧1)M̂

↵(0)i. (10)

Formally, we can insert the resolution of identityP
P |P ihP | = and decompose the three-point function

into a sum of products of three matrix elements weighted
by phase factors containing the dynamical information.
In general,

hM̂↵(t)M̂�(t0)M̂�(0)i =
X

jkl

X

PQ

hG|�̂↵
j |P ihP |�̂�

k |Qi

⇥ hQ|�̂�
l |Giei(EG�EP )t+i(EP�EQ)t0

, (11)

where |P i and |Qi are the physical energy eigenstates,
and |Gi is the ground state.

Since the spin operator �̂
↵
j (�̂�

l ) at an ↵-bond (�-bond)

anticommutes with Ŵp at the plaquettes sharing the ↵-
bond (�-bond), it flips a pair of two adjacent fluxes.
Hence, |P i and |Qi are the two-flux states which must
have even matter fermion parity to stay in the physical
Hilbert space [6]. As the spin operator �̂

�
k

.
= ib

�
kck car-

ries one c fermion, it cannot connect two physical states
with same matter fermion parity. Therefore, the matrix
element hP |�̂�

k |Qi should be zero and so does the second
order susceptibility.
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B ê��(t� ⌧1)

Nonlinear transient magnetization - nonlinear susceptibilities
<latexit sha1_base64="6XrX5EixqhXy1PrR1pAlRX8ESTo=">AAACF3icbZC7SgNBFIZn4y3GW9TSZjAIsXDZDaI2QohNGiGCuUA2hNnZ2WTI7IWZs0JY9i1sfBUbC0VstfNtnFwKTfxh4Oc753Dm/G4suALL+jZyK6tr6xv5zcLW9s7uXnH/oKWiRFLWpJGIZMcligkesiZwEKwTS0YCV7C2O7qZ1NsPTCoehfcwjlkvIIOQ+5wS0KhfNOv91JEBhggyfI3r+AynjuvjWlaGU+xQL4IZuM2wJv1iyTKtqfCyseemhOZq9ItfjhfRJGAhUEGU6tpWDL2USOBUsKzgJIrFhI7IgHW1DUnAVC+d3pXhE0087EdSvxDwlP6eSEmg1DhwdWdAYKgWaxP4X62bgH/VS3kYJ8BCOlvkJ0KngCchYY9LRkGMtSFUcv1XTIdEEgo6yoIOwV48edm0KqZ9YVbuzkvV2jyOPDpCx6iMbHSJqqiOGqiJKHpEz+gVvRlPxovxbnzMWnPGfOYQ/ZHx+QNzBZz4</latexit>

Htot = H �B(t) ·M(t)
<latexit sha1_base64="JhEFofK/cqKViLk+I3vygJnELwY="></latexit>

M�
NL(⌧1 + ⌧2)/N = �(2),�

↵� (⌧2, ⌧1)B
↵
AB

�
B

<latexit sha1_base64="Evz5lLZgpT6TZXZQqQlOksXH180="></latexit>

+ �(3),�
↵↵� (⌧2, ⌧1, 0)B

↵
AB

↵
AB

�
B + �(3),�

↵�� (⌧2, 0, ⌧1)B
↵
AB

�
BB

�
B +O(B4)

AAB ABB

AB



<latexit sha1_base64="A9gx1OdnQ+OIL/VPfJOtfIxUWog=">AAACCHicbVDLSgMxFM3UV62vUZcuDBbBRSkzRdSNUHTjsoJ9QFvKnTRtQ5PMkGSEOnTpxl9x40IRt36CO//GTNuFth4S7uGce0nuCSLOtPG8byeztLyyupZdz21sbm3vuLt7NR3GitAqCXmoGgFoypmkVcMMp41IURABp/VgeJ369XuqNAvlnRlFtC2gL1mPETBW6riHLeDRAAq4FVCTlj4IAfgSPxQmp+PmvaI3AV4k/ozk0QyVjvvV6oYkFlQawkHrpu9Fpp2AMoxwOs61Yk0jIEPo06alEgTV7WSyyBgfW6WLe6GyVxo8UX9PJCC0HonAdgowAz3vpeJ/XjM2vYt2wmQUGyrJ9KFezLEJcZoK7jJFieEjS4AoZv+KyQAUEGOzy9kQ/PmVF0mtVPTPiqXb03z5ahZHFh2gI3SCfHSOyugGVVAVEfSIntErenOenBfn3fmYtmac2cw++gPn8weFDpe8</latexit>

↵,�, � = z, z, z case 3rd order susceptibility
<latexit sha1_base64="2RGuGOA8WoNb1YVWya8161YNAzE="></latexit>

R(1),z
zzz (⌧2, 0, ⌧1) =

X

jklm

X

PQR

h0|�̂z
j |P ihP |�̂z

k|QihQ|�̂z
l |RihR|�̂z

m|0ie�i(ER�E0)⌧2�i(Ep�E0)⌧1

ABB

2-flux, 1 fermion 4-flux

Probing Majorana wavefunctions in Kitaev honeycomb spin liquids with second-order
two-dimensional spectroscopy
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Two-dimensional coherent terahertz spectroscopy (2DCS) emerges as a valuable tool to probe the
nature, couplings, and lifetimes of excitations in quantum materials. It thus promises to identify
unique signatures of spin liquid states in quantum magnets by directly probing properties of their
exotic fractionalized excitations. Here, we calculate the second-order 2DCS of the Kitaev honeycomb
model and demonstrate that distinct spin liquid fingerprints appear already in this lowest-order
nonlinear response �(2)

yzx(!1,!2) when using crossed light polarizations. We further relate the o↵-
diagonal 2DCS peaks to the localized nature of the matter Majorana excitations trapped by Z2 flux
excitations and show that 2DCS thus directly probes the inverse participation ratio of Majorana
wavefunctions. By providing experimentally observable features of spin liquid states in the 2D
spectrum, our work can guide future 2DCS experiments on Kitaev magnets.

Introduction.– Spectroscopic techniques are among the
most powerful interrogation methods of quantum materi-
als by directly measuring electronic Green’s functions [1–
5]. While much insight can be gained in linear response,
nonlinear response functions often provide a wealth of
additional information that is inaccessible in the lin-
ear regime. Examples include nonlinear conductivities
that probe the Berry phase and quantum geometry of
the electronic wavefunction in solids [6–9] and second-
harmonic generation that is extremely sensitive to a sys-
tem’s symmetry [10–12]. Another striking example is
two-dimensional coherent spectroscopy (2DCS), which
exposes the system to a sequence of coherent light pulses
in order to measure a higher-order retarded Green’s func-
tion [5, 13, 14]. It provides a detailed two-dimensional
excitation map of two frequencies that can be used to
extract the nature, couplings and lifetimes of elementary
excitations. This technique has long been used in the
radio and optical frequency range and has only recently
been extended to terahertz (THz) frequencies, which are
ideal for the study of excitations and collective modes in
quantum materials [15–22].

Being able to disentangle di↵erent types of excitations
and to discriminate between intrinsic and inhomogeneous
broadening, THz 2DCS has been proposed to provide
unique fingerprints of fractionalized excitations in exotic
quantum magnets [23–27]. A previous theoretical study
of 2DCS in the Kitaev honeycomb spin liquid [26], for
example, has shown that the third-order diagonal sus-

ceptibility �
(3)
zzzz contains signatures of the two types of

fractionalized excitations in the Kitaev model: static Z2

gauge fluxes and itinerant Majorana fermion excitations.
Here, we demonstrate that marks of fractionalization are
already present in the lower second-order o↵-diagonal re-

sponse tensor element �
(2)
yzx, which is much larger in in-

tensity and thus experimentally easier accessible. We
find clear evidence of the presence of a nonzero flux gap

and a broad continuum of Majorana fermion excitations,
whose intrinsic lifetimes can be extracted from the 2D
spectrum. In addition, we show that �

(2) provides di-
rect evidence of the trapping of Majorana wavefunctions
around static Z2 flux excitations and that the ratio of
second and first-order response, �(2)

/�
(1), is a quantita-

tive measure of the overlap of such localized Majorana
wavefunctions. Our work thus directly links localized
Majorana states trapped around Z2 gauge fluxes to ob-
servable peaks in the 2D spectrum, and we relate the
inverse participation ratios of the wavefunctions to the
peak sizes. Finally, we show how exchange anisotropies
modify the 2D spectrum, which can be used as a sensitive
experimental probe of anisotropies.

FIG. 1. Magnetic field pulse sequence B(t) used to measure
�yzx(⌧1, ⌧2) in the Kitaev honeycomb model. Di↵erent bond
colors denote the a-bonds (a = x, y, z) and p labels plaquettes.
The figure shows e↵ect of the pulses on the flux configuration
in the R1 process. Initially, the system is in the flux-free
ground state |0i, when at t = 0 an x-polarized pulse creates
a pair of x-fluxes (green) next to a spin at site j (black dot),
resulting in state |P i. At ⌧1, a z-polarized pulse creates a
pair of z-fluxes. Since the system needs to return to the flux-
free state in the end, the z-bond must be connected to the
same spin j, resulting in a y-flux pair (blue) in state |Qi.
Measurement of the magnetization My(⌧1 + ⌧2) removes the
y-flux pair and system returns to a flux-free state.
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Two-dimensional coherent terahertz spectroscopy (2DCS) emerges as a valuable tool to probe the
nature, couplings, and lifetimes of excitations in quantum materials. It thus promises to identify
unique signatures of spin liquid states in quantum magnets by directly probing properties of their
exotic fractionalized excitations. Here, we calculate the second-order 2DCS of the Kitaev honeycomb
model and demonstrate that distinct spin liquid fingerprints appear already in this lowest-order
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yzx(!1,!2) when using crossed light polarizations. We further relate the o↵-
diagonal 2DCS peaks to the localized nature of the matter Majorana excitations trapped by Z2 flux
excitations and show that 2DCS thus directly probes the inverse participation ratio of Majorana
wavefunctions. By providing experimentally observable features of spin liquid states in the 2D
spectrum, our work can guide future 2DCS experiments on Kitaev magnets.

Introduction.– Spectroscopic techniques are among the
most powerful interrogation methods of quantum materi-
als by directly measuring electronic Green’s functions [1–
5]. While much insight can be gained in linear response,
nonlinear response functions often provide a wealth of
additional information that is inaccessible in the lin-
ear regime. Examples include nonlinear conductivities
that probe the Berry phase and quantum geometry of
the electronic wavefunction in solids [6–9] and second-
harmonic generation that is extremely sensitive to a sys-
tem’s symmetry [10–12]. Another striking example is
two-dimensional coherent spectroscopy (2DCS), which
exposes the system to a sequence of coherent light pulses
in order to measure a higher-order retarded Green’s func-
tion [5, 13, 14]. It provides a detailed two-dimensional
excitation map of two frequencies that can be used to
extract the nature, couplings and lifetimes of elementary
excitations. This technique has long been used in the
radio and optical frequency range and has only recently
been extended to terahertz (THz) frequencies, which are
ideal for the study of excitations and collective modes in
quantum materials [15–22].

Being able to disentangle di↵erent types of excitations
and to discriminate between intrinsic and inhomogeneous
broadening, THz 2DCS has been proposed to provide
unique fingerprints of fractionalized excitations in exotic
quantum magnets [23–27]. A previous theoretical study
of 2DCS in the Kitaev honeycomb spin liquid [26], for
example, has shown that the third-order diagonal sus-

ceptibility �
(3)
zzzz contains signatures of the two types of
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gauge fluxes and itinerant Majorana fermion excitations.
Here, we demonstrate that marks of fractionalization are
already present in the lower second-order o↵-diagonal re-

sponse tensor element �
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yzx, which is much larger in in-

tensity and thus experimentally easier accessible. We
find clear evidence of the presence of a nonzero flux gap

and a broad continuum of Majorana fermion excitations,
whose intrinsic lifetimes can be extracted from the 2D
spectrum. In addition, we show that �

(2) provides di-
rect evidence of the trapping of Majorana wavefunctions
around static Z2 flux excitations and that the ratio of
second and first-order response, �(2)

/�
(1), is a quantita-

tive measure of the overlap of such localized Majorana
wavefunctions. Our work thus directly links localized
Majorana states trapped around Z2 gauge fluxes to ob-
servable peaks in the 2D spectrum, and we relate the
inverse participation ratios of the wavefunctions to the
peak sizes. Finally, we show how exchange anisotropies
modify the 2D spectrum, which can be used as a sensitive
experimental probe of anisotropies.

FIG. 1. Magnetic field pulse sequence B(t) used to measure
�yzx(⌧1, ⌧2) in the Kitaev honeycomb model. Di↵erent bond
colors denote the a-bonds (a = x, y, z) and p labels plaquettes.
The figure shows e↵ect of the pulses on the flux configuration
in the R1 process. Initially, the system is in the flux-free
ground state |0i, when at t = 0 an x-polarized pulse creates
a pair of x-fluxes (green) next to a spin at site j (black dot),
resulting in state |P i. At ⌧1, a z-polarized pulse creates a
pair of z-fluxes. Since the system needs to return to the flux-
free state in the end, the z-bond must be connected to the
same spin j, resulting in a y-flux pair (blue) in state |Qi.
Measurement of the magnetization My(⌧1 + ⌧2) removes the
y-flux pair and system returns to a flux-free state.
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yzx(!1,!2) when using crossed light polarizations. We further relate the o↵-
diagonal 2DCS peaks to the localized nature of the matter Majorana excitations trapped by Z2 flux
excitations and show that 2DCS thus directly probes the inverse participation ratio of Majorana
wavefunctions. By providing experimentally observable features of spin liquid states in the 2D
spectrum, our work can guide future 2DCS experiments on Kitaev magnets.
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als by directly measuring electronic Green’s functions [1–
5]. While much insight can be gained in linear response,
nonlinear response functions often provide a wealth of
additional information that is inaccessible in the lin-
ear regime. Examples include nonlinear conductivities
that probe the Berry phase and quantum geometry of
the electronic wavefunction in solids [6–9] and second-
harmonic generation that is extremely sensitive to a sys-
tem’s symmetry [10–12]. Another striking example is
two-dimensional coherent spectroscopy (2DCS), which
exposes the system to a sequence of coherent light pulses
in order to measure a higher-order retarded Green’s func-
tion [5, 13, 14]. It provides a detailed two-dimensional
excitation map of two frequencies that can be used to
extract the nature, couplings and lifetimes of elementary
excitations. This technique has long been used in the
radio and optical frequency range and has only recently
been extended to terahertz (THz) frequencies, which are
ideal for the study of excitations and collective modes in
quantum materials [15–22].

Being able to disentangle di↵erent types of excitations
and to discriminate between intrinsic and inhomogeneous
broadening, THz 2DCS has been proposed to provide
unique fingerprints of fractionalized excitations in exotic
quantum magnets [23–27]. A previous theoretical study
of 2DCS in the Kitaev honeycomb spin liquid [26], for
example, has shown that the third-order diagonal sus-

ceptibility �
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already present in the lower second-order o↵-diagonal re-

sponse tensor element �
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yzx, which is much larger in in-

tensity and thus experimentally easier accessible. We
find clear evidence of the presence of a nonzero flux gap

and a broad continuum of Majorana fermion excitations,
whose intrinsic lifetimes can be extracted from the 2D
spectrum. In addition, we show that �

(2) provides di-
rect evidence of the trapping of Majorana wavefunctions
around static Z2 flux excitations and that the ratio of
second and first-order response, �(2)
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(1), is a quantita-

tive measure of the overlap of such localized Majorana
wavefunctions. Our work thus directly links localized
Majorana states trapped around Z2 gauge fluxes to ob-
servable peaks in the 2D spectrum, and we relate the
inverse participation ratios of the wavefunctions to the
peak sizes. Finally, we show how exchange anisotropies
modify the 2D spectrum, which can be used as a sensitive
experimental probe of anisotropies.

FIG. 1. Magnetic field pulse sequence B(t) used to measure
�yzx(⌧1, ⌧2) in the Kitaev honeycomb model. Di↵erent bond
colors denote the a-bonds (a = x, y, z) and p labels plaquettes.
The figure shows e↵ect of the pulses on the flux configuration
in the R1 process. Initially, the system is in the flux-free
ground state |0i, when at t = 0 an x-polarized pulse creates
a pair of x-fluxes (green) next to a spin at site j (black dot),
resulting in state |P i. At ⌧1, a z-polarized pulse creates a
pair of z-fluxes. Since the system needs to return to the flux-
free state in the end, the z-bond must be connected to the
same spin j, resulting in a y-flux pair (blue) in state |Qi.
Measurement of the magnetization My(⌧1 + ⌧2) removes the
y-flux pair and system returns to a flux-free state.
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yzx(!1,!2) when using crossed light polarizations. We further relate the o↵-
diagonal 2DCS peaks to the localized nature of the matter Majorana excitations trapped by Z2 flux
excitations and show that 2DCS thus directly probes the inverse participation ratio of Majorana
wavefunctions. By providing experimentally observable features of spin liquid states in the 2D
spectrum, our work can guide future 2DCS experiments on Kitaev magnets.

Introduction.– Spectroscopic techniques are among the
most powerful interrogation methods of quantum materi-
als by directly measuring electronic Green’s functions [1–
5]. While much insight can be gained in linear response,
nonlinear response functions often provide a wealth of
additional information that is inaccessible in the lin-
ear regime. Examples include nonlinear conductivities
that probe the Berry phase and quantum geometry of
the electronic wavefunction in solids [6–9] and second-
harmonic generation that is extremely sensitive to a sys-
tem’s symmetry [10–12]. Another striking example is
two-dimensional coherent spectroscopy (2DCS), which
exposes the system to a sequence of coherent light pulses
in order to measure a higher-order retarded Green’s func-
tion [5, 13, 14]. It provides a detailed two-dimensional
excitation map of two frequencies that can be used to
extract the nature, couplings and lifetimes of elementary
excitations. This technique has long been used in the
radio and optical frequency range and has only recently
been extended to terahertz (THz) frequencies, which are
ideal for the study of excitations and collective modes in
quantum materials [15–22].

Being able to disentangle di↵erent types of excitations
and to discriminate between intrinsic and inhomogeneous
broadening, THz 2DCS has been proposed to provide
unique fingerprints of fractionalized excitations in exotic
quantum magnets [23–27]. A previous theoretical study
of 2DCS in the Kitaev honeycomb spin liquid [26], for
example, has shown that the third-order diagonal sus-

ceptibility �
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gauge fluxes and itinerant Majorana fermion excitations.
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yzx, which is much larger in in-

tensity and thus experimentally easier accessible. We
find clear evidence of the presence of a nonzero flux gap

and a broad continuum of Majorana fermion excitations,
whose intrinsic lifetimes can be extracted from the 2D
spectrum. In addition, we show that �

(2) provides di-
rect evidence of the trapping of Majorana wavefunctions
around static Z2 flux excitations and that the ratio of
second and first-order response, �(2)
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(1), is a quantita-

tive measure of the overlap of such localized Majorana
wavefunctions. Our work thus directly links localized
Majorana states trapped around Z2 gauge fluxes to ob-
servable peaks in the 2D spectrum, and we relate the
inverse participation ratios of the wavefunctions to the
peak sizes. Finally, we show how exchange anisotropies
modify the 2D spectrum, which can be used as a sensitive
experimental probe of anisotropies.

FIG. 1. Magnetic field pulse sequence B(t) used to measure
�yzx(⌧1, ⌧2) in the Kitaev honeycomb model. Di↵erent bond
colors denote the a-bonds (a = x, y, z) and p labels plaquettes.
The figure shows e↵ect of the pulses on the flux configuration
in the R1 process. Initially, the system is in the flux-free
ground state |0i, when at t = 0 an x-polarized pulse creates
a pair of x-fluxes (green) next to a spin at site j (black dot),
resulting in state |P i. At ⌧1, a z-polarized pulse creates a
pair of z-fluxes. Since the system needs to return to the flux-
free state in the end, the z-bond must be connected to the
same spin j, resulting in a y-flux pair (blue) in state |Qi.
Measurement of the magnetization My(⌧1 + ⌧2) removes the
y-flux pair and system returns to a flux-free state.
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nature, couplings, and lifetimes of excitations in quantum materials. It thus promises to identify
unique signatures of spin liquid states in quantum magnets by directly probing properties of their
exotic fractionalized excitations. Here, we calculate the second-order 2DCS of the Kitaev honeycomb
model and demonstrate that distinct spin liquid fingerprints appear already in this lowest-order
nonlinear response �(2)

yzx(!1,!2) when using crossed light polarizations. We further relate the o↵-
diagonal 2DCS peaks to the localized nature of the matter Majorana excitations trapped by Z2 flux
excitations and show that 2DCS thus directly probes the inverse participation ratio of Majorana
wavefunctions. By providing experimentally observable features of spin liquid states in the 2D
spectrum, our work can guide future 2DCS experiments on Kitaev magnets.

Introduction.– Spectroscopic techniques are among the
most powerful interrogation methods of quantum materi-
als by directly measuring electronic Green’s functions [1–
5]. While much insight can be gained in linear response,
nonlinear response functions often provide a wealth of
additional information that is inaccessible in the lin-
ear regime. Examples include nonlinear conductivities
that probe the Berry phase and quantum geometry of
the electronic wavefunction in solids [6–9] and second-
harmonic generation that is extremely sensitive to a sys-
tem’s symmetry [10–12]. Another striking example is
two-dimensional coherent spectroscopy (2DCS), which
exposes the system to a sequence of coherent light pulses
in order to measure a higher-order retarded Green’s func-
tion [5, 13, 14]. It provides a detailed two-dimensional
excitation map of two frequencies that can be used to
extract the nature, couplings and lifetimes of elementary
excitations. This technique has long been used in the
radio and optical frequency range and has only recently
been extended to terahertz (THz) frequencies, which are
ideal for the study of excitations and collective modes in
quantum materials [15–22].

Being able to disentangle di↵erent types of excitations
and to discriminate between intrinsic and inhomogeneous
broadening, THz 2DCS has been proposed to provide
unique fingerprints of fractionalized excitations in exotic
quantum magnets [23–27]. A previous theoretical study
of 2DCS in the Kitaev honeycomb spin liquid [26], for
example, has shown that the third-order diagonal sus-

ceptibility �
(3)
zzzz contains signatures of the two types of

fractionalized excitations in the Kitaev model: static Z2

gauge fluxes and itinerant Majorana fermion excitations.
Here, we demonstrate that marks of fractionalization are
already present in the lower second-order o↵-diagonal re-

sponse tensor element �
(2)
yzx, which is much larger in in-

tensity and thus experimentally easier accessible. We
find clear evidence of the presence of a nonzero flux gap

and a broad continuum of Majorana fermion excitations,
whose intrinsic lifetimes can be extracted from the 2D
spectrum. In addition, we show that �

(2) provides di-
rect evidence of the trapping of Majorana wavefunctions
around static Z2 flux excitations and that the ratio of
second and first-order response, �(2)

/�
(1), is a quantita-

tive measure of the overlap of such localized Majorana
wavefunctions. Our work thus directly links localized
Majorana states trapped around Z2 gauge fluxes to ob-
servable peaks in the 2D spectrum, and we relate the
inverse participation ratios of the wavefunctions to the
peak sizes. Finally, we show how exchange anisotropies
modify the 2D spectrum, which can be used as a sensitive
experimental probe of anisotropies.

FIG. 1. Magnetic field pulse sequence B(t) used to measure
�yzx(⌧1, ⌧2) in the Kitaev honeycomb model. Di↵erent bond
colors denote the a-bonds (a = x, y, z) and p labels plaquettes.
The figure shows e↵ect of the pulses on the flux configuration
in the R1 process. Initially, the system is in the flux-free
ground state |0i, when at t = 0 an x-polarized pulse creates
a pair of x-fluxes (green) next to a spin at site j (black dot),
resulting in state |P i. At ⌧1, a z-polarized pulse creates a
pair of z-fluxes. Since the system needs to return to the flux-
free state in the end, the z-bond must be connected to the
same spin j, resulting in a y-flux pair (blue) in state |Qi.
Measurement of the magnetization My(⌧1 + ⌧2) removes the
y-flux pair and system returns to a flux-free state.
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als by directly measuring electronic Green’s functions [1–
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additional information that is inaccessible in the lin-
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that probe the Berry phase and quantum geometry of
the electronic wavefunction in solids [6–9] and second-
harmonic generation that is extremely sensitive to a sys-
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exposes the system to a sequence of coherent light pulses
in order to measure a higher-order retarded Green’s func-
tion [5, 13, 14]. It provides a detailed two-dimensional
excitation map of two frequencies that can be used to
extract the nature, couplings and lifetimes of elementary
excitations. This technique has long been used in the
radio and optical frequency range and has only recently
been extended to terahertz (THz) frequencies, which are
ideal for the study of excitations and collective modes in
quantum materials [15–22].

Being able to disentangle di↵erent types of excitations
and to discriminate between intrinsic and inhomogeneous
broadening, THz 2DCS has been proposed to provide
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of 2DCS in the Kitaev honeycomb spin liquid [26], for
example, has shown that the third-order diagonal sus-
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tive measure of the overlap of such localized Majorana
wavefunctions. Our work thus directly links localized
Majorana states trapped around Z2 gauge fluxes to ob-
servable peaks in the 2D spectrum, and we relate the
inverse participation ratios of the wavefunctions to the
peak sizes. Finally, we show how exchange anisotropies
modify the 2D spectrum, which can be used as a sensitive
experimental probe of anisotropies.

FIG. 1. Magnetic field pulse sequence B(t) used to measure
�yzx(⌧1, ⌧2) in the Kitaev honeycomb model. Di↵erent bond
colors denote the a-bonds (a = x, y, z) and p labels plaquettes.
The figure shows e↵ect of the pulses on the flux configuration
in the R1 process. Initially, the system is in the flux-free
ground state |0i, when at t = 0 an x-polarized pulse creates
a pair of x-fluxes (green) next to a spin at site j (black dot),
resulting in state |P i. At ⌧1, a z-polarized pulse creates a
pair of z-fluxes. Since the system needs to return to the flux-
free state in the end, the z-bond must be connected to the
same spin j, resulting in a y-flux pair (blue) in state |Qi.
Measurement of the magnetization My(⌧1 + ⌧2) removes the
y-flux pair and system returns to a flux-free state.
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Introduction.– Spectroscopic techniques are among the
most powerful interrogation methods of quantum materi-
als by directly measuring electronic Green’s functions [1–
5]. While much insight can be gained in linear response,
nonlinear response functions often provide a wealth of
additional information that is inaccessible in the lin-
ear regime. Examples include nonlinear conductivities
that probe the Berry phase and quantum geometry of
the electronic wavefunction in solids [6–9] and second-
harmonic generation that is extremely sensitive to a sys-
tem’s symmetry [10–12]. Another striking example is
two-dimensional coherent spectroscopy (2DCS), which
exposes the system to a sequence of coherent light pulses
in order to measure a higher-order retarded Green’s func-
tion [5, 13, 14]. It provides a detailed two-dimensional
excitation map of two frequencies that can be used to
extract the nature, couplings and lifetimes of elementary
excitations. This technique has long been used in the
radio and optical frequency range and has only recently
been extended to terahertz (THz) frequencies, which are
ideal for the study of excitations and collective modes in
quantum materials [15–22].

Being able to disentangle di↵erent types of excitations
and to discriminate between intrinsic and inhomogeneous
broadening, THz 2DCS has been proposed to provide
unique fingerprints of fractionalized excitations in exotic
quantum magnets [23–27]. A previous theoretical study
of 2DCS in the Kitaev honeycomb spin liquid [26], for
example, has shown that the third-order diagonal sus-

ceptibility �
(3)
zzzz contains signatures of the two types of

fractionalized excitations in the Kitaev model: static Z2

gauge fluxes and itinerant Majorana fermion excitations.
Here, we demonstrate that marks of fractionalization are
already present in the lower second-order o↵-diagonal re-

sponse tensor element �
(2)
yzx, which is much larger in in-

tensity and thus experimentally easier accessible. We
find clear evidence of the presence of a nonzero flux gap

and a broad continuum of Majorana fermion excitations,
whose intrinsic lifetimes can be extracted from the 2D
spectrum. In addition, we show that �

(2) provides di-
rect evidence of the trapping of Majorana wavefunctions
around static Z2 flux excitations and that the ratio of
second and first-order response, �(2)

/�
(1), is a quantita-

tive measure of the overlap of such localized Majorana
wavefunctions. Our work thus directly links localized
Majorana states trapped around Z2 gauge fluxes to ob-
servable peaks in the 2D spectrum, and we relate the
inverse participation ratios of the wavefunctions to the
peak sizes. Finally, we show how exchange anisotropies
modify the 2D spectrum, which can be used as a sensitive
experimental probe of anisotropies.

FIG. 1. Magnetic field pulse sequence B(t) used to measure
�yzx(⌧1, ⌧2) in the Kitaev honeycomb model. Di↵erent bond
colors denote the a-bonds (a = x, y, z) and p labels plaquettes.
The figure shows e↵ect of the pulses on the flux configuration
in the R1 process. Initially, the system is in the flux-free
ground state |0i, when at t = 0 an x-polarized pulse creates
a pair of x-fluxes (green) next to a spin at site j (black dot),
resulting in state |P i. At ⌧1, a z-polarized pulse creates a
pair of z-fluxes. Since the system needs to return to the flux-
free state in the end, the z-bond must be connected to the
same spin j, resulting in a y-flux pair (blue) in state |Qi.
Measurement of the magnetization My(⌧1 + ⌧2) removes the
y-flux pair and system returns to a flux-free state.
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Two-dimensional spectroscopy. — To probe the frac-
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by time ⌧1,

B(t) = B0�(t) +B1�(t� ⌧1), (3)

where the two incident pulses B0 and B1 arrive at the
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butions from the linear response, two subsequent exper-
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into a sum of products of three matrix elements weighted
by phase factors containing the dynamical information.
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where |P i and |Qi are the energy eigenstates, and |Gi is
the ground state.

Since the spin operator �̂↵
j (�̂�

l ) at an ↵-bond (�-bond)

anticommutes with Ŵp at the plaquettes sharing the ↵-
bond (�-bond), it flips a pair of two adjacent fluxes.
Hence, |P i and |Qi are the two-flux states which must
have the same matter fermion parity to stay in the phys-
ical Hilbert space as discussed earlier [9]. As the spin
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operator �̂�
k

.
= ib

�
kck carries one c fermion, it cannot con-

nect two states with same matter fermion parity. There-
fore, the matrix element hP |�̂�

k |Qi and subsequently the
second order susceptibility should be zero.

Third order susceptibilities. — With the vanishing sec-
ond order susceptibility, the third order responses deter-
mine the outcome of the nonlinear spectroscopy. For sim-
plicity, let us focus on the case where the incident pulses
are all polarized along ẑ-direction. The third order sus-
ceptibilities in Eqs. (5) and (6) are calculated from the

four-point correlation functions R
(l=1,2,3,4),z
zzz , which are

expanded from the nested commutators in Eq. (7) [7]:

�
(3),z
zzz (⌧2, ⌧1, 0) =

1

N

4X

l=1

Im
h
R

(l),z
zzz (⌧2, ⌧1, 0)

i
, (12)

�
(3),z
zzz (⌧2, 0, ⌧1) =

1

N

4X

l=1

Im
h
R

(l),z
zzz (⌧2, 0, ⌧1)

i
, (13)

where

R
(1),z
zzz (t3, t2, t1)

= hM̂z(t1)M̂
z(t2 + t1)M̂

z(t3 + t2 + t1)M̂
z(0)i, (14)

R
(2),z
zzz (t3, t2, t1)

= hM̂z(0)M̂z(t2 + t1)M̂
z(t3 + t2 + t1)M̂

z(t1)i, (15)

R
(3),z
zzz (t3, t2, t1)

= hM̂z(0)M̂z(t1)M̂
z(t3 + t2 + t1)M̂

z(t2 + t1)i, (16)

R
(4),z
zzz (t3, t2, t1)

= hM̂z(t3 + t2 + t1)M̂
z(t2 + t1)M̂

z(t1)M̂
z(0)i. (17)

Similar to the three-point function in Eq. (11), we can
decompose the four-point functions using the resolution

of identity. For example, R(3),z
zzz (⌧2, 0, ⌧1) becomes

R
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zzz (⌧2, 0, ⌧1) = hM̂z(0)M̂z(⌧1)M̂

z(⌧2 + ⌧1)M̂
z(⌧1)i

=
X

jklm

X

PQR

hG|�̂z
j |P ihP |�̂z

k|QihQ|�̂z
l |RihR|�̂z

m|Gi

⇥ e
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Since each spin operator flips two adjacent fluxes, |P i
and |Ri must belong to the two-flux sectors while |Qi
can be either the zero-flux or four-flux state. The ma-
trix elements for the spin operators can be calculated by
rewriting b

↵
j Majorana fermions in terms of the complex

bond fermions [9, 12–14]. The detailed calculations can
be found in Supplemental Material [10].

Although the above decomposition is exact, we cannot
sum over infinite number of energy eigenstates |P i, |Qi,
|Ri. Hence, we approximate the correlation functions
by truncating the summation up to one matter fermion
states [13, 14]. Since the matter fermion parity should
be flipped for each spin excitation, we consider the two-
flux states |P i and |Ri with one matter fermion and the

matter vacuum four-flux state |Qi. This single matter
fermion approximation is known to be extremely success-
ful to calculate the dynamical spin structure factor for the
Kitaev spin liquid; 97.5% of the total weight of response
can be captured by the one fermion response [13]. The
approximation is taking advantage of vanishing density
of states of the Kitaev spin liquid at zero energy. Small
perturbations would not introduce dramatic reconfigura-
tion of the matter fermions because only few states are
accessible at low energy.
Results. — We compute the real-time four-point corre-

lation functions on a periodic lattice with 125⇥ 125 unit
cells. Two-dimensional Fourier transform of the third or-
der susceptibilities (Fig. 1) and the four-point correlation
functions (Fig. 2) are the main results of our work. Here
we exclude the case |Qi = |Gi in Eq. (18) where the four-
point function becomes nothing but a product of the two
two-point functions, e.g., h�̂z

j �̂
z
k�̂

z
l �̂

z
mi = h�̂z

j �̂
z
kih�̂z
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z
mi,

which can yield physically inconsistent results within the
single matter fermion approximation.
There are three distinctive features in the third or-

der susceptibilities in Fourier space (Fig. 1). First,

both �
(3),z
zzz (!2,!1, 0) and �

(3),z
zzz (!2, 0,!1), which are the

Fourier transforms of �(3),z
zzz (⌧2, ⌧1, 0) and �

(3),z
zzz (⌧2, 0, ⌧1)

respectively, exhibit sharp vertical line signals at the two-

flux gap, !1 = E2 � E0. Second, �
(3),z
zzz (!2, 0,!1) has

three extended diagonal signals. Third, if we extrapolate
these diagonal signals to !1 = 0, two of the three have
!2-intercept equals to the four-flux gap ±(E4 �E0), i.e.,
there are overall shifts in these two diagonal signals.

While the results in Figs. 1 and 2 are the direct Fourier
transforms of the real-time correlation functions [10], we
can identify which processes are responsible for these dis-
tinctive signals in the susceptibilities from the formal an-
alytic expressions of the Fourier transformed correlation
functions. For example, the Fourier transformation of

R
(3),z
zzz (⌧2, 0, ⌧1) [Eq. (18)] can be written as

R
(3),z
zzz (!2, 0,!1) = · · ·

+
X

j 6=k

X

PQR

hG|�̂z
j |P ihP |�̂z

k|QihQ|�̂z
k|RihR|�̂z

j |Gi

⇥ 1

4
�(!1 + E2 + "P � E0)�(!2 + E4 � E2 � "R)

+
X

j 6=k

X

PQR

hG|�̂z
k|P ihP |�̂z

j |QihQ|�̂z
k|RihR|�̂z

j |Gi

⇥ 1

4
�(!1 + E2 + "P � E0)�(!2 + E4 � E2 � "R), (19)

where En is the vacuum energy of the n-flux state, "P (R)

is the matter fermion energy, and the other contributions
which cannot be written in terms of the delta functions
are in (· · · ). The delta function pieces would show no
signal for �(E2 � E0) < !1 < 0. Similarly, the complex

conjugate pair R(3),z
zzz (!2, 0,!1) has no weight in 0 < !1 <

E2 � E0. This is nothing but the well-known spin gap

4

FIG. 2. Two-dimensional Fourier spectrum of the four point correlation functions. Here F is the Fourier transformation.
(a) ImF [ImR(1,2),z

zzz (⌧2, ⌧1, 0)] (b) ImF [ImR(3),z
zzz (⌧2, ⌧1, 0)] (c) ImF [ImR(4),z

zzz (⌧2, ⌧1, 0)]

(d) ImF [ImR(1),z
zzz (⌧2, 0, ⌧1)] (e) ImF [ImR(2,3),z

zzz (⌧2, 0, ⌧1)] (f) ImF [ImR(4),z
zzz (⌧2, 0, ⌧1)]

for spin excitations [13]. If the first pulse B0 does not
transfer enough energy to excite two adjacent fluxes, the
Kitaev spin liquid remains in the ground state. Hence,
for finite nonlinear responses, the first pulse B0 must
transfer energy greater than the two-flux gap E2 � E0.

Another important feature, the shifted diagonal

in Fig. 1 (b), also comes from the R
(3),z
zzz (!2, 0,!1)

[Fig. 2 (e)]. When "P = "R = ", note that the
matrix element hG|�̂z

j |P ihP |�̂z
k|QihQ|�̂z

k|RihR|�̂z
j |Gi =

|hG|�̂z
j |P ihP |�̂z

k|Qi|2 � 0. Hence, the summation over
sites

P
j 6=k, equivalently the summation over all di↵erent

four-flux configurations |Qi excited by �̂
z
j and �̂

z
k, results

in only constructive interference. Therefore we get the
strongly enhanced signal when

!1 = E0 � E2 � " < 0, (20)

!2 = E2 � E4 + " = �!1 � (E4 � E0), (21)

which corresponds to the shifted diagonal with the slope
of �1 and the !2-intercept �(E4 � E0). According to
Eq. (20), the domain of the line is determined by the
single matter fermion bandwidth and the two-flux gap,
and this is confirmed by Figs. 1 (b) and 2 (e).

Following a similar logic, we can understand two-flux
gaps and the other two coherent diagonal signals coming

from R
(1),z
zzz (!2, 0,!1) and R

(4),z
zzz (!2, 0,!1), which have

contributions with the constraints in the sum over inter-
mediate states via �(!1+E0�E2�"R)�(!2+E4�E2�"R)
and �(!1 + E0 � E2 � "R)�(!2 + E0 � E2 � "P ), re-

spectively. R
(1),z
zzz (!2, 0,!1) yields the shifted diagonal

!2 = !1 � (E4 �E0), and R
(4),z
zzz (!2, 0,!1) gives !2 = !1

from the constructive interference with "P = "R for
!1 � E2 � E0.

Conclusion. In this work, we have demonstrated how
two-dimensional spectroscopy can be used to obtain use-
ful information about fractionalized excitations in the Ki-
taev spin liquids, where the single spin-flip process excites
a Majorana fermion and two fluxes in adjacent plaque-
ttes. The spectroscopic signatures as a function of two
frequencies, !1 and !2, corresponding to the delay time of
two successive magnetic pulses and the time of measure-
ment, o↵er a clear identification of both the Majorana
fermions and flux excitations. We demonstrated that the
two-flux gap appears in !1 and the shifted diagonal sig-
nal in the !1-!2 plane has an !2-intercept at the four-
flux gap. Most importantly, the presence of the sharp
diagonal signals is the direct consequence of the itiner-
ant Majorana fermions. The domain of finite response in
the two-frequency !1-!2 plane is determined by a num-
ber of stringent conditions, which makes it possible to
identify clear signatures of fractionalized excitations. It

Two-flux gap
Four-flux gap

2D Nonlinear susceptibility
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FIG. 2: The pyrochlore lattice (left), and one up-pointing
tetrahedron (right). One sublattice of tetrahedra is shaded,
and the other transparent. The thickened bonds show the
location of a pyrochlore hexagon. Each such hexagon is a
member of one of four orientations of kagomé lattice planes.
The numbering of sites in the up-pointing tetrahedron on the
right is the convention used in the text. For i = 0, 1, 2, the
fcc Bravais lattice vector ai points in the direction given by
looking from site 3 to site i.

the effective description of the U(1) spin liquid and the
soluble point in terms of Gaussian quantum electrody-
namics. Corrections to effective action and to the scaling
equalities between microscopic and effective degrees of
freedom are discussed in Sec. III C. Sec. IV contains a
discussion of the universal properties of the U(1) spin liq-
uid, including its novel U(1) topological order. In Sec. V
we present our analysis of the soluble point ground state
wavefunction, which gives strong support for the valid-
ity of our effective picture. We conclude in Sec. VI with
a discussion of open issues, focusing on the challenging
problems of understanding this physics in a broader range
of models and looking for U(1)-fractionalized phases in
real materials.

II. MODELS AND MAPPINGS

A. Pyrochlore Model

We begin with the nearest-neighbor S = 1/2 Heisen-
berg antiferromagnet on the pyrochlore lattice. This
structure is a three-dimensional network of corner-
sharing tetrahedra (Fig. 2). It can be obtained by trans-
lating one “up-pointing” tetrahedron (shown on the right
of Fig. 2) through the fcc Bravais lattice vectors R =
n0a0+n1a1+n2a2. We choose a0 = x, a1 = x/2+

√
3y/2,

and a2 = x/2 + y/2
√

3 +
√

2/3z. Basis vectors for the
reciprocal lattice are defined by bi =

√
2πεijkaj × ak,

so that ai · bj = 2πδij . The four sites in each unit cell
are distinguished by an index i = 0, . . . , 3, as indicated
in Fig. 2. Lattice sites are denoted either by single italic

C
B

A

FIG. 3: Depiction of the processes contributing to the third-
order degenerate perturbation theory for the easy-axis py-
rochlore Heisenberg antiferromagnet. Processes (A) and (B)
give only trivial constant shifts of the energy. Process (C)
leads to an XY ring exchange term acting on hexagonal pla-
quettes.

letters like i, or by pairs (R, i) when we wish to specify
the position of a site within the unit cell.

Up to a constant the Hamiltonian can be written as a
sum over tetrahedra:

H =
J

2

∑

t

(St)
2, (1)

where St =
∑

i∈t Si is the total spin on the tetrahedron
t. Following the analysis of a generalized kagomé Heisen-
berg antiferromagnet in Ref. [9], we introduce easy-axis
exchange anisotropy:

H = HI + H′, (2)

HI =
Jz

2

∑

t

(Sz
t )2, (3)

H′ =
J⊥
2

∑

〈ij〉

(S+
i S−j + h.c.), (4)

where Jz # J⊥. This reduces the global SU(2) invari-
ance to U(1) × Z2. We first consider the point J⊥ = 0,
where H reduces to a classical Ising model, with ground
states specified by Sz

t = 0 on all tetrahedra. It was ar-
gued by Anderson23 that, almost identically to Pauling’s
model for water ice24, this Ising model has an extensive
ground state degeneracy (i.e. finite T = 0 entropy per
site).

A small J⊥ > 0 introduces quantum fluctuations and
lifts the extensive degeneracy; this splitting is encapsu-
lated in an effective Hamiltonian using standard tech-
niques of perturbation theory. The first-order contribu-
tion is easily seen to vanish. We will need to go to third
order, where we have the general expression:

Heff = (1−P)
[

−H′ PHI
H′+H′ PHI

H′ PHI
H′

]

(1−P). (5)

4

Here P projects onto the orthogonal complement of the
ground state manifold. To describe the processes con-
tributing in Eq. (5), it is useful to work in the standard
hardcore boson language for the spins, where Sz = ±1/2
corresponds to the presence/absence of a boson. Each
term in H′ hops bosons along nearest-neighbor bonds;
acting on a state in the low-energy manifold, each hop
creates two tetrahedra with Sz

t != 0. At second order
in H′, bosons can hop and then return along the same
bond (Fig. 3A). This can always occur on 4 bonds in ev-
ery tetrahedron, thus giving only a constant contribution
to the energy. At third order another constant contribu-
tion arises from single bosons (or holes) hopping around
triangular faces (Fig. 3B). There is also a nontrivial ring
exchange process acting on the hexagonal plaquettes (see
Fig. 2), where hexagons containing three evenly spaced
bosons can be rotated as shown in Figure 3C. The result-
ing effective Hamiltonian is

Heff = (J2
⊥/Jz)(J⊥/Jz − 1)Nt (6)

+ Jring

∑

!

(S+
1 S−2 S+

3 S−4 S+
5 S−6 + h.c.),

where Nt is the total number of tetrahedra, Jring =
3J3
⊥/2J2

z , and the sum is over hexagonal plaquettes. The
labelling of the spin operators inside the sum is given by
moving around each hexagon in an arbitrary direction.
Note that [Heff , Sz

t ] = 0, as must be true for any ef-
fective Hamiltonian acting in the low-energy manifold,
whatever the form of H′.

We focus on the extreme easy axis limit described by
Heff , but note in passing that a finite but large Jz would
introduce small fluctuations out of the ground state man-
ifold. While these will not affect universal properties,
they can matter for the short-distance correlation func-
tions of some microscopic operators. This can be under-
stood formally by a more sophisticated execution of the
perturbation theory in J⊥ that accounts for splitting of
the low-energy manifold and mixing of higher states on
an equal footing25. The main result is that the problem
at finite Jz can be mapped, by a unitary transforma-
tion, order-by-order in J⊥ onto a transformed Hamilto-
nian acting only within the low-energy manifold where
Sz

t = 0. This mapping accounts for finite Jz by gener-
ating nontrivial perturbative relations between physical
and transformed operators; however, we ignore these cor-
rections for simplicity and use only the results of the stan-
dard degenerate perturbation theory described above.

It is possible, and will be convenient, to change the sign
of the ring term by a similarity transformation. On any
given site we can make the transformation Sz → Sz and
S± → −S± by making a π-rotation about the z-axis in
spin space. One transformation with the desired effect,
consisting of π-rotations on a pattern of sites, is:

Sz
i → Sz

i (7)

S±
Ri → exp(iQi · R)S±

Ri, (8)

where Q0 = Q1 = (b1 + b2)/2 and Q2 = Q3 = 0.

FIG. 4: A small piece of the diamond lattice. The links form
hexagonal loops corresponding to the pyrochlore hexagons.
These are the shortest possible closed paths on the diamond
lattice. The hexagon with three thickened bonds depicts the
dimer positions on a flippable hexagon. The alternating full
and empty bonds correspond to alternating up and down
spins.

After this transformation the Hamiltonian takes the
form

Hp = −Jring

∑

!

(S+
1 S−2 S+

3 S−4 S+
5 S−6 + h.c.), (9)

where the constant terms have been dropped. Mod-
els similar to this one on the kagomé9, square26,27,
triangular28 other lattices11, where XY ring exchange of
spins or bosons is a dominant term, have recently been
shown to exhibit a variety of unusual phases and crit-
ical behavior. The physics of the pyrochlore ring ex-
change model should be accessible to quantum Monte
Carlo studies; while the original Hamiltonian in Eq. (2)
has a sign problem, Hp does not.
Hp can be reinterpreted as a quantum dimer model

on the diamond lattice (Fig. 4), with two dimers touch-
ing every site. To see this, observe that the centers of
the pyrochlore tetrahedra form a diamond lattice. Each
nearest-neighbor diamond link passes through exactly
one pyrochlore site, so we can reinterpret the pyrochlore
spins as diamond link variables. The smallest closed
loops in this lattice contain six links and correspond to
the pyrochlore hexagons. We say a dimer is present on a
given bond if Sz

i = 1/2, or absent if Sz
i = −1/2. Sz

t = 0
becomes the constraint that every diamond site touches
two dimers, and the ring exchange move is the most lo-
cal dynamics preserving this constraint. Each term in Hp

acts on a “flippable” hexagon, one containing alternating
full and empty bonds as in Fig. 4, by rotating the dimers
around it. Non-flippable hexagons are annihilated.

As first realized by Rokhsar and Kivelson, dimer mod-
els generically have a point in their parameter space
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Here P projects onto the orthogonal complement of the
ground state manifold. To describe the processes con-
tributing in Eq. (5), it is useful to work in the standard
hardcore boson language for the spins, where Sz = ±1/2
corresponds to the presence/absence of a boson. Each
term in H′ hops bosons along nearest-neighbor bonds;
acting on a state in the low-energy manifold, each hop
creates two tetrahedra with Sz

t != 0. At second order
in H′, bosons can hop and then return along the same
bond (Fig. 3A). This can always occur on 4 bonds in ev-
ery tetrahedron, thus giving only a constant contribution
to the energy. At third order another constant contribu-
tion arises from single bosons (or holes) hopping around
triangular faces (Fig. 3B). There is also a nontrivial ring
exchange process acting on the hexagonal plaquettes (see
Fig. 2), where hexagons containing three evenly spaced
bosons can be rotated as shown in Figure 3C. The result-
ing effective Hamiltonian is

Heff = (J2
⊥/Jz)(J⊥/Jz − 1)Nt (6)

+ Jring

∑
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(S+
1 S−2 S+

3 S−4 S+
5 S−6 + h.c.),

where Nt is the total number of tetrahedra, Jring =
3J3
⊥/2J2

z , and the sum is over hexagonal plaquettes. The
labelling of the spin operators inside the sum is given by
moving around each hexagon in an arbitrary direction.
Note that [Heff , Sz

t ] = 0, as must be true for any ef-
fective Hamiltonian acting in the low-energy manifold,
whatever the form of H′.

We focus on the extreme easy axis limit described by
Heff , but note in passing that a finite but large Jz would
introduce small fluctuations out of the ground state man-
ifold. While these will not affect universal properties,
they can matter for the short-distance correlation func-
tions of some microscopic operators. This can be under-
stood formally by a more sophisticated execution of the
perturbation theory in J⊥ that accounts for splitting of
the low-energy manifold and mixing of higher states on
an equal footing25. The main result is that the problem
at finite Jz can be mapped, by a unitary transforma-
tion, order-by-order in J⊥ onto a transformed Hamilto-
nian acting only within the low-energy manifold where
Sz

t = 0. This mapping accounts for finite Jz by gener-
ating nontrivial perturbative relations between physical
and transformed operators; however, we ignore these cor-
rections for simplicity and use only the results of the stan-
dard degenerate perturbation theory described above.

It is possible, and will be convenient, to change the sign
of the ring term by a similarity transformation. On any
given site we can make the transformation Sz → Sz and
S± → −S± by making a π-rotation about the z-axis in
spin space. One transformation with the desired effect,
consisting of π-rotations on a pattern of sites, is:

Sz
i → Sz

i (7)

S±
Ri → exp(iQi · R)S±

Ri, (8)

where Q0 = Q1 = (b1 + b2)/2 and Q2 = Q3 = 0.

FIG. 4: A small piece of the diamond lattice. The links form
hexagonal loops corresponding to the pyrochlore hexagons.
These are the shortest possible closed paths on the diamond
lattice. The hexagon with three thickened bonds depicts the
dimer positions on a flippable hexagon. The alternating full
and empty bonds correspond to alternating up and down
spins.

After this transformation the Hamiltonian takes the
form

Hp = −Jring

∑
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3 S−4 S+
5 S−6 + h.c.), (9)

where the constant terms have been dropped. Mod-
els similar to this one on the kagomé9, square26,27,
triangular28 other lattices11, where XY ring exchange of
spins or bosons is a dominant term, have recently been
shown to exhibit a variety of unusual phases and crit-
ical behavior. The physics of the pyrochlore ring ex-
change model should be accessible to quantum Monte
Carlo studies; while the original Hamiltonian in Eq. (2)
has a sign problem, Hp does not.
Hp can be reinterpreted as a quantum dimer model

on the diamond lattice (Fig. 4), with two dimers touch-
ing every site. To see this, observe that the centers of
the pyrochlore tetrahedra form a diamond lattice. Each
nearest-neighbor diamond link passes through exactly
one pyrochlore site, so we can reinterpret the pyrochlore
spins as diamond link variables. The smallest closed
loops in this lattice contain six links and correspond to
the pyrochlore hexagons. We say a dimer is present on a
given bond if Sz

i = 1/2, or absent if Sz
i = −1/2. Sz

t = 0
becomes the constraint that every diamond site touches
two dimers, and the ring exchange move is the most lo-
cal dynamics preserving this constraint. Each term in Hp

acts on a “flippable” hexagon, one containing alternating
full and empty bonds as in Fig. 4, by rotating the dimers
around it. Non-flippable hexagons are annihilated.

As first realized by Rokhsar and Kivelson, dimer mod-
els generically have a point in their parameter space
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Here P projects onto the orthogonal complement of the
ground state manifold. To describe the processes con-
tributing in Eq. (5), it is useful to work in the standard
hardcore boson language for the spins, where Sz = ±1/2
corresponds to the presence/absence of a boson. Each
term in H′ hops bosons along nearest-neighbor bonds;
acting on a state in the low-energy manifold, each hop
creates two tetrahedra with Sz

t != 0. At second order
in H′, bosons can hop and then return along the same
bond (Fig. 3A). This can always occur on 4 bonds in ev-
ery tetrahedron, thus giving only a constant contribution
to the energy. At third order another constant contribu-
tion arises from single bosons (or holes) hopping around
triangular faces (Fig. 3B). There is also a nontrivial ring
exchange process acting on the hexagonal plaquettes (see
Fig. 2), where hexagons containing three evenly spaced
bosons can be rotated as shown in Figure 3C. The result-
ing effective Hamiltonian is

Heff = (J2
⊥/Jz)(J⊥/Jz − 1)Nt (6)

+ Jring

∑
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where Nt is the total number of tetrahedra, Jring =
3J3
⊥/2J2

z , and the sum is over hexagonal plaquettes. The
labelling of the spin operators inside the sum is given by
moving around each hexagon in an arbitrary direction.
Note that [Heff , Sz

t ] = 0, as must be true for any ef-
fective Hamiltonian acting in the low-energy manifold,
whatever the form of H′.

We focus on the extreme easy axis limit described by
Heff , but note in passing that a finite but large Jz would
introduce small fluctuations out of the ground state man-
ifold. While these will not affect universal properties,
they can matter for the short-distance correlation func-
tions of some microscopic operators. This can be under-
stood formally by a more sophisticated execution of the
perturbation theory in J⊥ that accounts for splitting of
the low-energy manifold and mixing of higher states on
an equal footing25. The main result is that the problem
at finite Jz can be mapped, by a unitary transforma-
tion, order-by-order in J⊥ onto a transformed Hamilto-
nian acting only within the low-energy manifold where
Sz

t = 0. This mapping accounts for finite Jz by gener-
ating nontrivial perturbative relations between physical
and transformed operators; however, we ignore these cor-
rections for simplicity and use only the results of the stan-
dard degenerate perturbation theory described above.

It is possible, and will be convenient, to change the sign
of the ring term by a similarity transformation. On any
given site we can make the transformation Sz → Sz and
S± → −S± by making a π-rotation about the z-axis in
spin space. One transformation with the desired effect,
consisting of π-rotations on a pattern of sites, is:

Sz
i → Sz

i (7)

S±
Ri → exp(iQi · R)S±

Ri, (8)

where Q0 = Q1 = (b1 + b2)/2 and Q2 = Q3 = 0.

FIG. 4: A small piece of the diamond lattice. The links form
hexagonal loops corresponding to the pyrochlore hexagons.
These are the shortest possible closed paths on the diamond
lattice. The hexagon with three thickened bonds depicts the
dimer positions on a flippable hexagon. The alternating full
and empty bonds correspond to alternating up and down
spins.

After this transformation the Hamiltonian takes the
form

Hp = −Jring

∑
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1 S−2 S+

3 S−4 S+
5 S−6 + h.c.), (9)

where the constant terms have been dropped. Mod-
els similar to this one on the kagomé9, square26,27,
triangular28 other lattices11, where XY ring exchange of
spins or bosons is a dominant term, have recently been
shown to exhibit a variety of unusual phases and crit-
ical behavior. The physics of the pyrochlore ring ex-
change model should be accessible to quantum Monte
Carlo studies; while the original Hamiltonian in Eq. (2)
has a sign problem, Hp does not.
Hp can be reinterpreted as a quantum dimer model

on the diamond lattice (Fig. 4), with two dimers touch-
ing every site. To see this, observe that the centers of
the pyrochlore tetrahedra form a diamond lattice. Each
nearest-neighbor diamond link passes through exactly
one pyrochlore site, so we can reinterpret the pyrochlore
spins as diamond link variables. The smallest closed
loops in this lattice contain six links and correspond to
the pyrochlore hexagons. We say a dimer is present on a
given bond if Sz

i = 1/2, or absent if Sz
i = −1/2. Sz

t = 0
becomes the constraint that every diamond site touches
two dimers, and the ring exchange move is the most lo-
cal dynamics preserving this constraint. Each term in Hp

acts on a “flippable” hexagon, one containing alternating
full and empty bonds as in Fig. 4, by rotating the dimers
around it. Non-flippable hexagons are annihilated.

As first realized by Rokhsar and Kivelson, dimer mod-
els generically have a point in their parameter space
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Here P projects onto the orthogonal complement of the
ground state manifold. To describe the processes con-
tributing in Eq. (5), it is useful to work in the standard
hardcore boson language for the spins, where Sz = ±1/2
corresponds to the presence/absence of a boson. Each
term in H′ hops bosons along nearest-neighbor bonds;
acting on a state in the low-energy manifold, each hop
creates two tetrahedra with Sz

t != 0. At second order
in H′, bosons can hop and then return along the same
bond (Fig. 3A). This can always occur on 4 bonds in ev-
ery tetrahedron, thus giving only a constant contribution
to the energy. At third order another constant contribu-
tion arises from single bosons (or holes) hopping around
triangular faces (Fig. 3B). There is also a nontrivial ring
exchange process acting on the hexagonal plaquettes (see
Fig. 2), where hexagons containing three evenly spaced
bosons can be rotated as shown in Figure 3C. The result-
ing effective Hamiltonian is

Heff = (J2
⊥/Jz)(J⊥/Jz − 1)Nt (6)

+ Jring

∑
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(S+
1 S−2 S+

3 S−4 S+
5 S−6 + h.c.),

where Nt is the total number of tetrahedra, Jring =
3J3
⊥/2J2

z , and the sum is over hexagonal plaquettes. The
labelling of the spin operators inside the sum is given by
moving around each hexagon in an arbitrary direction.
Note that [Heff , Sz

t ] = 0, as must be true for any ef-
fective Hamiltonian acting in the low-energy manifold,
whatever the form of H′.

We focus on the extreme easy axis limit described by
Heff , but note in passing that a finite but large Jz would
introduce small fluctuations out of the ground state man-
ifold. While these will not affect universal properties,
they can matter for the short-distance correlation func-
tions of some microscopic operators. This can be under-
stood formally by a more sophisticated execution of the
perturbation theory in J⊥ that accounts for splitting of
the low-energy manifold and mixing of higher states on
an equal footing25. The main result is that the problem
at finite Jz can be mapped, by a unitary transforma-
tion, order-by-order in J⊥ onto a transformed Hamilto-
nian acting only within the low-energy manifold where
Sz

t = 0. This mapping accounts for finite Jz by gener-
ating nontrivial perturbative relations between physical
and transformed operators; however, we ignore these cor-
rections for simplicity and use only the results of the stan-
dard degenerate perturbation theory described above.

It is possible, and will be convenient, to change the sign
of the ring term by a similarity transformation. On any
given site we can make the transformation Sz → Sz and
S± → −S± by making a π-rotation about the z-axis in
spin space. One transformation with the desired effect,
consisting of π-rotations on a pattern of sites, is:

Sz
i → Sz

i (7)

S±
Ri → exp(iQi · R)S±

Ri, (8)

where Q0 = Q1 = (b1 + b2)/2 and Q2 = Q3 = 0.

FIG. 4: A small piece of the diamond lattice. The links form
hexagonal loops corresponding to the pyrochlore hexagons.
These are the shortest possible closed paths on the diamond
lattice. The hexagon with three thickened bonds depicts the
dimer positions on a flippable hexagon. The alternating full
and empty bonds correspond to alternating up and down
spins.

After this transformation the Hamiltonian takes the
form

Hp = −Jring

∑
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(S+
1 S−2 S+

3 S−4 S+
5 S−6 + h.c.), (9)

where the constant terms have been dropped. Mod-
els similar to this one on the kagomé9, square26,27,
triangular28 other lattices11, where XY ring exchange of
spins or bosons is a dominant term, have recently been
shown to exhibit a variety of unusual phases and crit-
ical behavior. The physics of the pyrochlore ring ex-
change model should be accessible to quantum Monte
Carlo studies; while the original Hamiltonian in Eq. (2)
has a sign problem, Hp does not.
Hp can be reinterpreted as a quantum dimer model

on the diamond lattice (Fig. 4), with two dimers touch-
ing every site. To see this, observe that the centers of
the pyrochlore tetrahedra form a diamond lattice. Each
nearest-neighbor diamond link passes through exactly
one pyrochlore site, so we can reinterpret the pyrochlore
spins as diamond link variables. The smallest closed
loops in this lattice contain six links and correspond to
the pyrochlore hexagons. We say a dimer is present on a
given bond if Sz

i = 1/2, or absent if Sz
i = −1/2. Sz

t = 0
becomes the constraint that every diamond site touches
two dimers, and the ring exchange move is the most lo-
cal dynamics preserving this constraint. Each term in Hp

acts on a “flippable” hexagon, one containing alternating
full and empty bonds as in Fig. 4, by rotating the dimers
around it. Non-flippable hexagons are annihilated.

As first realized by Rokhsar and Kivelson, dimer mod-
els generically have a point in their parameter space
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Here P projects onto the orthogonal complement of the
ground state manifold. To describe the processes con-
tributing in Eq. (5), it is useful to work in the standard
hardcore boson language for the spins, where Sz = ±1/2
corresponds to the presence/absence of a boson. Each
term in H′ hops bosons along nearest-neighbor bonds;
acting on a state in the low-energy manifold, each hop
creates two tetrahedra with Sz

t != 0. At second order
in H′, bosons can hop and then return along the same
bond (Fig. 3A). This can always occur on 4 bonds in ev-
ery tetrahedron, thus giving only a constant contribution
to the energy. At third order another constant contribu-
tion arises from single bosons (or holes) hopping around
triangular faces (Fig. 3B). There is also a nontrivial ring
exchange process acting on the hexagonal plaquettes (see
Fig. 2), where hexagons containing three evenly spaced
bosons can be rotated as shown in Figure 3C. The result-
ing effective Hamiltonian is

Heff = (J2
⊥/Jz)(J⊥/Jz − 1)Nt (6)

+ Jring

∑
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(S+
1 S−2 S+

3 S−4 S+
5 S−6 + h.c.),

where Nt is the total number of tetrahedra, Jring =
3J3
⊥/2J2

z , and the sum is over hexagonal plaquettes. The
labelling of the spin operators inside the sum is given by
moving around each hexagon in an arbitrary direction.
Note that [Heff , Sz

t ] = 0, as must be true for any ef-
fective Hamiltonian acting in the low-energy manifold,
whatever the form of H′.

We focus on the extreme easy axis limit described by
Heff , but note in passing that a finite but large Jz would
introduce small fluctuations out of the ground state man-
ifold. While these will not affect universal properties,
they can matter for the short-distance correlation func-
tions of some microscopic operators. This can be under-
stood formally by a more sophisticated execution of the
perturbation theory in J⊥ that accounts for splitting of
the low-energy manifold and mixing of higher states on
an equal footing25. The main result is that the problem
at finite Jz can be mapped, by a unitary transforma-
tion, order-by-order in J⊥ onto a transformed Hamilto-
nian acting only within the low-energy manifold where
Sz

t = 0. This mapping accounts for finite Jz by gener-
ating nontrivial perturbative relations between physical
and transformed operators; however, we ignore these cor-
rections for simplicity and use only the results of the stan-
dard degenerate perturbation theory described above.

It is possible, and will be convenient, to change the sign
of the ring term by a similarity transformation. On any
given site we can make the transformation Sz → Sz and
S± → −S± by making a π-rotation about the z-axis in
spin space. One transformation with the desired effect,
consisting of π-rotations on a pattern of sites, is:

Sz
i → Sz

i (7)

S±
Ri → exp(iQi · R)S±

Ri, (8)

where Q0 = Q1 = (b1 + b2)/2 and Q2 = Q3 = 0.

FIG. 4: A small piece of the diamond lattice. The links form
hexagonal loops corresponding to the pyrochlore hexagons.
These are the shortest possible closed paths on the diamond
lattice. The hexagon with three thickened bonds depicts the
dimer positions on a flippable hexagon. The alternating full
and empty bonds correspond to alternating up and down
spins.

After this transformation the Hamiltonian takes the
form

Hp = −Jring

∑
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(S+
1 S−2 S+

3 S−4 S+
5 S−6 + h.c.), (9)

where the constant terms have been dropped. Mod-
els similar to this one on the kagomé9, square26,27,
triangular28 other lattices11, where XY ring exchange of
spins or bosons is a dominant term, have recently been
shown to exhibit a variety of unusual phases and crit-
ical behavior. The physics of the pyrochlore ring ex-
change model should be accessible to quantum Monte
Carlo studies; while the original Hamiltonian in Eq. (2)
has a sign problem, Hp does not.
Hp can be reinterpreted as a quantum dimer model

on the diamond lattice (Fig. 4), with two dimers touch-
ing every site. To see this, observe that the centers of
the pyrochlore tetrahedra form a diamond lattice. Each
nearest-neighbor diamond link passes through exactly
one pyrochlore site, so we can reinterpret the pyrochlore
spins as diamond link variables. The smallest closed
loops in this lattice contain six links and correspond to
the pyrochlore hexagons. We say a dimer is present on a
given bond if Sz

i = 1/2, or absent if Sz
i = −1/2. Sz

t = 0
becomes the constraint that every diamond site touches
two dimers, and the ring exchange move is the most lo-
cal dynamics preserving this constraint. Each term in Hp

acts on a “flippable” hexagon, one containing alternating
full and empty bonds as in Fig. 4, by rotating the dimers
around it. Non-flippable hexagons are annihilated.

As first realized by Rokhsar and Kivelson, dimer mod-
els generically have a point in their parameter space
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Here P projects onto the orthogonal complement of the
ground state manifold. To describe the processes con-
tributing in Eq. (5), it is useful to work in the standard
hardcore boson language for the spins, where Sz = ±1/2
corresponds to the presence/absence of a boson. Each
term in H′ hops bosons along nearest-neighbor bonds;
acting on a state in the low-energy manifold, each hop
creates two tetrahedra with Sz

t != 0. At second order
in H′, bosons can hop and then return along the same
bond (Fig. 3A). This can always occur on 4 bonds in ev-
ery tetrahedron, thus giving only a constant contribution
to the energy. At third order another constant contribu-
tion arises from single bosons (or holes) hopping around
triangular faces (Fig. 3B). There is also a nontrivial ring
exchange process acting on the hexagonal plaquettes (see
Fig. 2), where hexagons containing three evenly spaced
bosons can be rotated as shown in Figure 3C. The result-
ing effective Hamiltonian is

Heff = (J2
⊥/Jz)(J⊥/Jz − 1)Nt (6)

+ Jring

∑

!

(S+
1 S−2 S+

3 S−4 S+
5 S−6 + h.c.),

where Nt is the total number of tetrahedra, Jring =
3J3
⊥/2J2

z , and the sum is over hexagonal plaquettes. The
labelling of the spin operators inside the sum is given by
moving around each hexagon in an arbitrary direction.
Note that [Heff , Sz

t ] = 0, as must be true for any ef-
fective Hamiltonian acting in the low-energy manifold,
whatever the form of H′.

We focus on the extreme easy axis limit described by
Heff , but note in passing that a finite but large Jz would
introduce small fluctuations out of the ground state man-
ifold. While these will not affect universal properties,
they can matter for the short-distance correlation func-
tions of some microscopic operators. This can be under-
stood formally by a more sophisticated execution of the
perturbation theory in J⊥ that accounts for splitting of
the low-energy manifold and mixing of higher states on
an equal footing25. The main result is that the problem
at finite Jz can be mapped, by a unitary transforma-
tion, order-by-order in J⊥ onto a transformed Hamilto-
nian acting only within the low-energy manifold where
Sz

t = 0. This mapping accounts for finite Jz by gener-
ating nontrivial perturbative relations between physical
and transformed operators; however, we ignore these cor-
rections for simplicity and use only the results of the stan-
dard degenerate perturbation theory described above.

It is possible, and will be convenient, to change the sign
of the ring term by a similarity transformation. On any
given site we can make the transformation Sz → Sz and
S± → −S± by making a π-rotation about the z-axis in
spin space. One transformation with the desired effect,
consisting of π-rotations on a pattern of sites, is:

Sz
i → Sz

i (7)

S±
Ri → exp(iQi · R)S±

Ri, (8)

where Q0 = Q1 = (b1 + b2)/2 and Q2 = Q3 = 0.

FIG. 4: A small piece of the diamond lattice. The links form
hexagonal loops corresponding to the pyrochlore hexagons.
These are the shortest possible closed paths on the diamond
lattice. The hexagon with three thickened bonds depicts the
dimer positions on a flippable hexagon. The alternating full
and empty bonds correspond to alternating up and down
spins.

After this transformation the Hamiltonian takes the
form

Hp = −Jring

∑

!

(S+
1 S−2 S+

3 S−4 S+
5 S−6 + h.c.), (9)

where the constant terms have been dropped. Mod-
els similar to this one on the kagomé9, square26,27,
triangular28 other lattices11, where XY ring exchange of
spins or bosons is a dominant term, have recently been
shown to exhibit a variety of unusual phases and crit-
ical behavior. The physics of the pyrochlore ring ex-
change model should be accessible to quantum Monte
Carlo studies; while the original Hamiltonian in Eq. (2)
has a sign problem, Hp does not.
Hp can be reinterpreted as a quantum dimer model

on the diamond lattice (Fig. 4), with two dimers touch-
ing every site. To see this, observe that the centers of
the pyrochlore tetrahedra form a diamond lattice. Each
nearest-neighbor diamond link passes through exactly
one pyrochlore site, so we can reinterpret the pyrochlore
spins as diamond link variables. The smallest closed
loops in this lattice contain six links and correspond to
the pyrochlore hexagons. We say a dimer is present on a
given bond if Sz

i = 1/2, or absent if Sz
i = −1/2. Sz

t = 0
becomes the constraint that every diamond site touches
two dimers, and the ring exchange move is the most lo-
cal dynamics preserving this constraint. Each term in Hp

acts on a “flippable” hexagon, one containing alternating
full and empty bonds as in Fig. 4, by rotating the dimers
around it. Non-flippable hexagons are annihilated.

As first realized by Rokhsar and Kivelson, dimer mod-
els generically have a point in their parameter space

r
r0

x
Srr0

<latexit sha1_base64="1i16N+Mn1/09Ik7J+Jx1EWMMLoM=">AAAB7HicbVBNSwMxEJ3Ur1q/qh69BIsgCGW3iHosevFY0W0L7VqyabYNzWaXJCuUpb/BiwdFvPqDvPlvTNs9aOuDgcd7M8zMCxLBtXGcb1RYWV1b3yhulra2d3b3yvsHTR2nijKPxiJW7YBoJrhknuFGsHaiGIkCwVrB6Gbqt56Y0jyWD2acMD8iA8lDTomxknf/eNbjvXLFqToz4GXi5qQCORq98le3H9M0YtJQQbTuuE5i/Iwow6lgk1I31SwhdEQGrGOpJBHTfjY7doJPrNLHYaxsSYNn6u+JjERaj6PAdkbEDPWiNxX/8zqpCa/8jMskNUzS+aIwFdjEePo57nPFqBFjSwhV3N6K6ZAoQo3Np2RDcBdfXibNWtW9qNbuziv16zyOIhzBMZyCC5dQh1togAcUODzDK7whiV7QO/qYtxZQPnMIf4A+fwBGF45X</latexit>

S+
i

<latexit sha1_base64="SOumWuNgxvCLT9KmGicl3GeXp+c=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBA8hd0g6jHoxWNE85BkCbOT2WTIPJaZWSEs+QovHhTx6ud482+cJHvQxIKGoqqb7q4o4cxY3//2VlbX1jc2C1vF7Z3dvf3SwWHTqFQT2iCKK92OsKGcSdqwzHLaTjTFIuK0FY1upn7riWrDlHyw44SGAg8kixnB1kmPWTeK0f2kx3qlsl/xZ0DLJMhJGXLUe6Wvbl+RVFBpCcfGdAI/sWGGtWWE00mxmxqaYDLCA9pxVGJBTZjNDp6gU6f0Uay0K2nRTP09kWFhzFhErlNgOzSL3lT8z+ukNr4KMyaT1FJJ5ovilCOr0PR71GeaEsvHjmCimbsVkSHWmFiXUdGFECy+vEya1UpwUanenZdr13kcBTiGEziDAC6hBrdQhwYQEPAMr/Dmae/Fe/c+5q0rXj5zBH/gff4Ad6mQMg==</latexit>

Si

<latexit sha1_base64="aVQeyxF5Dh/xIT+B+afbVAT4oEU=">AAAB7nicdVBNS8NAEJ3Ur1q/qh69LBbBU0jT2tZb0YvHCvYD2lA22027dLMJuxuhhP4ILx4U8erv8ea/cdNWUNEHA4/3ZpiZ58ecKe04H1ZubX1jcyu/XdjZ3ds/KB4edVSUSELbJOKR7PlYUc4EbWumOe3FkuLQ57TrT68zv3tPpWKRuNOzmHohHgsWMIK1kbrpwA+QnA+LJce+bNTcCxc5tuPU3UotI2696lZQ2SgZSrBCa1h8H4wikoRUaMKxUv2yE2svxVIzwum8MEgUjTGZ4jHtGypwSJWXLs6dozOjjFAQSVNCo4X6fSLFoVKz0DedIdYT9dvLxL+8fqKDhpcyESeaCrJcFCQc6Qhlv6MRk5RoPjMEE8nMrYhMsMREm4QKJoSvT9H/pOPa5Zrt3lZLzatVHHk4gVM4hzLUoQk30II2EJjCAzzBsxVbj9aL9bpszVmrmWP4AevtE4sfj7k=</latexit>r

<latexit sha1_base64="Dgwy0RKZztoMmcJL66OggiiguDY=">AAAB73icdVDLSgNBEOyNrxhfUY9eBoPoadndxCTegl48RjAPSJYwO5lNhsw+nJkVwpKf8OJBEa/+jjf/xtkkgooWNBRV3XR3eTFnUlnWh5FbWV1b38hvFra2d3b3ivsHbRklgtAWiXgkuh6WlLOQthRTnHZjQXHgcdrxJleZ37mnQrIovFXTmLoBHoXMZwQrLXXTvucjcTobFEuWeVGvOucOskzLqjnlakacWsUpI1srGUqwRHNQfO8PI5IENFSEYyl7thUrN8VCMcLprNBPJI0xmeAR7Wka4oBKN53fO0MnWhkiPxK6QoXm6veJFAdSTgNPdwZYjeVvLxP/8nqJ8utuysI4UTQki0V+wpGKUPY8GjJBieJTTTARTN+KyBgLTJSOqKBD+PoU/U/ajmlXTeemUmpcLuPIwxEcwxnYUIMGXEMTWkCAwwM8wbNxZzwaL8brojVnLGcO4QeMt0/tg4/q</latexit>

r0

<latexit sha1_base64="aVQeyxF5Dh/xIT+B+afbVAT4oEU=">AAAB7nicdVBNS8NAEJ3Ur1q/qh69LBbBU0jT2tZb0YvHCvYD2lA22027dLMJuxuhhP4ILx4U8erv8ea/cdNWUNEHA4/3ZpiZ58ecKe04H1ZubX1jcyu/XdjZ3ds/KB4edVSUSELbJOKR7PlYUc4EbWumOe3FkuLQ57TrT68zv3tPpWKRuNOzmHohHgsWMIK1kbrpwA+QnA+LJce+bNTcCxc5tuPU3UotI2696lZQ2SgZSrBCa1h8H4wikoRUaMKxUv2yE2svxVIzwum8MEgUjTGZ4jHtGypwSJWXLs6dozOjjFAQSVNCo4X6fSLFoVKz0DedIdYT9dvLxL+8fqKDhpcyESeaCrJcFCQc6Qhlv6MRk5RoPjMEE8nMrYhMsMREm4QKJoSvT9H/pOPa5Zrt3lZLzatVHHk4gVM4hzLUoQk30II2EJjCAzzBsxVbj9aL9bpszVmrmWP4AevtE4sfj7k=</latexit>r

<latexit sha1_base64="Dgwy0RKZztoMmcJL66OggiiguDY=">AAAB73icdVDLSgNBEOyNrxhfUY9eBoPoadndxCTegl48RjAPSJYwO5lNhsw+nJkVwpKf8OJBEa/+jjf/xtkkgooWNBRV3XR3eTFnUlnWh5FbWV1b38hvFra2d3b3ivsHbRklgtAWiXgkuh6WlLOQthRTnHZjQXHgcdrxJleZ37mnQrIovFXTmLoBHoXMZwQrLXXTvucjcTobFEuWeVGvOucOskzLqjnlakacWsUpI1srGUqwRHNQfO8PI5IENFSEYyl7thUrN8VCMcLprNBPJI0xmeAR7Wka4oBKN53fO0MnWhkiPxK6QoXm6veJFAdSTgNPdwZYjeVvLxP/8nqJ8utuysI4UTQki0V+wpGKUPY8GjJBieJTTTARTN+KyBgLTJSOqKBD+PoU/U/ajmlXTeemUmpcLuPIwxEcwxnYUIMGXEMTWkCAwwM8wbNxZzwaL8brojVnLGcO4QeMt0/tg4/q</latexit>

r0

<latexit sha1_base64="WidfxKvQPBlFNKYiOBHrSgMWsSo=">AAAB9XicdVDLSsNAFJ34rPVVdelmsAiuQpLWtu6KblxWsA9o0jKZTNqhk0mYmSgl9D/cuFDErf/izr9x0lZQ0QMXDufcy733+AmjUlnWh7Gyura+sVnYKm7v7O7tlw4OOzJOBSZtHLNY9HwkCaOctBVVjPQSQVDkM9L1J1e5370jQtKY36ppQrwIjTgNKUZKSwO3NaaDzA3QaETEbFgqW+ZFo+acO9AyLavuVGo5cepVpwJtreQogyVaw9K7G8Q4jQhXmCEp+7aVKC9DQlHMyKzoppIkCE/QiPQ15Sgi0svmV8/gqVYCGMZCF1dwrn6fyFAk5TTydWeE1Fj+9nLxL6+fqrDhZZQnqSIcLxaFKYMqhnkEMKCCYMWmmiAsqL4V4jESCCsdVFGH8PUp/J90HNOumc5Ntdy8XMZRAMfgBJwBG9RBE1yDFmgDDAR4AE/g2bg3Ho0X43XRumIsZ47ADxhvnxU3kuo=</latexit>

�†

<latexit sha1_base64="azdBaceiSNN9AkqlA8/65puwoXE=">AAAB63icdVDLSsNAFJ3UV62vqks3g0VwFZK0tnVXdOOygn1AG8pkOmmGzkzCzEQoob/gxoUibv0hd/6Nk7aCih64cDjnXu69J0gYVdpxPqzC2vrG5lZxu7Szu7d/UD486qo4lZh0cMxi2Q+QIowK0tFUM9JPJEE8YKQXTK9zv3dPpKKxuNOzhPgcTQQNKUY6l4btiI7KFce+bNa9Cw86tuM0vGo9J16j5lWha5QcFbBCe1R+H45jnHIiNGZIqYHrJNrPkNQUMzIvDVNFEoSnaEIGhgrEifKzxa1zeGaUMQxjaUpouFC/T2SIKzXjgenkSEfqt5eLf3mDVIdNP6MiSTUReLkoTBnUMcwfh2MqCdZsZgjCkppbIY6QRFibeEomhK9P4f+k69lu3fZua5XW1SqOIjgBp+AcuKABWuAGtEEHYBCBB/AEni1uPVov1uuytWCtZo7BD1hvn0f7jmo=</latexit>

�

Spinon

Anti-spinon

<latexit sha1_base64="+xhiD7YINuJqduHY+x7QvnJ6Bg8=">AAAB+3icbVBNS8NAEN34WetXrEcvi0XwVJIi6kUoiuCxgv2AJpTNZtMu3WzC7kQsoX/FiwdFvPpHvPlv3LY5aOuDgcd7M8zMC1LBNTjOt7Wyura+sVnaKm/v7O7t2weVtk4yRVmLJiJR3YBoJrhkLeAgWDdVjMSBYJ1gdDP1O49MaZ7IBxinzI/JQPKIUwJG6tsVT5JAEOzRMAF8i6+w07erTs2ZAS8TtyBVVKDZt7+8MKFZzCRQQbTuuU4Kfk4UcCrYpOxlmqWEjsiA9QyVJGbaz2e3T/CJUUIcJcqUBDxTf0/kJNZ6HAemMyYw1IveVPzP62UQXfo5l2kGTNL5oigTGBI8DQKHXDEKYmwIoYqbWzEdEkUomLjKJgR38eVl0q7X3PNa/f6s2rgu4iihI3SMTpGLLlAD3aEmaiGKntAzekVv1sR6sd6tj3nrilXMHKI/sD5/AMbnkvg=</latexit>r · E = 0

Gauss’s law
<latexit sha1_base64="VrvU/Z6c+EBCrTNZVWKy1i+5apI=">AAACBXicbVDLSsNAFJ3UV62vqEtdDBahbkpSRN0IRRFcVrAPaEKYTCft0MlMmJkIJXTjxl9x40IRt/6DO//GaZuFth64cDjnXu69J0wYVdpxvq3C0vLK6lpxvbSxubW9Y+/utZRIJSZNLJiQnRApwignTU01I51EEhSHjLTD4fXEbz8Qqajg93qUED9GfU4jipE2UmAfVjyOQoagh3tCw5uTIPPCCMoxvIROYJedqjMFXCRuTsogRyOwv7yewGlMuMYMKdV1nUT7GZKaYkbGJS9VJEF4iPqkayhHMVF+Nv1iDI+N0oORkKa4hlP190SGYqVGcWg6Y6QHat6biP953VRHF35GeZJqwvFsUZQyqAWcRAJ7VBKs2cgQhCU1t0I8QBJhbYIrmRDc+ZcXSatWdc+qtbvTcv0qj6MIDsARqAAXnIM6uAUN0AQYPIJn8ArerCfrxXq3PmatBSuf2Qd/YH3+AJ6slro=</latexit>

(r · E)r = 0

<latexit sha1_base64="yEwdiX2GfpgHagK6BnCboX7L8ZA="></latexit>

(r · E)r =
X

r0 r

Err0 = ±Sz
t

<latexit sha1_base64="cJ6GzW8RWlamMdto2VNMOGsnOzo=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9ktol6EohePFe2HtGvJptk2NMkuSVaoS3+FFw+KePXnePPfmLZ70NYHA4/3ZpiZF8ScaeO6305uaXlldS2/XtjY3NreKe7uNXSUKELrJOKRagVYU84krRtmOG3FimIRcNoMhlcTv/lIlWaRvDOjmPoC9yULGcHGSvcXqBMLdPvw1C2W3LI7BVokXkZKkKHWLX51ehFJBJWGcKx123Nj46dYGUY4HRc6iaYxJkPcp21LJRZU++n04DE6skoPhZGyJQ2aqr8nUiy0HonAdgpsBnrem4j/ee3EhOd+ymScGCrJbFGYcGQiNPke9ZiixPCRJZgoZm9FZIAVJsZmVLAhePMvL5JGpeydlis3J6XqZRZHHg7gEI7BgzOowjXUoA4EBDzDK7w5ynlx3p2PWWvOyWb24Q+czx/Bgo+8</latexit>

= ±Sz

<latexit sha1_base64="rXgljfhUKL6KV+OfSFMne+CQUOI=">AAAB+HicbVBNS8NAEJ34WetHox69LBbRU0mKqBehKILHivYD2hg22227dLMJuxuhDf0lXjwo4tWf4s1/47bNQVsfDDzem2FmXhBzprTjfFtLyyura+u5jfzm1vZOwd7dq6sokYTWSMQj2QywopwJWtNMc9qMJcVhwGkjGFxP/MYTlYpF4kEPY+qFuCdYlxGsjeTbhfvHkc/QJbrxUymPx75ddErOFGiRuBkpQoaqb3+1OxFJQio04VipluvE2kux1IxwOs63E0VjTAa4R1uGChxS5aXTw8foyCgd1I2kKaHRVP09keJQqWEYmM4Q676a9ybif14r0d0LL2UiTjQVZLaom3CkIzRJAXWYpETzoSGYSGZuRaSPJSbaZJU3IbjzLy+SernknpXKd6fFylUWRw4O4BBOwIVzqMAtVKEGBBJ4hld4s0bWi/Vufcxal6xsZh/+wPr8AYndkl8=</latexit>

Sz
i = Err0

<latexit sha1_base64="6myRh4TRxCau9s91A6hU8WVPIE8=">AAACF3icbVDLSsNAFJ3UV62vqEs3g0V0ISEpom6EqgguK9gHpCFMppN26GQSZiZCCfkLN/6KGxeKuNWdf+O0zUJbD1zu4Zx7mbknSBiVyra/jdLC4tLySnm1sra+sbllbu+0ZJwKTJo4ZrHoBEgSRjlpKqoY6SSCoChgpB0Mr8d++4EISWN+r0YJ8SLU5zSkGCkt+ablXvpZ1g1CKPJpO8zzY3gzL3rwAlLfrNqWPQGcJ05BqqBAwze/ur0YpxHhCjMkpevYifIyJBTFjOSVbipJgvAQ9YmrKUcRkV42uSuHB1rpwTAWuriCE/X3RoYiKUdRoCcjpAZy1huL/3luqsJzL6M8SRXhePpQmDKoYjgOCfaoIFixkSYIC6r/CvEACYSVjrKiQ3BmT54nrZrlnFq1u5Nq/aqIowz2wD44Ag44A3VwCxqgCTB4BM/gFbwZT8aL8W58TEdLRrGzC/7A+PwBIOKeog==</latexit>

[Arr0 , Err0 ] = i± r 2 A/B
<latexit sha1_base64="8Pul8R0oDruscB7LTIe2TpcXAN8=">AAACHHicbVDLSgMxFM3UV62vUZdugkUqCGWmiroRqm5cVrQP6LRDJr1tQzMPkoxQhvkQN/6KGxeKuHEh+Demj4W2HgicnHMuyT1exJlUlvVtZBYWl5ZXsqu5tfWNzS1ze6cmw1hQqNKQh6LhEQmcBVBVTHFoRAKI73Goe4PrkV9/ACFZGNyrYQQtn/QC1mWUKC255vFd+8hl+AI7lT5rJ06H9HogUldgB0M7YfjSTQQWhTQdJ/SlkLpm3ipaY+B5Yk9JHk1Rcc1PpxPS2IdAUU6kbNpWpFoJEYpRDmnOiSVEhA5ID5qaBsQH2UrGy6X4QCsd3A2FPoHCY/X3REJ8KYe+p5M+UX05643E/7xmrLrnrYQFUawgoJOHujHHKsSjpnCHCaCKDzUhVDD9V0z7RBCqdJ85XYI9u/I8qZWK9mmxdHuSL19N68iiPbSPDpGNzlAZ3aAKqiKKHtEzekVvxpPxYrwbH5NoxpjO7KI/ML5+AH6noGs=</latexit>

S+
i = �†

r eiArr0�r0
<latexit sha1_base64="O6eY/3eZzm9aEaW8pFcusJiWtvc=">AAAB/XicbVDLSgMxFL1TX7W+xsfOTbAIglpmiqgboejGZUX7gOlYMmlqQzMPkozQDsVfceNCEbf+hzv/xkw7C209kHByzr3cm+NFnEllWd9Gbm5+YXEpv1xYWV1b3zA3t+oyjAWhNRLyUDQ9LClnAa0ppjhtRoJi3+O04fWvUr/xSIVkYXCnBhF1ffwQsC4jWGmpbe446Pb+8EhfQ+SiC3ScPttm0SpZY6BZYmekCBmqbfOr1QlJ7NNAEY6ldGwrUm6ChWKE01GhFUsaYdLHD9TRNMA+lW4y3n6E9rXSQd1Q6BMoNFZ/dyTYl3Lge7rSx6onp71U/M9zYtU9dxMWRLGiAZkM6sYcqRClUaAOE5QoPtAEE8H0roj0sMBE6cAKOgR7+suzpF4u2ael8s1JsXKZxZGHXdiDA7DhDCpwDVWoAYEhPMMrvBlPxovxbnxMSnNG1rMNf2B8/gAXz5Jr</latexit>

[S+, Sz] = �S+

Hermele, Balents, Fisher (2003)
Savary + Balents (2012)

S Lee, Onoda, Balents(2012)



Quantum Electrodynamics

Gauss’s law
<latexit sha1_base64="VrvU/Z6c+EBCrTNZVWKy1i+5apI=">AAACBXicbVDLSsNAFJ3UV62vqEtdDBahbkpSRN0IRRFcVrAPaEKYTCft0MlMmJkIJXTjxl9x40IRt/6DO//GaZuFth64cDjnXu69J0wYVdpxvq3C0vLK6lpxvbSxubW9Y+/utZRIJSZNLJiQnRApwignTU01I51EEhSHjLTD4fXEbz8Qqajg93qUED9GfU4jipE2UmAfVjyOQoagh3tCw5uTIPPCCMoxvIROYJedqjMFXCRuTsogRyOwv7yewGlMuMYMKdV1nUT7GZKaYkbGJS9VJEF4iPqkayhHMVF+Nv1iDI+N0oORkKa4hlP190SGYqVGcWg6Y6QHat6biP953VRHF35GeZJqwvFsUZQyqAWcRAJ7VBKs2cgQhCU1t0I8QBJhbYIrmRDc+ZcXSatWdc+qtbvTcv0qj6MIDsARqAAXnIM6uAUN0AQYPIJn8ArerCfrxXq3PmatBSuf2Qd/YH3+AJ6slro=</latexit>

(r · E)r = 0

<latexit sha1_base64="yEwdiX2GfpgHagK6BnCboX7L8ZA="></latexit>

(r · E)r =
X

r0 r

Err0 = ±Sz
t

<latexit sha1_base64="cJ6GzW8RWlamMdto2VNMOGsnOzo=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9ktol6EohePFe2HtGvJptk2NMkuSVaoS3+FFw+KePXnePPfmLZ70NYHA4/3ZpiZF8ScaeO6305uaXlldS2/XtjY3NreKe7uNXSUKELrJOKRagVYU84krRtmOG3FimIRcNoMhlcTv/lIlWaRvDOjmPoC9yULGcHGSvcXqBMLdPvw1C2W3LI7BVokXkZKkKHWLX51ehFJBJWGcKx123Nj46dYGUY4HRc6iaYxJkPcp21LJRZU++n04DE6skoPhZGyJQ2aqr8nUiy0HonAdgpsBnrem4j/ee3EhOd+ymScGCrJbFGYcGQiNPke9ZiixPCRJZgoZm9FZIAVJsZmVLAhePMvL5JGpeydlis3J6XqZRZHHg7gEI7BgzOowjXUoA4EBDzDK7w5ynlx3p2PWWvOyWb24Q+czx/Bgo+8</latexit>

= ±Sz

4

Here P projects onto the orthogonal complement of the
ground state manifold. To describe the processes con-
tributing in Eq. (5), it is useful to work in the standard
hardcore boson language for the spins, where Sz = ±1/2
corresponds to the presence/absence of a boson. Each
term in H′ hops bosons along nearest-neighbor bonds;
acting on a state in the low-energy manifold, each hop
creates two tetrahedra with Sz

t != 0. At second order
in H′, bosons can hop and then return along the same
bond (Fig. 3A). This can always occur on 4 bonds in ev-
ery tetrahedron, thus giving only a constant contribution
to the energy. At third order another constant contribu-
tion arises from single bosons (or holes) hopping around
triangular faces (Fig. 3B). There is also a nontrivial ring
exchange process acting on the hexagonal plaquettes (see
Fig. 2), where hexagons containing three evenly spaced
bosons can be rotated as shown in Figure 3C. The result-
ing effective Hamiltonian is

Heff = (J2
⊥/Jz)(J⊥/Jz − 1)Nt (6)

+ Jring

∑

!

(S+
1 S−2 S+

3 S−4 S+
5 S−6 + h.c.),

where Nt is the total number of tetrahedra, Jring =
3J3
⊥/2J2

z , and the sum is over hexagonal plaquettes. The
labelling of the spin operators inside the sum is given by
moving around each hexagon in an arbitrary direction.
Note that [Heff , Sz

t ] = 0, as must be true for any ef-
fective Hamiltonian acting in the low-energy manifold,
whatever the form of H′.

We focus on the extreme easy axis limit described by
Heff , but note in passing that a finite but large Jz would
introduce small fluctuations out of the ground state man-
ifold. While these will not affect universal properties,
they can matter for the short-distance correlation func-
tions of some microscopic operators. This can be under-
stood formally by a more sophisticated execution of the
perturbation theory in J⊥ that accounts for splitting of
the low-energy manifold and mixing of higher states on
an equal footing25. The main result is that the problem
at finite Jz can be mapped, by a unitary transforma-
tion, order-by-order in J⊥ onto a transformed Hamilto-
nian acting only within the low-energy manifold where
Sz

t = 0. This mapping accounts for finite Jz by gener-
ating nontrivial perturbative relations between physical
and transformed operators; however, we ignore these cor-
rections for simplicity and use only the results of the stan-
dard degenerate perturbation theory described above.

It is possible, and will be convenient, to change the sign
of the ring term by a similarity transformation. On any
given site we can make the transformation Sz → Sz and
S± → −S± by making a π-rotation about the z-axis in
spin space. One transformation with the desired effect,
consisting of π-rotations on a pattern of sites, is:

Sz
i → Sz

i (7)

S±
Ri → exp(iQi · R)S±

Ri, (8)

where Q0 = Q1 = (b1 + b2)/2 and Q2 = Q3 = 0.

FIG. 4: A small piece of the diamond lattice. The links form
hexagonal loops corresponding to the pyrochlore hexagons.
These are the shortest possible closed paths on the diamond
lattice. The hexagon with three thickened bonds depicts the
dimer positions on a flippable hexagon. The alternating full
and empty bonds correspond to alternating up and down
spins.

After this transformation the Hamiltonian takes the
form

Hp = −Jring

∑

!

(S+
1 S−2 S+

3 S−4 S+
5 S−6 + h.c.), (9)

where the constant terms have been dropped. Mod-
els similar to this one on the kagomé9, square26,27,
triangular28 other lattices11, where XY ring exchange of
spins or bosons is a dominant term, have recently been
shown to exhibit a variety of unusual phases and crit-
ical behavior. The physics of the pyrochlore ring ex-
change model should be accessible to quantum Monte
Carlo studies; while the original Hamiltonian in Eq. (2)
has a sign problem, Hp does not.
Hp can be reinterpreted as a quantum dimer model

on the diamond lattice (Fig. 4), with two dimers touch-
ing every site. To see this, observe that the centers of
the pyrochlore tetrahedra form a diamond lattice. Each
nearest-neighbor diamond link passes through exactly
one pyrochlore site, so we can reinterpret the pyrochlore
spins as diamond link variables. The smallest closed
loops in this lattice contain six links and correspond to
the pyrochlore hexagons. We say a dimer is present on a
given bond if Sz

i = 1/2, or absent if Sz
i = −1/2. Sz

t = 0
becomes the constraint that every diamond site touches
two dimers, and the ring exchange move is the most lo-
cal dynamics preserving this constraint. Each term in Hp

acts on a “flippable” hexagon, one containing alternating
full and empty bonds as in Fig. 4, by rotating the dimers
around it. Non-flippable hexagons are annihilated.

As first realized by Rokhsar and Kivelson, dimer mod-
els generically have a point in their parameter space
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Here P projects onto the orthogonal complement of the
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fective Hamiltonian acting in the low-energy manifold,
whatever the form of H′.
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introduce small fluctuations out of the ground state man-
ifold. While these will not affect universal properties,
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tions of some microscopic operators. This can be under-
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It is possible, and will be convenient, to change the sign
of the ring term by a similarity transformation. On any
given site we can make the transformation Sz → Sz and
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After this transformation the Hamiltonian takes the
form
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where the constant terms have been dropped. Mod-
els similar to this one on the kagomé9, square26,27,
triangular28 other lattices11, where XY ring exchange of
spins or bosons is a dominant term, have recently been
shown to exhibit a variety of unusual phases and crit-
ical behavior. The physics of the pyrochlore ring ex-
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Here P projects onto the orthogonal complement of the
ground state manifold. To describe the processes con-
tributing in Eq. (5), it is useful to work in the standard
hardcore boson language for the spins, where Sz = ±1/2
corresponds to the presence/absence of a boson. Each
term in H′ hops bosons along nearest-neighbor bonds;
acting on a state in the low-energy manifold, each hop
creates two tetrahedra with Sz

t != 0. At second order
in H′, bosons can hop and then return along the same
bond (Fig. 3A). This can always occur on 4 bonds in ev-
ery tetrahedron, thus giving only a constant contribution
to the energy. At third order another constant contribu-
tion arises from single bosons (or holes) hopping around
triangular faces (Fig. 3B). There is also a nontrivial ring
exchange process acting on the hexagonal plaquettes (see
Fig. 2), where hexagons containing three evenly spaced
bosons can be rotated as shown in Figure 3C. The result-
ing effective Hamiltonian is

Heff = (J2
⊥/Jz)(J⊥/Jz − 1)Nt (6)

+ Jring
∑
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3 S−4 S+
5 S−6 + h.c.),

where Nt is the total number of tetrahedra, Jring =
3J3
⊥/2J
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z , and the sum is over hexagonal plaquettes. The

labelling of the spin operators inside the sum is given by
moving around each hexagon in an arbitrary direction.
Note that [Heff , Sz

t ] = 0, as must be true for any ef-
fective Hamiltonian acting in the low-energy manifold,
whatever the form of H′.
We focus on the extreme easy axis limit described by

Heff , but note in passing that a finite but large Jz would
introduce small fluctuations out of the ground state man-
ifold. While these will not affect universal properties,
they can matter for the short-distance correlation func-
tions of some microscopic operators. This can be under-
stood formally by a more sophisticated execution of the
perturbation theory in J⊥ that accounts for splitting of
the low-energy manifold and mixing of higher states on
an equal footing25. The main result is that the problem
at finite Jz can be mapped, by a unitary transforma-
tion, order-by-order in J⊥ onto a transformed Hamilto-
nian acting only within the low-energy manifold where
Sz
t = 0. This mapping accounts for finite Jz by gener-

ating nontrivial perturbative relations between physical
and transformed operators; however, we ignore these cor-
rections for simplicity and use only the results of the stan-
dard degenerate perturbation theory described above.
It is possible, and will be convenient, to change the sign

of the ring term by a similarity transformation. On any
given site we can make the transformation Sz → Sz and
S± → −S± by making a π-rotation about the z-axis in
spin space. One transformation with the desired effect,
consisting of π-rotations on a pattern of sites, is:

Sz
i → Sz

i (7)
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Ri → exp(iQi ·R)S±

Ri, (8)

where Q0 = Q1 = (b1 + b2)/2 and Q2 = Q3 = 0.

FIG. 4: A small piece of the diamond lattice. The links form
hexagonal loops corresponding to the pyrochlore hexagons.
These are the shortest possible closed paths on the diamond
lattice. The hexagon with three thickened bonds depicts the
dimer positions on a flippable hexagon. The alternating full
and empty bonds correspond to alternating up and down
spins.

After this transformation the Hamiltonian takes the
form

Hp = −Jring
∑

!

(S+
1 S−2 S+

3 S−4 S+
5 S
−
6 + h.c.), (9)

where the constant terms have been dropped. Mod-
els similar to this one on the kagomé9, square26,27,
triangular28 other lattices11, where XY ring exchange of
spins or bosons is a dominant term, have recently been
shown to exhibit a variety of unusual phases and crit-
ical behavior. The physics of the pyrochlore ring ex-
change model should be accessible to quantum Monte
Carlo studies; while the original Hamiltonian in Eq. (2)
has a sign problem, Hp does not.
Hp can be reinterpreted as a quantum dimer model

on the diamond lattice (Fig. 4), with two dimers touch-
ing every site. To see this, observe that the centers of
the pyrochlore tetrahedra form a diamond lattice. Each
nearest-neighbor diamond link passes through exactly
one pyrochlore site, so we can reinterpret the pyrochlore
spins as diamond link variables. The smallest closed
loops in this lattice contain six links and correspond to
the pyrochlore hexagons. We say a dimer is present on a
given bond if Sz

i = 1/2, or absent if Sz
i = −1/2. Sz

t = 0
becomes the constraint that every diamond site touches
two dimers, and the ring exchange move is the most lo-
cal dynamics preserving this constraint. Each term in Hp

acts on a “flippable” hexagon, one containing alternating
full and empty bonds as in Fig. 4, by rotating the dimers
around it. Non-flippable hexagons are annihilated.
As first realized by Rokhsar and Kivelson, dimer mod-

els generically have a point in their parameter space

<latexit sha1_base64="jEnwqvve+2Y4wxFZx+i8u1HsE+c=">AAACAXicbVBNS8NAEN34WetX1IvgZbEI9VKSIuqx6sVjBfsBTSib7aZdutmE3YlQQr34V7x4UMSr/8Kb/8Ztm4O2Phh4vDfDzLwgEVyD43xbS8srq2vrhY3i5tb2zq69t9/Ucaooa9BYxKodEM0El6wBHARrJ4qRKBCsFQxvJn7rgSnNY3kPo4T5EelLHnJKwEhd+7CKPRprXPYkCQTBHvCIaXx12rVLTsWZAi8SNycllKPetb+8XkzTiEmggmjdcZ0E/Iwo4FSwcdFLNUsIHZI+6xgqidnjZ9MPxvjEKD0cxsqUBDxVf09kJNJ6FAWmMyIw0PPeRPzP66QQXvoZl0kKTNLZojAVGGI8iQP3uGIUxMgQQhU3t2I6IIpQMKEVTQju/MuLpFmtuOeV6t1ZqXadx1FAR+gYlZGLLlAN3aI6aiCKHtEzekVv1pP1Yr1bH7PWJSufOUB/YH3+ABFOlV8=</latexit>

2 cos(r⇥A)

8

the projector Eq. (24). The spatial components enter
as the eigenvalues of the states |{αri(τ)}〉 used to form
the resolution of the identity at each timeslice. Follow-
ing very similar manipulations to those in Appendix A
of Ref. (26), one obtains the dual action:

Scd =
1

π2
ln
( 2

εK

)

∑

τ,〈rr′〉

(

∆ταrr′ + αrτ − αr′τ

)2

+
εU

2π2

∑

τ,!∗

(

(curlα)!∗ + πe0rr′
)2

, (27)

where ∆τf ≡ f(τ + ε)− f(τ).
The action Eq. (27) is essentially a higher-dimensional

generalization of the height model partition function ar-
rived at by similar manipulations in the context of the
square lattice QDM29. Significantly, it differs in having
a local rather than a global invariance, under spacetime-
dependent dual gauge transformations of the form αµ →
αµ + ∆µλ. In fact, Scd has the same structure as non-
compact lattice QED, except for the discrete nature of
the fields. This encodes the important physics of the
magnetic monopoles. In Sec. III below, it will be use-
ful to imagine softening the constraint of discreteness on
the fields to interpolate between the dual partition func-
tion and an effective description of the Coulomb phase.
With the soft constraint (implemented by the “correc-
tions” in Eq. (55)), the theory is identical to a more
familiar dual representation of U(1) gauge theory con-
sisting of a non-compact gauge field minimally coupled
to scalar monopoles.

E. Pyrochlore Gauge Theory and Duality

We now return to the pyrochlore ring model Hp. In
this case the diamond lattice with sites at the centers of
the tetrahedra (discussed in Sec. II A) plays the role the
cubic lattice did for the cubic model. Denoting diamond
sites by boldface characters, we soften the hardcore con-
straint on the bosons and go to quantum rotor variables
living on the diamond links:

Hp =
U

2

∑

〈rr′〉

(nrr′ − 1/2)2 (28)

− K
∑

!

cos(φ1 − φ2 + φ3 − φ4 + φ5 − φ6).

Here the second sum is over the hexagonal loops of the di-
amond lattice (Fig. 4), and the numbering inside the co-
sine proceeds around the perimeter of the given hexagon.
The diamond lattice is bipartite, so we define an orien-
tation by declaring that links naturally point out of the
“up-pointing” sites and into the “down-pointing” ones
(corresponding to up- and down-pointing tetrahedra, re-
spectively). We define an oriented electric field and vec-
tor potential exactly as in Eqs. (14,15). The Hamiltonian

then takes the form of the diamond lattice frustrated
gauge theory:

Hp =
U

2

∑

〈rr′〉

e2rr′ −K
∑

!

cos
(

∑

rr′∈!

! arr′
)

. (29)

It is evident that the lattice curl now naturally lives on
the hexagons of the diamond lattice.
Again the electric charge has a simple interpretation

in the spin language:

(div e)r = ±Sz
t . (30)

Tetrahedra with Sz
t = ±1 are now the Sz = 1/2 spinons

carrying unit gauge charge. Single spinons can be created
by a string operator similar to Eq. (19). For small U/K
the model should again enter a deconfining phase where
the spinons are free to propagate.
We define a dual lattice of plaquette variables by

putting a site at the center of every pyrochlore hexagon.
This is also a pyrochlore lattice, and it will be useful to
think of its sites as the links of a dual diamond lattice
with sites labelled by serif characters r. Each hexagon of
the dual lattice encircles a link of the direct lattice, and
vice versa. As before, magnetic charge lives on the dual
lattice sites. The dual variables, again with the commu-
tator [b,α] = i on the same link, are defined on the dual
links by:

π(err′ − e0rr′) = (curlα)!∗ (31)

πbrr′ = (curl a)!, (32)

with the sense of the lattice curls determined as in the
cubic case. Here (div b)r = 2nr, with nr = 0,±1. The
Hamiltonian takes the form

Hpd =
U

2π2

∑

!∗

((curlα)!∗ + πe0rr′)
2 −K

∑

〈rr′〉

cos(πbrr′).

(33)
One can derive an action in eigenstates of the dual vector
potential as in the previous section, with the result:

Zpd =
∑

{αrr′(τ)}

∑

{αrτ (τ)}

exp(−Spd), (34)

and

Spd =
1

π2
ln
( 2

εK

)

∑

τ,〈rr′〉

(

∆ταrr′ + αrτ − αr′τ

)2

+
εU

2π2

∑

τ,!∗

(

(curlα)!∗ + πe0rr′
)2

. (35)

The constraint of magnetic charge quantization (div b)r ∈
2Z enters as before, giving rise to the temporal dual vec-
tor potential fields in Zpd.
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corresponds to the presence/absence of a boson. Each
term in H′ hops bosons along nearest-neighbor bonds;
acting on a state in the low-energy manifold, each hop
creates two tetrahedra with Sz

t != 0. At second order
in H′, bosons can hop and then return along the same
bond (Fig. 3A). This can always occur on 4 bonds in ev-
ery tetrahedron, thus giving only a constant contribution
to the energy. At third order another constant contribu-
tion arises from single bosons (or holes) hopping around
triangular faces (Fig. 3B). There is also a nontrivial ring
exchange process acting on the hexagonal plaquettes (see
Fig. 2), where hexagons containing three evenly spaced
bosons can be rotated as shown in Figure 3C. The result-
ing effective Hamiltonian is

Heff = (J2
⊥/Jz)(J⊥/Jz − 1)Nt (6)

+ Jring
∑

!

(S+
1 S−2 S+

3 S−4 S+
5 S−6 + h.c.),

where Nt is the total number of tetrahedra, Jring =
3J3
⊥/2J

2
z , and the sum is over hexagonal plaquettes. The

labelling of the spin operators inside the sum is given by
moving around each hexagon in an arbitrary direction.
Note that [Heff , Sz

t ] = 0, as must be true for any ef-
fective Hamiltonian acting in the low-energy manifold,
whatever the form of H′.
We focus on the extreme easy axis limit described by

Heff , but note in passing that a finite but large Jz would
introduce small fluctuations out of the ground state man-
ifold. While these will not affect universal properties,
they can matter for the short-distance correlation func-
tions of some microscopic operators. This can be under-
stood formally by a more sophisticated execution of the
perturbation theory in J⊥ that accounts for splitting of
the low-energy manifold and mixing of higher states on
an equal footing25. The main result is that the problem
at finite Jz can be mapped, by a unitary transforma-
tion, order-by-order in J⊥ onto a transformed Hamilto-
nian acting only within the low-energy manifold where
Sz
t = 0. This mapping accounts for finite Jz by gener-

ating nontrivial perturbative relations between physical
and transformed operators; however, we ignore these cor-
rections for simplicity and use only the results of the stan-
dard degenerate perturbation theory described above.
It is possible, and will be convenient, to change the sign

of the ring term by a similarity transformation. On any
given site we can make the transformation Sz → Sz and
S± → −S± by making a π-rotation about the z-axis in
spin space. One transformation with the desired effect,
consisting of π-rotations on a pattern of sites, is:

Sz
i → Sz

i (7)

S±
Ri → exp(iQi ·R)S±

Ri, (8)

where Q0 = Q1 = (b1 + b2)/2 and Q2 = Q3 = 0.

FIG. 4: A small piece of the diamond lattice. The links form
hexagonal loops corresponding to the pyrochlore hexagons.
These are the shortest possible closed paths on the diamond
lattice. The hexagon with three thickened bonds depicts the
dimer positions on a flippable hexagon. The alternating full
and empty bonds correspond to alternating up and down
spins.

After this transformation the Hamiltonian takes the
form

Hp = −Jring
∑

!

(S+
1 S−2 S+

3 S−4 S+
5 S
−
6 + h.c.), (9)

where the constant terms have been dropped. Mod-
els similar to this one on the kagomé9, square26,27,
triangular28 other lattices11, where XY ring exchange of
spins or bosons is a dominant term, have recently been
shown to exhibit a variety of unusual phases and crit-
ical behavior. The physics of the pyrochlore ring ex-
change model should be accessible to quantum Monte
Carlo studies; while the original Hamiltonian in Eq. (2)
has a sign problem, Hp does not.
Hp can be reinterpreted as a quantum dimer model

on the diamond lattice (Fig. 4), with two dimers touch-
ing every site. To see this, observe that the centers of
the pyrochlore tetrahedra form a diamond lattice. Each
nearest-neighbor diamond link passes through exactly
one pyrochlore site, so we can reinterpret the pyrochlore
spins as diamond link variables. The smallest closed
loops in this lattice contain six links and correspond to
the pyrochlore hexagons. We say a dimer is present on a
given bond if Sz

i = 1/2, or absent if Sz
i = −1/2. Sz

t = 0
becomes the constraint that every diamond site touches
two dimers, and the ring exchange move is the most lo-
cal dynamics preserving this constraint. Each term in Hp

acts on a “flippable” hexagon, one containing alternating
full and empty bonds as in Fig. 4, by rotating the dimers
around it. Non-flippable hexagons are annihilated.
As first realized by Rokhsar and Kivelson, dimer mod-

els generically have a point in their parameter space

8

the projector Eq. (24). The spatial components enter
as the eigenvalues of the states |{αri(τ)}〉 used to form
the resolution of the identity at each timeslice. Follow-
ing very similar manipulations to those in Appendix A
of Ref. (26), one obtains the dual action:

Scd =
1

π2
ln
( 2

εK

)

∑

τ,〈rr′〉

(

∆ταrr′ + αrτ − αr′τ

)2

+
εU

2π2

∑

τ,!∗

(

(curlα)!∗ + πe0rr′
)2

, (27)

where ∆τf ≡ f(τ + ε)− f(τ).
The action Eq. (27) is essentially a higher-dimensional

generalization of the height model partition function ar-
rived at by similar manipulations in the context of the
square lattice QDM29. Significantly, it differs in having
a local rather than a global invariance, under spacetime-
dependent dual gauge transformations of the form αµ →
αµ + ∆µλ. In fact, Scd has the same structure as non-
compact lattice QED, except for the discrete nature of
the fields. This encodes the important physics of the
magnetic monopoles. In Sec. III below, it will be use-
ful to imagine softening the constraint of discreteness on
the fields to interpolate between the dual partition func-
tion and an effective description of the Coulomb phase.
With the soft constraint (implemented by the “correc-
tions” in Eq. (55)), the theory is identical to a more
familiar dual representation of U(1) gauge theory con-
sisting of a non-compact gauge field minimally coupled
to scalar monopoles.

E. Pyrochlore Gauge Theory and Duality

We now return to the pyrochlore ring model Hp. In
this case the diamond lattice with sites at the centers of
the tetrahedra (discussed in Sec. II A) plays the role the
cubic lattice did for the cubic model. Denoting diamond
sites by boldface characters, we soften the hardcore con-
straint on the bosons and go to quantum rotor variables
living on the diamond links:

Hp =
U

2

∑

〈rr′〉

(nrr′ − 1/2)2 (28)

− K
∑

!

cos(φ1 − φ2 + φ3 − φ4 + φ5 − φ6).

Here the second sum is over the hexagonal loops of the di-
amond lattice (Fig. 4), and the numbering inside the co-
sine proceeds around the perimeter of the given hexagon.
The diamond lattice is bipartite, so we define an orien-
tation by declaring that links naturally point out of the
“up-pointing” sites and into the “down-pointing” ones
(corresponding to up- and down-pointing tetrahedra, re-
spectively). We define an oriented electric field and vec-
tor potential exactly as in Eqs. (14,15). The Hamiltonian

then takes the form of the diamond lattice frustrated
gauge theory:

Hp =
U

2

∑

〈rr′〉

e2rr′ −K
∑

!

cos
(

∑

rr′∈!

! arr′
)

. (29)

It is evident that the lattice curl now naturally lives on
the hexagons of the diamond lattice.
Again the electric charge has a simple interpretation

in the spin language:

(div e)r = ±Sz
t . (30)

Tetrahedra with Sz
t = ±1 are now the Sz = 1/2 spinons

carrying unit gauge charge. Single spinons can be created
by a string operator similar to Eq. (19). For small U/K
the model should again enter a deconfining phase where
the spinons are free to propagate.
We define a dual lattice of plaquette variables by

putting a site at the center of every pyrochlore hexagon.
This is also a pyrochlore lattice, and it will be useful to
think of its sites as the links of a dual diamond lattice
with sites labelled by serif characters r. Each hexagon of
the dual lattice encircles a link of the direct lattice, and
vice versa. As before, magnetic charge lives on the dual
lattice sites. The dual variables, again with the commu-
tator [b,α] = i on the same link, are defined on the dual
links by:

π(err′ − e0rr′) = (curlα)!∗ (31)

πbrr′ = (curl a)!, (32)

with the sense of the lattice curls determined as in the
cubic case. Here (div b)r = 2nr, with nr = 0,±1. The
Hamiltonian takes the form

Hpd =
U

2π2

∑

!∗

((curlα)!∗ + πe0rr′)
2 −K

∑

〈rr′〉

cos(πbrr′).

(33)
One can derive an action in eigenstates of the dual vector
potential as in the previous section, with the result:

Zpd =
∑

{αrr′(τ)}

∑

{αrτ (τ)}

exp(−Spd), (34)

and

Spd =
1

π2
ln
( 2

εK

)

∑

τ,〈rr′〉

(

∆ταrr′ + αrτ − αr′τ

)2

+
εU

2π2

∑

τ,!∗

(

(curlα)!∗ + πe0rr′
)2

. (35)

The constraint of magnetic charge quantization (div b)r ∈
2Z enters as before, giving rise to the temporal dual vec-
tor potential fields in Zpd.

<latexit sha1_base64="SKmqawQO3pEIEO2ZqQ0XjVi3NdE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48tmFpoQ9lsJ+3azSbsboRS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fCopZNMMfRZIhLVDqlGwSX6hhuB7VQhjUOBD+HoduY/PKHSPJH3ZpxiENOB5BFn1Fip6ffKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmugwmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL6+SVq3qXVZrzYtK/SaPowgncArn4MEV1OEOGuADA4RneIU359F5cd6dj0VrwclnjuEPnM8fs3eM4A==</latexit>

Ularge 
<latexit sha1_base64="TbANRdTsUzkUatfR+ned27UMNfE=">AAAB+HicbVBNSwMxEJ31s9aPrnr0EiyCp7JbRD0WvYheKtgPaJclm6ZtaJJdkqxQl/4SLx4U8epP8ea/MW33oK0PBh7vzTAzL0o408bzvp2V1bX1jc3CVnF7Z3ev5O4fNHWcKkIbJOaxakdYU84kbRhmOG0nimIRcdqKRtdTv/VIlWaxfDDjhAYCDyTrM4KNlUK3dIe6mgl0G2aKycEkdMtexZsBLRM/J2XIUQ/dr24vJqmg0hCOte74XmKCDCvDCKeTYjfVNMFkhAe0Y6nEguogmx0+QSdW6aF+rGxJg2bq74kMC63HIrKdApuhXvSm4n9eJzX9yyBjMkkNlWS+qJ9yZGI0TQH1mKLE8LElmChmb0VkiBUmxmZVtCH4iy8vk2a14p9Xqvdn5dpVHkcBjuAYTsGHC6jBDdShAQRSeIZXeHOenBfn3fmYt644+cwh/IHz+QMqhpLJ</latexit>

K ⇠ Jring

<latexit sha1_base64="hjjs3829JovAIUGXfuKGXsm+CiA=">AAACDXicbVC7TsMwFHXKq5RXgJHFoiAxVUlBwFjBgspSJPqQmjZyXLe16sSW7SC1UX6AhV9hYQAhVnY2/gb3MUDLkSwdnXOPru8JBKNKO863lVlaXlldy67nNja3tnfs3b2a4rHEpIo547IRIEUYjUhVU81IQ0iCwoCRejC4Hvv1ByIV5dG9HgrSClEvol2KkTaSbx/dQk9ILjSHSbl96ieeCFPocZOB5XbRT0ajNPXtvFNwJoCLxJ2RPJih4ttfXofjOCSRxgwp1XQdoVsJkppiRtKcFysiEB6gHmkaGqGQqFYyuSaFx0bpwC6X5kUaTtTfiQSFSg3DwEyGSPfVvDcW//Oase5ethIaiViTCE8XdWMGze3jamCHSoI1GxqCsKTmrxD3kURYmwJzpgR3/uRFUisW3PNC8e4sX7qa1ZEFB+AQnAAXXIASuAEVUAUYPIJn8ArerCfrxXq3PqajGWuW2Qd/YH3+APeKm4U=</latexit>

K /
J3
±

J2
zz

Si = Srr0

link on the dual
diamond lattice sites

4

Here P projects onto the orthogonal complement of the
ground state manifold. To describe the processes con-
tributing in Eq. (5), it is useful to work in the standard
hardcore boson language for the spins, where Sz = ±1/2
corresponds to the presence/absence of a boson. Each
term in H′ hops bosons along nearest-neighbor bonds;
acting on a state in the low-energy manifold, each hop
creates two tetrahedra with Sz

t != 0. At second order
in H′, bosons can hop and then return along the same
bond (Fig. 3A). This can always occur on 4 bonds in ev-
ery tetrahedron, thus giving only a constant contribution
to the energy. At third order another constant contribu-
tion arises from single bosons (or holes) hopping around
triangular faces (Fig. 3B). There is also a nontrivial ring
exchange process acting on the hexagonal plaquettes (see
Fig. 2), where hexagons containing three evenly spaced
bosons can be rotated as shown in Figure 3C. The result-
ing effective Hamiltonian is

Heff = (J2
⊥/Jz)(J⊥/Jz − 1)Nt (6)

+ Jring

∑

!

(S+
1 S−2 S+

3 S−4 S+
5 S−6 + h.c.),

where Nt is the total number of tetrahedra, Jring =
3J3
⊥/2J2

z , and the sum is over hexagonal plaquettes. The
labelling of the spin operators inside the sum is given by
moving around each hexagon in an arbitrary direction.
Note that [Heff , Sz

t ] = 0, as must be true for any ef-
fective Hamiltonian acting in the low-energy manifold,
whatever the form of H′.

We focus on the extreme easy axis limit described by
Heff , but note in passing that a finite but large Jz would
introduce small fluctuations out of the ground state man-
ifold. While these will not affect universal properties,
they can matter for the short-distance correlation func-
tions of some microscopic operators. This can be under-
stood formally by a more sophisticated execution of the
perturbation theory in J⊥ that accounts for splitting of
the low-energy manifold and mixing of higher states on
an equal footing25. The main result is that the problem
at finite Jz can be mapped, by a unitary transforma-
tion, order-by-order in J⊥ onto a transformed Hamilto-
nian acting only within the low-energy manifold where
Sz

t = 0. This mapping accounts for finite Jz by gener-
ating nontrivial perturbative relations between physical
and transformed operators; however, we ignore these cor-
rections for simplicity and use only the results of the stan-
dard degenerate perturbation theory described above.

It is possible, and will be convenient, to change the sign
of the ring term by a similarity transformation. On any
given site we can make the transformation Sz → Sz and
S± → −S± by making a π-rotation about the z-axis in
spin space. One transformation with the desired effect,
consisting of π-rotations on a pattern of sites, is:

Sz
i → Sz

i (7)

S±
Ri → exp(iQi · R)S±

Ri, (8)

where Q0 = Q1 = (b1 + b2)/2 and Q2 = Q3 = 0.

FIG. 4: A small piece of the diamond lattice. The links form
hexagonal loops corresponding to the pyrochlore hexagons.
These are the shortest possible closed paths on the diamond
lattice. The hexagon with three thickened bonds depicts the
dimer positions on a flippable hexagon. The alternating full
and empty bonds correspond to alternating up and down
spins.

After this transformation the Hamiltonian takes the
form

Hp = −Jring

∑

!

(S+
1 S−2 S+

3 S−4 S+
5 S−6 + h.c.), (9)

where the constant terms have been dropped. Mod-
els similar to this one on the kagomé9, square26,27,
triangular28 other lattices11, where XY ring exchange of
spins or bosons is a dominant term, have recently been
shown to exhibit a variety of unusual phases and crit-
ical behavior. The physics of the pyrochlore ring ex-
change model should be accessible to quantum Monte
Carlo studies; while the original Hamiltonian in Eq. (2)
has a sign problem, Hp does not.
Hp can be reinterpreted as a quantum dimer model

on the diamond lattice (Fig. 4), with two dimers touch-
ing every site. To see this, observe that the centers of
the pyrochlore tetrahedra form a diamond lattice. Each
nearest-neighbor diamond link passes through exactly
one pyrochlore site, so we can reinterpret the pyrochlore
spins as diamond link variables. The smallest closed
loops in this lattice contain six links and correspond to
the pyrochlore hexagons. We say a dimer is present on a
given bond if Sz

i = 1/2, or absent if Sz
i = −1/2. Sz

t = 0
becomes the constraint that every diamond site touches
two dimers, and the ring exchange move is the most lo-
cal dynamics preserving this constraint. Each term in Hp

acts on a “flippable” hexagon, one containing alternating
full and empty bonds as in Fig. 4, by rotating the dimers
around it. Non-flippable hexagons are annihilated.

As first realized by Rokhsar and Kivelson, dimer mod-
els generically have a point in their parameter space
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Here P projects onto the orthogonal complement of the
ground state manifold. To describe the processes con-
tributing in Eq. (5), it is useful to work in the standard
hardcore boson language for the spins, where Sz = ±1/2
corresponds to the presence/absence of a boson. Each
term in H′ hops bosons along nearest-neighbor bonds;
acting on a state in the low-energy manifold, each hop
creates two tetrahedra with Sz

t != 0. At second order
in H′, bosons can hop and then return along the same
bond (Fig. 3A). This can always occur on 4 bonds in ev-
ery tetrahedron, thus giving only a constant contribution
to the energy. At third order another constant contribu-
tion arises from single bosons (or holes) hopping around
triangular faces (Fig. 3B). There is also a nontrivial ring
exchange process acting on the hexagonal plaquettes (see
Fig. 2), where hexagons containing three evenly spaced
bosons can be rotated as shown in Figure 3C. The result-
ing effective Hamiltonian is

Heff = (J2
⊥/Jz)(J⊥/Jz − 1)Nt (6)

+ Jring
∑

!

(S+
1 S−2 S+

3 S−4 S+
5 S−6 + h.c.),

where Nt is the total number of tetrahedra, Jring =
3J3
⊥/2J

2
z , and the sum is over hexagonal plaquettes. The

labelling of the spin operators inside the sum is given by
moving around each hexagon in an arbitrary direction.
Note that [Heff , Sz

t ] = 0, as must be true for any ef-
fective Hamiltonian acting in the low-energy manifold,
whatever the form of H′.
We focus on the extreme easy axis limit described by

Heff , but note in passing that a finite but large Jz would
introduce small fluctuations out of the ground state man-
ifold. While these will not affect universal properties,
they can matter for the short-distance correlation func-
tions of some microscopic operators. This can be under-
stood formally by a more sophisticated execution of the
perturbation theory in J⊥ that accounts for splitting of
the low-energy manifold and mixing of higher states on
an equal footing25. The main result is that the problem
at finite Jz can be mapped, by a unitary transforma-
tion, order-by-order in J⊥ onto a transformed Hamilto-
nian acting only within the low-energy manifold where
Sz
t = 0. This mapping accounts for finite Jz by gener-

ating nontrivial perturbative relations between physical
and transformed operators; however, we ignore these cor-
rections for simplicity and use only the results of the stan-
dard degenerate perturbation theory described above.
It is possible, and will be convenient, to change the sign

of the ring term by a similarity transformation. On any
given site we can make the transformation Sz → Sz and
S± → −S± by making a π-rotation about the z-axis in
spin space. One transformation with the desired effect,
consisting of π-rotations on a pattern of sites, is:

Sz
i → Sz

i (7)

S±
Ri → exp(iQi ·R)S±

Ri, (8)

where Q0 = Q1 = (b1 + b2)/2 and Q2 = Q3 = 0.

FIG. 4: A small piece of the diamond lattice. The links form
hexagonal loops corresponding to the pyrochlore hexagons.
These are the shortest possible closed paths on the diamond
lattice. The hexagon with three thickened bonds depicts the
dimer positions on a flippable hexagon. The alternating full
and empty bonds correspond to alternating up and down
spins.

After this transformation the Hamiltonian takes the
form

Hp = −Jring
∑

!

(S+
1 S−2 S+

3 S−4 S+
5 S
−
6 + h.c.), (9)

where the constant terms have been dropped. Mod-
els similar to this one on the kagomé9, square26,27,
triangular28 other lattices11, where XY ring exchange of
spins or bosons is a dominant term, have recently been
shown to exhibit a variety of unusual phases and crit-
ical behavior. The physics of the pyrochlore ring ex-
change model should be accessible to quantum Monte
Carlo studies; while the original Hamiltonian in Eq. (2)
has a sign problem, Hp does not.
Hp can be reinterpreted as a quantum dimer model

on the diamond lattice (Fig. 4), with two dimers touch-
ing every site. To see this, observe that the centers of
the pyrochlore tetrahedra form a diamond lattice. Each
nearest-neighbor diamond link passes through exactly
one pyrochlore site, so we can reinterpret the pyrochlore
spins as diamond link variables. The smallest closed
loops in this lattice contain six links and correspond to
the pyrochlore hexagons. We say a dimer is present on a
given bond if Sz

i = 1/2, or absent if Sz
i = −1/2. Sz

t = 0
becomes the constraint that every diamond site touches
two dimers, and the ring exchange move is the most lo-
cal dynamics preserving this constraint. Each term in Hp

acts on a “flippable” hexagon, one containing alternating
full and empty bonds as in Fig. 4, by rotating the dimers
around it. Non-flippable hexagons are annihilated.
As first realized by Rokhsar and Kivelson, dimer mod-

els generically have a point in their parameter space

8

the projector Eq. (24). The spatial components enter
as the eigenvalues of the states |{αri(τ)}〉 used to form
the resolution of the identity at each timeslice. Follow-
ing very similar manipulations to those in Appendix A
of Ref. (26), one obtains the dual action:

Scd =
1

π2
ln
( 2

εK

)

∑

τ,〈rr′〉

(

∆ταrr′ + αrτ − αr′τ

)2

+
εU

2π2

∑

τ,!∗

(

(curlα)!∗ + πe0rr′
)2

, (27)

where ∆τf ≡ f(τ + ε)− f(τ).
The action Eq. (27) is essentially a higher-dimensional

generalization of the height model partition function ar-
rived at by similar manipulations in the context of the
square lattice QDM29. Significantly, it differs in having
a local rather than a global invariance, under spacetime-
dependent dual gauge transformations of the form αµ →
αµ + ∆µλ. In fact, Scd has the same structure as non-
compact lattice QED, except for the discrete nature of
the fields. This encodes the important physics of the
magnetic monopoles. In Sec. III below, it will be use-
ful to imagine softening the constraint of discreteness on
the fields to interpolate between the dual partition func-
tion and an effective description of the Coulomb phase.
With the soft constraint (implemented by the “correc-
tions” in Eq. (55)), the theory is identical to a more
familiar dual representation of U(1) gauge theory con-
sisting of a non-compact gauge field minimally coupled
to scalar monopoles.

E. Pyrochlore Gauge Theory and Duality

We now return to the pyrochlore ring model Hp. In
this case the diamond lattice with sites at the centers of
the tetrahedra (discussed in Sec. II A) plays the role the
cubic lattice did for the cubic model. Denoting diamond
sites by boldface characters, we soften the hardcore con-
straint on the bosons and go to quantum rotor variables
living on the diamond links:

Hp =
U

2

∑

〈rr′〉

(nrr′ − 1/2)2 (28)

− K
∑

!

cos(φ1 − φ2 + φ3 − φ4 + φ5 − φ6).

Here the second sum is over the hexagonal loops of the di-
amond lattice (Fig. 4), and the numbering inside the co-
sine proceeds around the perimeter of the given hexagon.
The diamond lattice is bipartite, so we define an orien-
tation by declaring that links naturally point out of the
“up-pointing” sites and into the “down-pointing” ones
(corresponding to up- and down-pointing tetrahedra, re-
spectively). We define an oriented electric field and vec-
tor potential exactly as in Eqs. (14,15). The Hamiltonian

then takes the form of the diamond lattice frustrated
gauge theory:

Hp =
U

2

∑

〈rr′〉

e2rr′ −K
∑

!

cos
(

∑

rr′∈!

! arr′
)

. (29)

It is evident that the lattice curl now naturally lives on
the hexagons of the diamond lattice.
Again the electric charge has a simple interpretation

in the spin language:

(div e)r = ±Sz
t . (30)

Tetrahedra with Sz
t = ±1 are now the Sz = 1/2 spinons

carrying unit gauge charge. Single spinons can be created
by a string operator similar to Eq. (19). For small U/K
the model should again enter a deconfining phase where
the spinons are free to propagate.
We define a dual lattice of plaquette variables by

putting a site at the center of every pyrochlore hexagon.
This is also a pyrochlore lattice, and it will be useful to
think of its sites as the links of a dual diamond lattice
with sites labelled by serif characters r. Each hexagon of
the dual lattice encircles a link of the direct lattice, and
vice versa. As before, magnetic charge lives on the dual
lattice sites. The dual variables, again with the commu-
tator [b,α] = i on the same link, are defined on the dual
links by:

π(err′ − e0rr′) = (curlα)!∗ (31)

πbrr′ = (curl a)!, (32)

with the sense of the lattice curls determined as in the
cubic case. Here (div b)r = 2nr, with nr = 0,±1. The
Hamiltonian takes the form

Hpd =
U

2π2

∑

!∗

((curlα)!∗ + πe0rr′)
2 −K

∑

〈rr′〉

cos(πbrr′).

(33)
One can derive an action in eigenstates of the dual vector
potential as in the previous section, with the result:

Zpd =
∑

{αrr′(τ)}

∑

{αrτ (τ)}

exp(−Spd), (34)

and

Spd =
1

π2
ln
( 2

εK

)

∑

τ,〈rr′〉

(

∆ταrr′ + αrτ − αr′τ

)2

+
εU

2π2

∑

τ,!∗

(

(curlα)!∗ + πe0rr′
)2

. (35)

The constraint of magnetic charge quantization (div b)r ∈
2Z enters as before, giving rise to the temporal dual vec-
tor potential fields in Zpd.
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Here P projects onto the orthogonal complement of the
ground state manifold. To describe the processes con-
tributing in Eq. (5), it is useful to work in the standard
hardcore boson language for the spins, where Sz = ±1/2
corresponds to the presence/absence of a boson. Each
term in H′ hops bosons along nearest-neighbor bonds;
acting on a state in the low-energy manifold, each hop
creates two tetrahedra with Sz

t != 0. At second order
in H′, bosons can hop and then return along the same
bond (Fig. 3A). This can always occur on 4 bonds in ev-
ery tetrahedron, thus giving only a constant contribution
to the energy. At third order another constant contribu-
tion arises from single bosons (or holes) hopping around
triangular faces (Fig. 3B). There is also a nontrivial ring
exchange process acting on the hexagonal plaquettes (see
Fig. 2), where hexagons containing three evenly spaced
bosons can be rotated as shown in Figure 3C. The result-
ing effective Hamiltonian is

Heff = (J2
⊥/Jz)(J⊥/Jz − 1)Nt (6)

+ Jring
∑

!

(S+
1 S−2 S+

3 S−4 S+
5 S−6 + h.c.),

where Nt is the total number of tetrahedra, Jring =
3J3
⊥/2J

2
z , and the sum is over hexagonal plaquettes. The

labelling of the spin operators inside the sum is given by
moving around each hexagon in an arbitrary direction.
Note that [Heff , Sz

t ] = 0, as must be true for any ef-
fective Hamiltonian acting in the low-energy manifold,
whatever the form of H′.
We focus on the extreme easy axis limit described by

Heff , but note in passing that a finite but large Jz would
introduce small fluctuations out of the ground state man-
ifold. While these will not affect universal properties,
they can matter for the short-distance correlation func-
tions of some microscopic operators. This can be under-
stood formally by a more sophisticated execution of the
perturbation theory in J⊥ that accounts for splitting of
the low-energy manifold and mixing of higher states on
an equal footing25. The main result is that the problem
at finite Jz can be mapped, by a unitary transforma-
tion, order-by-order in J⊥ onto a transformed Hamilto-
nian acting only within the low-energy manifold where
Sz
t = 0. This mapping accounts for finite Jz by gener-

ating nontrivial perturbative relations between physical
and transformed operators; however, we ignore these cor-
rections for simplicity and use only the results of the stan-
dard degenerate perturbation theory described above.
It is possible, and will be convenient, to change the sign

of the ring term by a similarity transformation. On any
given site we can make the transformation Sz → Sz and
S± → −S± by making a π-rotation about the z-axis in
spin space. One transformation with the desired effect,
consisting of π-rotations on a pattern of sites, is:

Sz
i → Sz

i (7)

S±
Ri → exp(iQi ·R)S±

Ri, (8)

where Q0 = Q1 = (b1 + b2)/2 and Q2 = Q3 = 0.

FIG. 4: A small piece of the diamond lattice. The links form
hexagonal loops corresponding to the pyrochlore hexagons.
These are the shortest possible closed paths on the diamond
lattice. The hexagon with three thickened bonds depicts the
dimer positions on a flippable hexagon. The alternating full
and empty bonds correspond to alternating up and down
spins.

After this transformation the Hamiltonian takes the
form

Hp = −Jring
∑

!

(S+
1 S−2 S+

3 S−4 S+
5 S
−
6 + h.c.), (9)

where the constant terms have been dropped. Mod-
els similar to this one on the kagomé9, square26,27,
triangular28 other lattices11, where XY ring exchange of
spins or bosons is a dominant term, have recently been
shown to exhibit a variety of unusual phases and crit-
ical behavior. The physics of the pyrochlore ring ex-
change model should be accessible to quantum Monte
Carlo studies; while the original Hamiltonian in Eq. (2)
has a sign problem, Hp does not.
Hp can be reinterpreted as a quantum dimer model

on the diamond lattice (Fig. 4), with two dimers touch-
ing every site. To see this, observe that the centers of
the pyrochlore tetrahedra form a diamond lattice. Each
nearest-neighbor diamond link passes through exactly
one pyrochlore site, so we can reinterpret the pyrochlore
spins as diamond link variables. The smallest closed
loops in this lattice contain six links and correspond to
the pyrochlore hexagons. We say a dimer is present on a
given bond if Sz

i = 1/2, or absent if Sz
i = −1/2. Sz

t = 0
becomes the constraint that every diamond site touches
two dimers, and the ring exchange move is the most lo-
cal dynamics preserving this constraint. Each term in Hp

acts on a “flippable” hexagon, one containing alternating
full and empty bonds as in Fig. 4, by rotating the dimers
around it. Non-flippable hexagons are annihilated.
As first realized by Rokhsar and Kivelson, dimer mod-

els generically have a point in their parameter space
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the projector Eq. (24). The spatial components enter
as the eigenvalues of the states |{αri(τ)}〉 used to form
the resolution of the identity at each timeslice. Follow-
ing very similar manipulations to those in Appendix A
of Ref. (26), one obtains the dual action:

Scd =
1

π2
ln
( 2

εK

)

∑

τ,〈rr′〉

(

∆ταrr′ + αrτ − αr′τ

)2

+
εU

2π2

∑

τ,!∗

(

(curlα)!∗ + πe0rr′
)2

, (27)

where ∆τf ≡ f(τ + ε)− f(τ).
The action Eq. (27) is essentially a higher-dimensional

generalization of the height model partition function ar-
rived at by similar manipulations in the context of the
square lattice QDM29. Significantly, it differs in having
a local rather than a global invariance, under spacetime-
dependent dual gauge transformations of the form αµ →
αµ + ∆µλ. In fact, Scd has the same structure as non-
compact lattice QED, except for the discrete nature of
the fields. This encodes the important physics of the
magnetic monopoles. In Sec. III below, it will be use-
ful to imagine softening the constraint of discreteness on
the fields to interpolate between the dual partition func-
tion and an effective description of the Coulomb phase.
With the soft constraint (implemented by the “correc-
tions” in Eq. (55)), the theory is identical to a more
familiar dual representation of U(1) gauge theory con-
sisting of a non-compact gauge field minimally coupled
to scalar monopoles.

E. Pyrochlore Gauge Theory and Duality

We now return to the pyrochlore ring model Hp. In
this case the diamond lattice with sites at the centers of
the tetrahedra (discussed in Sec. II A) plays the role the
cubic lattice did for the cubic model. Denoting diamond
sites by boldface characters, we soften the hardcore con-
straint on the bosons and go to quantum rotor variables
living on the diamond links:

Hp =
U

2

∑

〈rr′〉

(nrr′ − 1/2)2 (28)

− K
∑

!

cos(φ1 − φ2 + φ3 − φ4 + φ5 − φ6).

Here the second sum is over the hexagonal loops of the di-
amond lattice (Fig. 4), and the numbering inside the co-
sine proceeds around the perimeter of the given hexagon.
The diamond lattice is bipartite, so we define an orien-
tation by declaring that links naturally point out of the
“up-pointing” sites and into the “down-pointing” ones
(corresponding to up- and down-pointing tetrahedra, re-
spectively). We define an oriented electric field and vec-
tor potential exactly as in Eqs. (14,15). The Hamiltonian

then takes the form of the diamond lattice frustrated
gauge theory:

Hp =
U

2

∑

〈rr′〉

e2rr′ −K
∑

!

cos
(

∑

rr′∈!

! arr′
)

. (29)

It is evident that the lattice curl now naturally lives on
the hexagons of the diamond lattice.
Again the electric charge has a simple interpretation

in the spin language:

(div e)r = ±Sz
t . (30)

Tetrahedra with Sz
t = ±1 are now the Sz = 1/2 spinons

carrying unit gauge charge. Single spinons can be created
by a string operator similar to Eq. (19). For small U/K
the model should again enter a deconfining phase where
the spinons are free to propagate.
We define a dual lattice of plaquette variables by

putting a site at the center of every pyrochlore hexagon.
This is also a pyrochlore lattice, and it will be useful to
think of its sites as the links of a dual diamond lattice
with sites labelled by serif characters r. Each hexagon of
the dual lattice encircles a link of the direct lattice, and
vice versa. As before, magnetic charge lives on the dual
lattice sites. The dual variables, again with the commu-
tator [b,α] = i on the same link, are defined on the dual
links by:

π(err′ − e0rr′) = (curlα)!∗ (31)

πbrr′ = (curl a)!, (32)

with the sense of the lattice curls determined as in the
cubic case. Here (div b)r = 2nr, with nr = 0,±1. The
Hamiltonian takes the form

Hpd =
U

2π2

∑

!∗

((curlα)!∗ + πe0rr′)
2 −K

∑

〈rr′〉

cos(πbrr′).

(33)
One can derive an action in eigenstates of the dual vector
potential as in the previous section, with the result:

Zpd =
∑

{αrr′(τ)}

∑

{αrτ (τ)}

exp(−Spd), (34)

and

Spd =
1

π2
ln
( 2

εK

)

∑

τ,〈rr′〉

(

∆ταrr′ + αrτ − αr′τ

)2

+
εU

2π2

∑

τ,!∗

(

(curlα)!∗ + πe0rr′
)2

. (35)

The constraint of magnetic charge quantization (div b)r ∈
2Z enters as before, giving rise to the temporal dual vec-
tor potential fields in Zpd.
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Here P projects onto the orthogonal complement of the
ground state manifold. To describe the processes con-
tributing in Eq. (5), it is useful to work in the standard
hardcore boson language for the spins, where Sz = ±1/2
corresponds to the presence/absence of a boson. Each
term in H′ hops bosons along nearest-neighbor bonds;
acting on a state in the low-energy manifold, each hop
creates two tetrahedra with Sz

t != 0. At second order
in H′, bosons can hop and then return along the same
bond (Fig. 3A). This can always occur on 4 bonds in ev-
ery tetrahedron, thus giving only a constant contribution
to the energy. At third order another constant contribu-
tion arises from single bosons (or holes) hopping around
triangular faces (Fig. 3B). There is also a nontrivial ring
exchange process acting on the hexagonal plaquettes (see
Fig. 2), where hexagons containing three evenly spaced
bosons can be rotated as shown in Figure 3C. The result-
ing effective Hamiltonian is

Heff = (J2
⊥/Jz)(J⊥/Jz − 1)Nt (6)

+ Jring
∑

!

(S+
1 S−2 S+

3 S−4 S+
5 S−6 + h.c.),

where Nt is the total number of tetrahedra, Jring =
3J3
⊥/2J

2
z , and the sum is over hexagonal plaquettes. The

labelling of the spin operators inside the sum is given by
moving around each hexagon in an arbitrary direction.
Note that [Heff , Sz

t ] = 0, as must be true for any ef-
fective Hamiltonian acting in the low-energy manifold,
whatever the form of H′.
We focus on the extreme easy axis limit described by

Heff , but note in passing that a finite but large Jz would
introduce small fluctuations out of the ground state man-
ifold. While these will not affect universal properties,
they can matter for the short-distance correlation func-
tions of some microscopic operators. This can be under-
stood formally by a more sophisticated execution of the
perturbation theory in J⊥ that accounts for splitting of
the low-energy manifold and mixing of higher states on
an equal footing25. The main result is that the problem
at finite Jz can be mapped, by a unitary transforma-
tion, order-by-order in J⊥ onto a transformed Hamilto-
nian acting only within the low-energy manifold where
Sz
t = 0. This mapping accounts for finite Jz by gener-

ating nontrivial perturbative relations between physical
and transformed operators; however, we ignore these cor-
rections for simplicity and use only the results of the stan-
dard degenerate perturbation theory described above.
It is possible, and will be convenient, to change the sign

of the ring term by a similarity transformation. On any
given site we can make the transformation Sz → Sz and
S± → −S± by making a π-rotation about the z-axis in
spin space. One transformation with the desired effect,
consisting of π-rotations on a pattern of sites, is:

Sz
i → Sz

i (7)

S±
Ri → exp(iQi ·R)S±

Ri, (8)

where Q0 = Q1 = (b1 + b2)/2 and Q2 = Q3 = 0.

FIG. 4: A small piece of the diamond lattice. The links form
hexagonal loops corresponding to the pyrochlore hexagons.
These are the shortest possible closed paths on the diamond
lattice. The hexagon with three thickened bonds depicts the
dimer positions on a flippable hexagon. The alternating full
and empty bonds correspond to alternating up and down
spins.

After this transformation the Hamiltonian takes the
form

Hp = −Jring
∑

!

(S+
1 S−2 S+

3 S−4 S+
5 S
−
6 + h.c.), (9)

where the constant terms have been dropped. Mod-
els similar to this one on the kagomé9, square26,27,
triangular28 other lattices11, where XY ring exchange of
spins or bosons is a dominant term, have recently been
shown to exhibit a variety of unusual phases and crit-
ical behavior. The physics of the pyrochlore ring ex-
change model should be accessible to quantum Monte
Carlo studies; while the original Hamiltonian in Eq. (2)
has a sign problem, Hp does not.
Hp can be reinterpreted as a quantum dimer model

on the diamond lattice (Fig. 4), with two dimers touch-
ing every site. To see this, observe that the centers of
the pyrochlore tetrahedra form a diamond lattice. Each
nearest-neighbor diamond link passes through exactly
one pyrochlore site, so we can reinterpret the pyrochlore
spins as diamond link variables. The smallest closed
loops in this lattice contain six links and correspond to
the pyrochlore hexagons. We say a dimer is present on a
given bond if Sz

i = 1/2, or absent if Sz
i = −1/2. Sz

t = 0
becomes the constraint that every diamond site touches
two dimers, and the ring exchange move is the most lo-
cal dynamics preserving this constraint. Each term in Hp

acts on a “flippable” hexagon, one containing alternating
full and empty bonds as in Fig. 4, by rotating the dimers
around it. Non-flippable hexagons are annihilated.
As first realized by Rokhsar and Kivelson, dimer mod-

els generically have a point in their parameter space
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the projector Eq. (24). The spatial components enter
as the eigenvalues of the states |{αri(τ)}〉 used to form
the resolution of the identity at each timeslice. Follow-
ing very similar manipulations to those in Appendix A
of Ref. (26), one obtains the dual action:

Scd =
1

π2
ln
( 2

εK

)

∑

τ,〈rr′〉

(

∆ταrr′ + αrτ − αr′τ

)2

+
εU

2π2

∑

τ,!∗

(

(curlα)!∗ + πe0rr′
)2

, (27)

where ∆τf ≡ f(τ + ε)− f(τ).
The action Eq. (27) is essentially a higher-dimensional

generalization of the height model partition function ar-
rived at by similar manipulations in the context of the
square lattice QDM29. Significantly, it differs in having
a local rather than a global invariance, under spacetime-
dependent dual gauge transformations of the form αµ →
αµ + ∆µλ. In fact, Scd has the same structure as non-
compact lattice QED, except for the discrete nature of
the fields. This encodes the important physics of the
magnetic monopoles. In Sec. III below, it will be use-
ful to imagine softening the constraint of discreteness on
the fields to interpolate between the dual partition func-
tion and an effective description of the Coulomb phase.
With the soft constraint (implemented by the “correc-
tions” in Eq. (55)), the theory is identical to a more
familiar dual representation of U(1) gauge theory con-
sisting of a non-compact gauge field minimally coupled
to scalar monopoles.

E. Pyrochlore Gauge Theory and Duality

We now return to the pyrochlore ring model Hp. In
this case the diamond lattice with sites at the centers of
the tetrahedra (discussed in Sec. II A) plays the role the
cubic lattice did for the cubic model. Denoting diamond
sites by boldface characters, we soften the hardcore con-
straint on the bosons and go to quantum rotor variables
living on the diamond links:

Hp =
U

2

∑

〈rr′〉

(nrr′ − 1/2)2 (28)

− K
∑

!

cos(φ1 − φ2 + φ3 − φ4 + φ5 − φ6).

Here the second sum is over the hexagonal loops of the di-
amond lattice (Fig. 4), and the numbering inside the co-
sine proceeds around the perimeter of the given hexagon.
The diamond lattice is bipartite, so we define an orien-
tation by declaring that links naturally point out of the
“up-pointing” sites and into the “down-pointing” ones
(corresponding to up- and down-pointing tetrahedra, re-
spectively). We define an oriented electric field and vec-
tor potential exactly as in Eqs. (14,15). The Hamiltonian

then takes the form of the diamond lattice frustrated
gauge theory:

Hp =
U

2

∑

〈rr′〉

e2rr′ −K
∑

!

cos
(

∑

rr′∈!

! arr′
)

. (29)

It is evident that the lattice curl now naturally lives on
the hexagons of the diamond lattice.
Again the electric charge has a simple interpretation

in the spin language:

(div e)r = ±Sz
t . (30)

Tetrahedra with Sz
t = ±1 are now the Sz = 1/2 spinons

carrying unit gauge charge. Single spinons can be created
by a string operator similar to Eq. (19). For small U/K
the model should again enter a deconfining phase where
the spinons are free to propagate.
We define a dual lattice of plaquette variables by

putting a site at the center of every pyrochlore hexagon.
This is also a pyrochlore lattice, and it will be useful to
think of its sites as the links of a dual diamond lattice
with sites labelled by serif characters r. Each hexagon of
the dual lattice encircles a link of the direct lattice, and
vice versa. As before, magnetic charge lives on the dual
lattice sites. The dual variables, again with the commu-
tator [b,α] = i on the same link, are defined on the dual
links by:

π(err′ − e0rr′) = (curlα)!∗ (31)

πbrr′ = (curl a)!, (32)

with the sense of the lattice curls determined as in the
cubic case. Here (div b)r = 2nr, with nr = 0,±1. The
Hamiltonian takes the form

Hpd =
U

2π2

∑

!∗

((curlα)!∗ + πe0rr′)
2 −K

∑

〈rr′〉

cos(πbrr′).

(33)
One can derive an action in eigenstates of the dual vector
potential as in the previous section, with the result:

Zpd =
∑

{αrr′(τ)}

∑

{αrτ (τ)}

exp(−Spd), (34)

and

Spd =
1

π2
ln
( 2

εK

)

∑

τ,〈rr′〉

(

∆ταrr′ + αrτ − αr′τ

)2

+
εU

2π2

∑

τ,!∗

(

(curlα)!∗ + πe0rr′
)2

. (35)

The constraint of magnetic charge quantization (div b)r ∈
2Z enters as before, giving rise to the temporal dual vec-
tor potential fields in Zpd.
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Here P projects onto the orthogonal complement of the
ground state manifold. To describe the processes con-
tributing in Eq. (5), it is useful to work in the standard
hardcore boson language for the spins, where Sz = ±1/2
corresponds to the presence/absence of a boson. Each
term in H′ hops bosons along nearest-neighbor bonds;
acting on a state in the low-energy manifold, each hop
creates two tetrahedra with Sz

t != 0. At second order
in H′, bosons can hop and then return along the same
bond (Fig. 3A). This can always occur on 4 bonds in ev-
ery tetrahedron, thus giving only a constant contribution
to the energy. At third order another constant contribu-
tion arises from single bosons (or holes) hopping around
triangular faces (Fig. 3B). There is also a nontrivial ring
exchange process acting on the hexagonal plaquettes (see
Fig. 2), where hexagons containing three evenly spaced
bosons can be rotated as shown in Figure 3C. The result-
ing effective Hamiltonian is

Heff = (J2
⊥/Jz)(J⊥/Jz − 1)Nt (6)

+ Jring

∑

!

(S+
1 S−2 S+

3 S−4 S+
5 S−6 + h.c.),

where Nt is the total number of tetrahedra, Jring =
3J3
⊥/2J2

z , and the sum is over hexagonal plaquettes. The
labelling of the spin operators inside the sum is given by
moving around each hexagon in an arbitrary direction.
Note that [Heff , Sz

t ] = 0, as must be true for any ef-
fective Hamiltonian acting in the low-energy manifold,
whatever the form of H′.

We focus on the extreme easy axis limit described by
Heff , but note in passing that a finite but large Jz would
introduce small fluctuations out of the ground state man-
ifold. While these will not affect universal properties,
they can matter for the short-distance correlation func-
tions of some microscopic operators. This can be under-
stood formally by a more sophisticated execution of the
perturbation theory in J⊥ that accounts for splitting of
the low-energy manifold and mixing of higher states on
an equal footing25. The main result is that the problem
at finite Jz can be mapped, by a unitary transforma-
tion, order-by-order in J⊥ onto a transformed Hamilto-
nian acting only within the low-energy manifold where
Sz

t = 0. This mapping accounts for finite Jz by gener-
ating nontrivial perturbative relations between physical
and transformed operators; however, we ignore these cor-
rections for simplicity and use only the results of the stan-
dard degenerate perturbation theory described above.

It is possible, and will be convenient, to change the sign
of the ring term by a similarity transformation. On any
given site we can make the transformation Sz → Sz and
S± → −S± by making a π-rotation about the z-axis in
spin space. One transformation with the desired effect,
consisting of π-rotations on a pattern of sites, is:

Sz
i → Sz

i (7)

S±
Ri → exp(iQi · R)S±

Ri, (8)

where Q0 = Q1 = (b1 + b2)/2 and Q2 = Q3 = 0.

FIG. 4: A small piece of the diamond lattice. The links form
hexagonal loops corresponding to the pyrochlore hexagons.
These are the shortest possible closed paths on the diamond
lattice. The hexagon with three thickened bonds depicts the
dimer positions on a flippable hexagon. The alternating full
and empty bonds correspond to alternating up and down
spins.

After this transformation the Hamiltonian takes the
form

Hp = −Jring

∑

!

(S+
1 S−2 S+

3 S−4 S+
5 S−6 + h.c.), (9)

where the constant terms have been dropped. Mod-
els similar to this one on the kagomé9, square26,27,
triangular28 other lattices11, where XY ring exchange of
spins or bosons is a dominant term, have recently been
shown to exhibit a variety of unusual phases and crit-
ical behavior. The physics of the pyrochlore ring ex-
change model should be accessible to quantum Monte
Carlo studies; while the original Hamiltonian in Eq. (2)
has a sign problem, Hp does not.
Hp can be reinterpreted as a quantum dimer model

on the diamond lattice (Fig. 4), with two dimers touch-
ing every site. To see this, observe that the centers of
the pyrochlore tetrahedra form a diamond lattice. Each
nearest-neighbor diamond link passes through exactly
one pyrochlore site, so we can reinterpret the pyrochlore
spins as diamond link variables. The smallest closed
loops in this lattice contain six links and correspond to
the pyrochlore hexagons. We say a dimer is present on a
given bond if Sz

i = 1/2, or absent if Sz
i = −1/2. Sz

t = 0
becomes the constraint that every diamond site touches
two dimers, and the ring exchange move is the most lo-
cal dynamics preserving this constraint. Each term in Hp

acts on a “flippable” hexagon, one containing alternating
full and empty bonds as in Fig. 4, by rotating the dimers
around it. Non-flippable hexagons are annihilated.

As first realized by Rokhsar and Kivelson, dimer mod-
els generically have a point in their parameter space
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Figure R1: (a) Magnetic specific heat data on Ce2Zr2O7 vs temperature on double-logarithmic scales, together
with power-law fits, AT

↵, with fixed powers ↵ of 3 (grey), and 2.5 (red) and 3.5 (blue) for comparison,
illustrating that ↵ = 3 describes the data best. A minimization procedure with open ↵ yields the �

2
⌫(↵)

dependence shown in the inset, confirming that, within the error bars, ↵ = 3 is the best/correct description
of the data. (b) Arrhenius plot of the magnetic specific heat together with a linear fit to the data (grey line),
showing that the low-temperature specific heat of Ce2Zr2O7 could also be accounted for by a thermally activated
behavior, with a gap of 0.1K (inset). Both scenarios yield similar minimal �2

⌫ , preventing discrimination
between both scenarios on purely statistical grounds.

Response: The Referee points here to a very interesting and a priori puzzling observation: the lack of an
entropy plateau in Ce2Zr2O7. Some of us have been thinking recently about this issue and tried to address it
in Ref. [1] (our answer below will follow closely discussions in that work). In short, the lack of an entropy
plateau is consistent with theoretical expectation for ⇡-flux QSI with sufficiently strong transverse coupling
J±/Jk.

Let’s first begin by reviewing what is known about the finite temperature behavior of 0-flux QSI. The
finite temperature evolution of 0-flux QSI is already well-established from sign-free QMC results [2]–[5]. As
the system is cooled down starting from a high temperature (i.e., kBT � Jk,J±), the system undergoes
two successive crossovers at temperatures that we will denote by T

⇤
1 and T

⇤
2 . These are characterized by

(non-singular) peaks in the heat capacity and associated drops in the entropy per site, as seen in the QMC
results reproduced in Fig. R2. The first one occurs around kBT

⇤
1 = O(Jk), and marks a transition from

a trivial paramagnet to classical spin ice (i.e., a constrained paramagnet). At this crossover, the entropy
per site goes from the high-temperature limit of S = kB ln(2) to Pauling’s entropy S = kB ln(3/2)/2. This
signals that, after the crossover, the system is energetically constrained to the spin ice manifold. In this
intermediate regime T

⇤
1 � T � T

⇤
2 where the heat capacity almost vanishes and the entropy reaches a

plateau, the system is described by an incoherent thermal ensemble of of 2-in-2-out states. In terms of the
compact U(1) lattice gauge theory description, visons (the magnetic monopoles of the underlying gauge
theory in our convention) would be strongly thermally excited, leading to an incoherent and wildly fluctuating
plaquettes fluxes background that inhibits the motion of the spinons [6], [7]. Below the second crossover
temperature controlled by the vison gap kBT

⇤
2 = O(12J 3

±/J
2
k ), the entropy is quenched (i.e., S ! 0) and the

heat capacity scales cubicly as the system transitions from a classical to a quantum spin liquid with genuine
deconfined fractional excitations and emergent gauge fields. Below this temperature, the fluxes are frozen
(to hr⇥Ai = 0 or hr⇥Ai = ⇡ depending on the sign of J±) and the system’s dynamic is controlled by
quantum coherent effects rather than thermal fluctuations.

Recalling that the 0-flux QSI phase is only stable for very small values of the transverse coupling (i.e., up
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Susceptibility of a spinon Fermi surface coupled to a U(1) gauge field

Cody P. Nave1, Sung-Sik Lee2 and Patrick A. Lee1

1Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
2Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, U.S.A.

(Dated: February 6, 2008)

We study the theory of a U(1) gauge field coupled to a spinon Fermi surface. Recently this model
has been proposed as a possible description of the organic compound κ-(BEDT-TTF)2Cu2(CN)3.
We calculate the susceptibility of this system and in particular examine the effect of pairing of
the underlying spin liquid. We show that this proposed theory is consistent with the observed
susceptibility measurements.

PACS numbers:

The organic compounds κ-(BEDT-TTF)2X are an in-
teresting class of materials. Recent experiments have
shown promise that this compound where the anion, X, is
Cu2(CN)3 may be the first experimental realized spin liq-
uid. This material can be described as a nearly isotropic
effectively two dimensional spin 1/2 triangular lattice at
half-filling. Experimentally, this material is found to be
insulating and yet it has no long range magnetic ordering
down to mK temperatures. Also the static spin suscep-
tibility remains finite down to the lowest temperatures
measured. [1] These observations have led to the pro-
posal that the state may be described by a spinon Fermi
surface coupled to a U(1) gauge field. [2, 3] The suscep-
tibility is fit with the high temperature series expansion
of the spin 1/2 Heisenberg model on a triangular lattice.
From this fit, the exchange coupling J is found to be
around 250 K. In addition, the susceptibility is found to
drop sharply at low temperatures around 10 K before
saturating to a finite value.[1]

Recent measurements of the specific heat have sug-
gested the existence of a peak in the electronic specific
heat at around 6 K, once the phonon contribution has
been subtracted away. [4] Led by this discovery, it was
proposed that the U(1) spin liquid state may have some
sort of pairing instability. [5] Since the specific heat was
also found to be unaffected by a magnetic field of up to
8T, conventional singlet pairing is unlikely. The pair-
ing could, however, be ordinary BCS triplet pairing or a
new kind of pairing. Recently Lee et al. [5] proposed a
possible new kind of pairing called “Amperean”pairing.
Unlike normal BCS pairing across the Fermi surface, this
pairing is between two spinons on the same side of the
Fermi surface. In particular, in the Amperean paired
state, one pairs the spin with momentum Q + p with
the spin with momentum Q − p where |Q| = kF and
|p| small. The Amperean pairing can occur between two
particles carrying almost parallel momenta due to the
attractive interaction mediated by the magnetic fluctua-
tions of the emergent gauge field. As a result the pairs
carry net momentum 2kF as opposed to 0 in the BCS
state. In particular, the authors showed that it is possi-
ble for there to be an instability to this kind of pairing
for the spinon Fermi surface coupled to a U(1) gauge
field. They also derived a number of experimental conse-
quences of this model and show how they could explain
many of the features seen in the actual experiments on

κ-(BEDT-TTF)2Cu2(CN)3 Here we calculate the effect
of pairing on the zero-field spin susceptibility of such a
system and compare the result to what is experimentally
seen in this organic compound.

Starting from a spinon Fermi surface, it is clear that
at T = 0 the spinons give rise to a Pauli paramagnetic
term due to the non-zero density of states. Standard
BCS singlet pairing, however, leads to the reduction of
this paramagnetism as a gap opens. At first sight, this
seems to provide a natural explanation of the sharp drop
in susceptibility below 10 K. However we have already ex-
cluded BCS singlet pairing because it is inconsistent with
the observed insensitivity of the specific heat to mag-
netic field. Both triplet BCS pairing and alternate types
of pairing such as LOFF and Amperean are consistent
with the specific heat measurement. However it turns
out that for such pairing states, the spinon contribution
to the Pauli paramagnetism is unaffected by the onset of
pairing, which seems inconsistent with the observed drop
of susceptibility at low temperatures. In this paper, we
will show that the drop of susceptibility can be explained
if the effect of gauge fluctuations is taken into account.
Before we include the effect of gauge fluctuations, be-
low we first ignore the gauge fluctuations and explain
why the onset of pairing does not affect the contribution
of spinons to the spin susceptibility in the Amperean,
LOFF and triplet BCS pairing states.

To see this, we begin with a spinon system with a well
defined Fermi surface. Applying a magnetic field creates
two different Fermi seas for the up and down spinons,
as shown in Fig. 1. First we consider the case of Am-
perean pairing, where pairing occurs on the same side of
the Fermi surface. It is possible for both of these spinons
to lie near the Fermi surface even after the magnetic field
has been applied (Fig. 1). This is achieved by pairing
the spin up spinon with momentum Q+∆Q+p with the
spin down spinon with momentum Q −∆Q − p, where
|p| " kF and ∆Q = (µBH/vF) Q̂. Moreover, the phase
space available for p is unchanged with the applied field
H , as long as the curvature difference between spin up
and down Fermi surfaces when H #= 0 can be ignored.
Thus in this approximation, there is no Zeeman limiting
field for this pairing. Furthermore, the susceptibility is
not reduced by pairing because although the opening of
the pairing gap does smear out the momentum distribu-
tion nk, it leaves the occupied area of up and down spins
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Spin Dynamics of the Spin-1/2 Kagomé Lattice Antiferromagnet ZnCu3(OH)6Cl2

J.S. Helton1, K. Matan1, M.P. Shores2, E.A. Nytko2, B.M. Bartlett2, Y. Yoshida3,
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We have performed thermodynamic and neutron scattering measurements on the S = 1/2 kagomé
lattice antiferromagnet ZnCu3(OH)6Cl2. The susceptibility indicates a Curie-Weiss temperature of
θCW ! −300 K; however, no magnetic order is observed down to 50 mK. Inelastic neutron scattering
reveals a spectrum of low energy spin excitations with no observable gap down to 0.1 meV. The
specific heat at low-T follows a power law temperature dependence. These results suggest that an
unusual spin liquid state with essentially gapless excitations is realized in this kagomé lattice system.

An important challenge in condensed matter physics is
the search for quantum disordered ground states in two
dimensional systems. Of particular interest is studying
quantum spin liquids, an example of which is the “res-
onating valence bond” state proposed by Anderson[1].
These states are unusual in that neither translational nor
spin rotational symmetries are broken. It is believed that
the S = 1/2 Heisenberg antiferromagnet on a kagomé lat-
tice (composed of corner sharing triangles) is an ideal sys-
tem to look for spin liquid physics due to the high degree
of frustration. There is broad theoretical consensus that
the ground state of the S = 1/2 kagomé antiferromagnet
is not magnetically ordered[2, 3, 4, 5, 6, 7, 8]. How-
ever, many basic properties are still under debate, such
as the magnitude of the gap to the first triplet state.
An intriguing possibility is the existence of deconfined
S = 1/2 spinons as the fundamental excitations, as op-
posed to conventional S = 1 magnons.

Despite heavy theoretical interest, experimental stud-
ies of the S = 1/2 kagomé lattice have been ham-
pered by the difficulty in synthesizing such materials.
Here, we report thermodynamic and neutron scattering
measurements on powder samples of ZnCu3(OH)6Cl2,
known as herbertsmithite[9]. As has been previously
reported[10], ZnxCu4−x(OH)6Cl2 can be synthesized
with variable Zn concentration, from x=0 to x=1 (her-
bertsmithite). Figure 1(a) represents the transfor-
mation from Cu2(OH)3Cl, which has a distorted py-
rochlore structure, to ZnCu3(OH)6Cl2, which consists of
Cu kagomé layers separated by nonmagnetic Zn layers.
Structurally, ZnCu3(OH)6Cl2, with space group R3̄m
and lattice parameters a = b = 6.832 Å and c = 14.049 Å,
appears to be an excellent realization of the S = 1/2
kagomé lattice antiferromagnet. Initial evidence is the
absence of long-range magnetic order, as shown in the
neutron diffraction scans in Fig. 1(b). In Cu2(OH)3Cl,

clear magnetic Bragg peaks are observed below ∼ 6 K;
whereas no magnetic Bragg peaks are observable down
to 1.8 K in ZnCu3(OH)6Cl2.

To further characterize the properties of
ZnCu3(OH)6Cl2, we performed magnetic susceptibility
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temperatures (T > 200 K). The resulting Curie-Weiss
temperature of −300±20 K implies an antiferromagnetic
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analyses, we calculate the stoichiometric coefficients to
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the Cu kagomé system. We note that similar behavior
is found for the frustrated S = 1/2 nuclear moments of
3He films on graphite, where the susceptibility is found
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emphasizes the role of defects. The roles of impurities
and exchange or Dzyaloshinskii-Moriya[17] anisotropies
in this system remain important topics for further
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Barlowite Cu4(OH)6FBr shows three-dimensional (3D) long-range antiferromagnetism, which is
fully suppressed in Cu3Zn(OH)6FBr with a kagome quantum spin liquid ground state. Here we
report systematic studies on the evolution of magnetism in the Cu4�xZnx(OH)6FBr system as a
function of x to bridge the two limits of Cu4(OH)6FBr (x=0) and Cu3Zn(OH)6FBr (x=1). Neutron-
di↵raction measurements reveal a hexagonal-to-orthorhombic structural change with decreasing tem-
perature in the x = 0 sample. While confirming the 3D antiferromagnetic nature of low-temperature
magnetism, the magnetic moments on some Cu2+ sites on the kagome planes are found to be vanish-
ingly small, suggesting strong frustration already exists in barlowite. Substitution of interlayer Cu2+

with Zn2+ with gradually increasing x completely suppresses the bulk magnetic order at around x =
0.4, but leaves a local secondary magnetic order up to x ⇠ 0.8 with a slight decrease in its transition
temperature. The high-temperature magnetic susceptibility and specific heat measurements further
suggest that the intrinsic magnetic properties of kagome spin liquid planes may already appear
from x > 0.3 samples. Our results reveal that the Cu4�xZnx(OH)6FBr may be the long-thought
experimental playground for the systematic investigations of the quantum phase transition from a
long-range antiferromagnet to a topologically ordered quantum spin liquid.

I. INTRODUCTION

A quantum spin liquid (QSL) can be briefly described
as a symmetric state without magnetic order emerg-
ing from strong quantum fluctuations in frustrated mag-
netic systems1–3. The quantum fluctuations are usually
enhanced by geometrical frustrations of magnetic ions,
which are commonly seen in, e.g., triangle, kagome or
pyrochlore lattices. Two-dimensional magnetic kagome
lattices have attracted a lot of interests in the search
for QSLs4. Theoretically, it has been shown that the
kagome system may exhibit various ordered state and
di↵erent QSL ground states5–18, such as chiral and Z2

QSL. These kagome QSLs are usually very close in en-
ergy19 and depend sensitively on the particular form of
the superexchange couplings, which render them di�cult
to be tested experimentally.

Experimental progress in finding kagome QSLs has
been substantial. Among many kagome magnets, her-
bertsmithite ZnCu3(OH)6Cl2 shows several promising
properties of a QSL2. First of all, it consists of perfect
kagome Cu2+ (s = 1/2) planes that show no magnetic
order down to at least 20 mK20–23. Inelastic neutron
scattering (INS) experiments display broad dispersion-
less magnetic excitations that are consistent with spinon

continuum expected in QSLs24. Later nuclear magnetic
resonance (NMR) and INS experiments suggest that the
system may be gapped25,26. Interestingly, previous stud-
ies have suggested that herbertsmithite may be close to
a quantum critical point (QCP)27. However, it is later
found that the low-energy spin excitations (< 1 meV) are
dominated by the so-called ”impurities” of residual in-
terlayer Cu2+ ions due to imperfect substitution of inter-
kagome Cu by Zn26,28. Moreover, Cu4(OH)6Cl2, the base
material that leads to herbertsmithite, has at least four
polymorphs with di↵erent nuclear structures that are all
di↵erent from herbertsmithite and have di↵erent mag-
netic orders29–39. INS experiments also do not support
the presence of a QCP in the ZnxCu4�x(OD)6Cl2 system
since the antiferromagnetic (AF) order in the x = 0 sam-
ple becomes spin-glass-like with increasing x before the
QSL is established in the x = 1 sample37.

Recently, a new compound of Cu3Zn(OH)6FBr has
been synthesized to exhibit properties that are consis-
tent with a Z2 QSL40–42. This compound is obtained by
substituting interlayer Cu2+ in barlowite Cu4(OH)6FBr
with nonmagnetic Zn2+. The barlowite has perfect Cu2+

kagome planes with an AF transition at about 15 K43–45.
Since the barlowite and Cu3Zn(OH)6FBr have the same
space group for the crystal structures at room tempera-
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Barlowite Cu4(OH)6FBr shows three-dimensional (3D) long-range antiferromagnetism, which is
fully suppressed in Cu3Zn(OH)6FBr with a kagome quantum spin liquid ground state. Here we
report systematic studies on the evolution of magnetism in the Cu4�xZnx(OH)6FBr system as a
function of x to bridge the two limits of Cu4(OH)6FBr (x=0) and Cu3Zn(OH)6FBr (x=1). Neutron-
di↵raction measurements reveal a hexagonal-to-orthorhombic structural change with decreasing tem-
perature in the x = 0 sample. While confirming the 3D antiferromagnetic nature of low-temperature
magnetism, the magnetic moments on some Cu2+ sites on the kagome planes are found to be vanish-
ingly small, suggesting strong frustration already exists in barlowite. Substitution of interlayer Cu2+

with Zn2+ with gradually increasing x completely suppresses the bulk magnetic order at around x =
0.4, but leaves a local secondary magnetic order up to x ⇠ 0.8 with a slight decrease in its transition
temperature. The high-temperature magnetic susceptibility and specific heat measurements further
suggest that the intrinsic magnetic properties of kagome spin liquid planes may already appear
from x > 0.3 samples. Our results reveal that the Cu4�xZnx(OH)6FBr may be the long-thought
experimental playground for the systematic investigations of the quantum phase transition from a
long-range antiferromagnet to a topologically ordered quantum spin liquid.
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kagome system may exhibit various ordered state and
di↵erent QSL ground states5–18, such as chiral and Z2
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been substantial. Among many kagome magnets, her-
bertsmithite ZnCu3(OH)6Cl2 shows several promising
properties of a QSL2. First of all, it consists of perfect
kagome Cu2+ (s = 1/2) planes that show no magnetic
order down to at least 20 mK20–23. Inelastic neutron
scattering (INS) experiments display broad dispersion-
less magnetic excitations that are consistent with spinon

continuum expected in QSLs24. Later nuclear magnetic
resonance (NMR) and INS experiments suggest that the
system may be gapped25,26. Interestingly, previous stud-
ies have suggested that herbertsmithite may be close to
a quantum critical point (QCP)27. However, it is later
found that the low-energy spin excitations (< 1 meV) are
dominated by the so-called ”impurities” of residual in-
terlayer Cu2+ ions due to imperfect substitution of inter-
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netic orders29–39. INS experiments also do not support
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since the antiferromagnetic (AF) order in the x = 0 sam-
ple becomes spin-glass-like with increasing x before the
QSL is established in the x = 1 sample37.

Recently, a new compound of Cu3Zn(OH)6FBr has
been synthesized to exhibit properties that are consis-
tent with a Z2 QSL40–42. This compound is obtained by
substituting interlayer Cu2+ in barlowite Cu4(OH)6FBr
with nonmagnetic Zn2+. The barlowite has perfect Cu2+

kagome planes with an AF transition at about 15 K43–45.
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The search for quantum spin liquid (QSL) materials has attracted significant attention in the
field of condensed matter physics in recent years, but until now only a handful of them are consid-
ered as candidates hosting QSL ground state. Owning to their geometrically frustrated structure,
Kagome materials are ideal system to realize QSL. In this study, we synthesized the kagome struc-
tured material Claringbullite (Cu4(OH)6FCl) and then replaced inter-layer Cu with Zn to form
Cu3Zn(OH)6FCl. Comprehensive measurements reveal that doping Zn2+ ions transforms magnet-
ically ordered Cu4(OH)6FCl into a non-magnetic QSL candidate Cu3Zn(OH)6FCl. Therefore, the
successful syntheses of Cu4(OH)6FCl and Cu3Zn(OH)6FCl not only provide a new platform for the
study of QSL but also a novel pathway of investigating the transition between QSL and magnetically
ordered systems.

In recent years, the search for quantum spin liquid
(QSL) materials, usually realized in frustrated magnets,
has attracted great interests due to the exotic anyonic
excitations therein as well as their potential relationship
with quantum computation and unconventional super-
conductivity [1–6]. The common search ground for QSL
are frustrated magnets with honeycomb, triangular and
kagome structures. Kagome Heisenberg antiferromagnet
is a promising direction for the pursuit of QSL ground
state. Although several kagome materials are proposed
to host QSL ground states, the detailed nature of these
QSLs candidates still need further intensive investiga-
tions to verify [7–12].

Among the discovered kagome Heisenberg antiferro-
magnetic QSL candidates [10, 13, 14], Herbertsmithite,
ZnCu3(OH)6Cl2 [7, 9, 15–17] and Zn-doped Barlowite,
Cu3Zn(OH)6FBr [10–12, 18–21] are the two well-known
kagome QSL materials. In particular, the high-quality
single crystal of Herbertsmithite provides the rare op-
portunity to explicitly reveal the detailed momentum-
frequency dependence of the magnetic spectra in in-
elastic neutron scattering experiment, in which the
spinon continuum manifest [7]. Meanwhile, many related
materials are also studied, such as Cu3Mg(OH)6Cl2,
Cu3Cd(OH)6SO4, Y3Cu9(OH)19Cl8 and YCu3(OH)6Cl3
[22–27]. To synthesize a promising kagome QSL mate-
rial, the perfect kagome structure must retain intact and
the inter-layer interaction shall be reduced, to optimize
the perfect frustration in the 2D plane in order to sup-

press any magnetic order. Unfortunately, most materials
develop magnetic order at low temperatures which is usu-
ally accompanied by structure distortion that breaks the
perfect kagome lattice geometry.

In this study, we successfully synthesized a new
kagome Heisenberg antiferromagnetic QSL candidate,
Cu3Zn(OH)6FCl and its parent compound Cu4(OH)6FCl
(Claringbullite). X-ray di↵raction (XRD) shows pure
Cu3Zn(OH)6FCl is synthesized and chemical analysis
show that the content of Zn2+ ions in the inter-kagome
plane is about 0.7 per formula unit. Although some Cu2+

ions remain in the inter-kagome plane, structure analysis
reveals that the perfect kagome plane is preserved and
thermodynamic measurements show that magnetic order
is completely suppressed in Cu3Zn(OH)6FCl. Moreover,
our AC magnetic susceptibility (ACMS) measurements
also exclude spin glass behavior in Cu3Zn(OH)6FCl,
which is found in other putative QSL candidate [28].
All these evidence suggests Cu3Zn(OH)6FCl is a new
QSL candidate. On the other hand, Claringbullite de-
velops magnetic order below 15 K. The evolution from
Cu4(OH)6FCl to Cu3Zn(OH)6FCl, therefore, provides
an ideal occasion to investigate the transition between
magnetically ordered states and QSL, in which the theo-
retically expected dynamical signatures of fractionalized
anyonic excitations [29–31] and other exotic properties
of the associated Z2 topologically ordered QSLs [32, 33]
could be experimentally revealed in future.

Cu4(OH)6FCl and Cu3Zn(OH)6FCl were synthesized
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study of QSL but also a novel pathway of investigating the transition between QSL and magnetically
ordered systems.

In recent years, the search for quantum spin liquid
(QSL) materials, usually realized in frustrated magnets,
has attracted great interests due to the exotic anyonic
excitations therein as well as their potential relationship
with quantum computation and unconventional super-
conductivity [1–6]. The common search ground for QSL
are frustrated magnets with honeycomb, triangular and
kagome structures. Kagome Heisenberg antiferromagnet
is a promising direction for the pursuit of QSL ground
state. Although several kagome materials are proposed
to host QSL ground states, the detailed nature of these
QSLs candidates still need further intensive investiga-
tions to verify [7–12].

Among the discovered kagome Heisenberg antiferro-
magnetic QSL candidates [10, 13, 14], Herbertsmithite,
ZnCu3(OH)6Cl2 [7, 9, 15–17] and Zn-doped Barlowite,
Cu3Zn(OH)6FBr [10–12, 18–21] are the two well-known
kagome QSL materials. In particular, the high-quality
single crystal of Herbertsmithite provides the rare op-
portunity to explicitly reveal the detailed momentum-
frequency dependence of the magnetic spectra in in-
elastic neutron scattering experiment, in which the
spinon continuum manifest [7]. Meanwhile, many related
materials are also studied, such as Cu3Mg(OH)6Cl2,
Cu3Cd(OH)6SO4, Y3Cu9(OH)19Cl8 and YCu3(OH)6Cl3
[22–27]. To synthesize a promising kagome QSL mate-
rial, the perfect kagome structure must retain intact and
the inter-layer interaction shall be reduced, to optimize
the perfect frustration in the 2D plane in order to sup-

press any magnetic order. Unfortunately, most materials
develop magnetic order at low temperatures which is usu-
ally accompanied by structure distortion that breaks the
perfect kagome lattice geometry.

In this study, we successfully synthesized a new
kagome Heisenberg antiferromagnetic QSL candidate,
Cu3Zn(OH)6FCl and its parent compound Cu4(OH)6FCl
(Claringbullite). X-ray di↵raction (XRD) shows pure
Cu3Zn(OH)6FCl is synthesized and chemical analysis
show that the content of Zn2+ ions in the inter-kagome
plane is about 0.7 per formula unit. Although some Cu2+

ions remain in the inter-kagome plane, structure analysis
reveals that the perfect kagome plane is preserved and
thermodynamic measurements show that magnetic order
is completely suppressed in Cu3Zn(OH)6FCl. Moreover,
our AC magnetic susceptibility (ACMS) measurements
also exclude spin glass behavior in Cu3Zn(OH)6FCl,
which is found in other putative QSL candidate [28].
All these evidence suggests Cu3Zn(OH)6FCl is a new
QSL candidate. On the other hand, Claringbullite de-
velops magnetic order below 15 K. The evolution from
Cu4(OH)6FCl to Cu3Zn(OH)6FCl, therefore, provides
an ideal occasion to investigate the transition between
magnetically ordered states and QSL, in which the theo-
retically expected dynamical signatures of fractionalized
anyonic excitations [29–31] and other exotic properties
of the associated Z2 topologically ordered QSLs [32, 33]
could be experimentally revealed in future.
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Spin Liquid State in S = 1/2 Hyper-Kagomé Antiferromagnet Na4Ir3O8
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A spinel related oxide, Na4Ir3O8, was found to have a three dimensional network of corner shared
Ir4+ (t2g

5) triangles. This gives rise to an antiferromagnetically coupled S = 1/2 spin system formed
on a geometrically frustrated hyper-Kagomé lattice. Magnetization M and specific heat C data
showed the absence of long range magnetic ordering at least down to 2 K. The large magnetic specific
heat at low temperatures, which shows a power law decay with temperature and is independent
of applied magnetic field up to 12 T, is in striking parallel to those of triangular and kagomé
antiferromagnets reported to have a spin liquid ground state. These results strongly suggest that
the ground state of Na4Ir3O8 is a spin liquid.

PACS numbers: Valid PACS appear here

Experimental realization of a quantum spin liquid in
geometrically frustrated magnets has been one of the
biggest challenges in the field of magnetism since P. W.
Anderson proposed resonating valence bond theory [1] for
antiferromagnetically coupled S = 1/2 spins on a trian-
gular lattice. Geometrical frustration in magnets arises
from the incompatibility of local spin-spin interactions,
which gives rise to macroscopic degeneracy of the ground
state. Possible playgrounds for this include triangular,
kagomé, pyrochlore and garnet lattices essentially con-
sisting of networks of triangles. In real materials, how-
ever, it is not easy to prevent spin ordering at substan-
tially lower temperatures than the Curie-Weiss temper-
ature θW, the mean field transition temperature. This
is because the spin degeneracy can be lifted by coupling
with the other degrees of freedom such as the orbitals,
lattice and charges. Such an interplay between the frus-
trated spins, orbitals and lattices, for example, can be
found in a trimer singlet formation in the S = 1 trian-
gular LiVO2 [2, 3] with orbital ordering or a spin-Jahn-
Teller transition in the S = 3/2 pyrochlore ZnCr2O4 [4].
In addition, only a minute amount of disorder is known
to strongly influence the spin liquid state in geometri-
cally frustrated magnets and very often gives rise to a
formation of a glassy state of spins.

The most likely candidate for the realization of a spin
liquid ground state had been the two dimensional kagomé
antiferromagnet SrCr9pGa12−9pO19 (S = 3/2) [5, 6]. It
does not show any evidence for long range ordering down
to the lowest temperature ∼ 100 mK, and a large and field
independent magnetic specific heat was observed which
was ascribed to spin liquid contributions. Nevertheless,
the strong spin glass-like behavior at low temperatures,
very likely due to site disorder, gives us certain ambigu-
ity in identifying the spin-liquid state. Recently, a new
generation of spin liquid compounds has emerged, the S
= 1/2 triangular magnet κ-(ET)2Cu2(CN)3 [7], an or-

ganic Mott insulator, and the S = 1 triangular magnet
NiGa2S4 [8]. They were reported to have a spin liquid
ground state or at least a robust liquid phase down to
100 mK. Their magnetic and thermal properties are in
striking parallel to those of SrCr9pGa12−9pO19 but the
disorder effect appears much less.

Here we report on a three dimensional analogue of
these two dimensional spin liquids. Na4Ir3O8 was first
reported as an unidentified phase in the Na-Ir-O ternary
system by McDaniel [9]. We found that it is isostructural
to Na4Sn3O8 [10] and that a S = 1/2 hyper-Kagomé
system, consisting of low spin d5 Ir4+ ions, is realized
in Na4Ir3O8. The magnetization and specific heat mea-
surements on the ceramic samples indicate that S = 1/2
spins are highly frustrated and remain in a liquid state
down to the lowest temperature measured.

Polycrystalline samples of Na4Ir3O8 were prepared
by a solid-state reaction. Stoichiometric amounts of
Na2CO3 and IrO2 were mixed, and the mixture was cal-
cined at 750◦C for 18 h. We added 5 % excess of Na2CO3

to compensate the loss of Na during the calcination. The
product was finely ground, pressed into a pellet, sintered
at 1020◦C for 22 h on gold foil, and then quenched in
air. Powder X-ray diffraction (XRD) data showed that
the powders were single phase. The crystal structure was
determined by performing Rietveld analysis on the pow-
der XRD data using RIETAN-2000 program [11]. Ther-
modynamic and magnetic properties were measured by a
Physical Properties Measurement System (PPMS, Quan-
tum Design) and a Magnetic Properties Measurement
System (MPMS, Quantum Design).

We were able to refine the powder XRD pattern with
the cubic Na4Sn3O8 structure (P4132 or P4332) [10].
The result of refinement is summarized in table I and Fig.
1 (b). The structure of Na4Ir3O8, shown in Fig. 1 (a), is
derived from those of spinel oxides (AB2O4), which can
be intuitively demonstrated by rewriting the chemical
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FIG. 1: (a) Crystal structure of Na4Ir3O8 with the space
group P4132. Among the three Na sites, only Na1 site is
shown for clarity. Black and gray octahedra represent IrO6

and Na1O6 respectively. The spheres inside the octahedra
represent Ir and Na atoms and oxygens occupy all the corners.
(b) The X-ray diffraction pattern of Na4Ir3O8 at room tem-
perature. The crosses indicate the raw data and the solid line
indicates that calculated based on the refinement. (c) Hyper-
Kagomé Ir and Na sublattice derived from the structure of
Na4Ir3O8 with the space group P4132, shown in (a). (d) Ir
and Na sublattice derived from the structure of Na4Ir3O8 with
the space group P4332.

TABLE I: Atomic parameters obtained by refining X-ray pow-
der diffraction for Na4Ir3O8 at room temperature with a space
group P4132. The cubic lattice constant is a = 8.985 Å. g of
Na2 and Na3 are fixed to 0.75 according to Ref. [10].

x y z g B (Å)
Ir 12d 0.61456(7) x + 1/4 5/8 1.00 0.15

Na1 4b 7/8 7/8 7/8 1.00 2.6
Na2 4a 3/8 3/8 3/8 0.75 2.6
Na3 12d 0.3581(8) x + 1/4 5/8 0.75 2.6
O1 8c 0.118(11) x x 1.00 0.6
O2 24e 0.1348(9) 0.8988(8) 0.908(11) 1.00 0.6

formulae as (Na1.5)1(Ir3/4, Na1/4)2O4. The B-sublattice
of spinel oxides forms the so-called pyrochlore lattice, a
network of corner shared tetrahedra. In Na4Ir3O8, each
tetrahedron in the B-sublattice is occupied by three Ir
and one Na (Na1). These Ir and Na atoms form an in-
triguing ordering pattern as shown in Fig. 1 (c), giv-
ing rise to a network of corner shared Ir triangles, called
hyper-Kagomé lattice. All the Ir sites and Ir-Ir bonds are
equivalent and, therefore, strong geometrical frustration
is anticipated. Hyper-Kagomé is also realized in the A-
sublattice of the garnet A3B5O12 but distorted. It might
be interesting to infer here that there exists a chirality
in this hyper-Kagomé lattice and that the two structures
P4132 (Fig. 1 (c)) and P4332 (Fig. 1 (d)) have different
degenerate chiralities. Na1.5 in Na1.5(Ir3/4, Na1/4)2O4

occupies the octahedral A site rather than the tetrahe-
dral A site normally occupied in a conventional spinel
structure [10]. We refined the structure by assuming two
Na sites, Na2 and Na3, in AO6 octahedra with 75 %
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FIG. 2: Temperature dependence of the inverse magnetic sus-
ceptibility χ−1 under 1 T (a), magnetic specific heat Cm

divided by temperature T (b) and magnetic entropy Sm

(c) of polycrystalline Na4Ir3O8. To estimate Cm, data for
Na4Sn3O8 is used as a reference of the lattice contribution.
Inset: (a) Temperature dependence of magnetic susceptibil-
ity χ of Na4Ir3O8 in various fields up to 5 T. For clarity, the
curves are shifted by 3, 2 and 1 × 10−4 emu/mol Ir for 0.01,
0.1 and 1 T data respectively. (b) Cm/T vs T of Na4Ir3O8

in various fields up to 12 T. Broken lines indicate Cm propor-
tional to T 2 and T 3 respectively.

occupation following Ref. [10]. There remains a certain
ambiguity in the refinement of the Na2 and Na3 sites
because of the small scattering factor compared with Ir.

Ir in this compound is tetravalent with five electrons
in 5d orbitals. Because of the octahedral coordination
with oxygens and the large crystal field splitting effect
expected for 5d orbitals, it is natural for Ir4+ to have a
low spin (t2g

5) state with S = 1/2. The electrical resistiv-
ity ρ of a ceramic sample at room temperature was ∼ 10
Ωcm, followed by a thermally activated increase with an
activation energy of 500 K with decreasing temperature.
Considering that all Ir is equivalent, Na4Ir3O8 should be
a S = 1/2 Mott insulator formed on a hyper-Kagomé
lattice.

The temperature dependent magnetic susceptibility
χ(T ), shown in Fig. 2 (a), indicates that Na4Ir3O8 is
indeed a frustrated S = 1/2 system with a strong anti-
ferromagnetic interaction. In the χ−1 vs T plot in Fig.
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Spin Dynamics of the Spin-1/2 Kagomé Lattice Antiferromagnet ZnCu3(OH)6Cl2

J.S. Helton1, K. Matan1, M.P. Shores2, E.A. Nytko2, B.M. Bartlett2, Y. Yoshida3,
Y. Takano3, A. Suslov4, Y. Qiu5, J.-H. Chung5, D.G. Nocera2, and Y.S. Lee1∗

1Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
2Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139

3Department of Physics, University of Florida, Gainesville, FL 32611
4National High Magnetic Field Laboratory, Tallahassee, FL 32310 and

5NIST Center for Neutron Research, Gaithersburg,
MD 20899 and Department of Materials Science and Engineering,

University of Maryland, College Park, MD, 20742
∗email: younglee@mit.edu

(Dated: April 6, 2007)

We have performed thermodynamic and neutron scattering measurements on the S = 1/2 kagomé
lattice antiferromagnet ZnCu3(OH)6Cl2. The susceptibility indicates a Curie-Weiss temperature of
θCW ! −300 K; however, no magnetic order is observed down to 50 mK. Inelastic neutron scattering
reveals a spectrum of low energy spin excitations with no observable gap down to 0.1 meV. The
specific heat at low-T follows a power law temperature dependence. These results suggest that an
unusual spin liquid state with essentially gapless excitations is realized in this kagomé lattice system.

An important challenge in condensed matter physics is
the search for quantum disordered ground states in two
dimensional systems. Of particular interest is studying
quantum spin liquids, an example of which is the “res-
onating valence bond” state proposed by Anderson[1].
These states are unusual in that neither translational nor
spin rotational symmetries are broken. It is believed that
the S = 1/2 Heisenberg antiferromagnet on a kagomé lat-
tice (composed of corner sharing triangles) is an ideal sys-
tem to look for spin liquid physics due to the high degree
of frustration. There is broad theoretical consensus that
the ground state of the S = 1/2 kagomé antiferromagnet
is not magnetically ordered[2, 3, 4, 5, 6, 7, 8]. How-
ever, many basic properties are still under debate, such
as the magnitude of the gap to the first triplet state.
An intriguing possibility is the existence of deconfined
S = 1/2 spinons as the fundamental excitations, as op-
posed to conventional S = 1 magnons.

Despite heavy theoretical interest, experimental stud-
ies of the S = 1/2 kagomé lattice have been ham-
pered by the difficulty in synthesizing such materials.
Here, we report thermodynamic and neutron scattering
measurements on powder samples of ZnCu3(OH)6Cl2,
known as herbertsmithite[9]. As has been previously
reported[10], ZnxCu4−x(OH)6Cl2 can be synthesized
with variable Zn concentration, from x=0 to x=1 (her-
bertsmithite). Figure 1(a) represents the transfor-
mation from Cu2(OH)3Cl, which has a distorted py-
rochlore structure, to ZnCu3(OH)6Cl2, which consists of
Cu kagomé layers separated by nonmagnetic Zn layers.
Structurally, ZnCu3(OH)6Cl2, with space group R3̄m
and lattice parameters a = b = 6.832 Å and c = 14.049 Å,
appears to be an excellent realization of the S = 1/2
kagomé lattice antiferromagnet. Initial evidence is the
absence of long-range magnetic order, as shown in the
neutron diffraction scans in Fig. 1(b). In Cu2(OH)3Cl,

clear magnetic Bragg peaks are observed below ∼ 6 K;
whereas no magnetic Bragg peaks are observable down
to 1.8 K in ZnCu3(OH)6Cl2.

To further characterize the properties of
ZnCu3(OH)6Cl2, we performed magnetic susceptibility
measurements on powder samples. The susceptibility,
shown in Fig. 1(c), can be fit to a Curie-Weiss law at high
temperatures (T > 200 K). The resulting Curie-Weiss
temperature of −300±20 K implies an antiferromagnetic
exchange J # 17 meV, calculated using the series expan-
sion corrections for the kagomé lattice[11, 12, 13]. The
susceptibility continually increases as the temperature
is lowered down to 1.8 K. At first glance, this behavior
may suggest the presence of several percent free spin-1/2
impurities yielding a Curie tail. This is certainly possi-
ble, but is not necessarily the case. From the chemical
analyses, we calculate the stoichiometric coefficients to
be 3.00 ± 0.04 on the Cu site and 1.00 ± 0.04 on the Zn
site. Also, we have measured the ac susceptibility at
temperatures down to 50 mK, as shown in the inset of
Fig. 1(c). These data do not follow the simple Brillouin
function behavior expected for free S = 1/2 spins. In
particular, the susceptibility increase from 705 mK to
50 mK is much smaller than the free spin prediction.
Recently, Ofer and coworkers[14] have shown that the
muon Knight shift and transverse relaxation rate have
T dependences similar to the measured susceptibility.
Hence, the measured susceptibility may be intrinsic to
the Cu kagomé system. We note that similar behavior
is found for the frustrated S = 1/2 nuclear moments of
3He films on graphite, where the susceptibility is found
to continually increase with decreasing temperature
down to T ∼ J/300[15]. Another recent µSR study[16]
emphasizes the role of defects. The roles of impurities
and exchange or Dzyaloshinskii-Moriya[17] anisotropies
in this system remain important topics for further

Herbertsmithite
“Ideal” Kagome lattice

1284 Can. J. Phys. Vol. 79, 2001

Fig. 1. Corner-sharing lattices, clockwise from top left: the pyrochlore lattice. A projection of the lattice of the

gadolinium gallium garnet (GGG), which consists of two separate, interpenetrating sublattices of corner-sharing

triangles. The Kagome lattice.A side-on view of the trilayer lattice of SCGO, consisting of triangles and tetrahedra.

It can be thought of as two Kagome layers coupled by an intermediate triangular layer (circles).

frustrated SCGO, GGG, Kagome, and pyrochlore lattices (see Fig. 1) [4].2

Geometric frustration arises when the arrangement of spins on a lattice precludes satisfying all

interactions at the same time. The simplest case is provided by a group of three anti-ferromagnetically

coupled spins: once two spins point in opposite directions, the third one cannot be antiparallel to

both of them. Geometrically frustrated magnets are considered to be in a separate class both from

unfrustrated and from disordered magnets (spin glasses and the like). This article concentrates on

continuous, classical, disorder-free geometrically frustrated magnetism, although discrete, quantum,

and disordered models are also briefly discussed.

The popularity of geometrically frustrated magnets stems from the very rich behaviour they present.

For example, magnetic analogues of solid, glassy, liquid, and even ice phases have been identified in

this class of magnets, which is increasingly seen as providing a stage for studying generic questions in

many-body physics in a set of well-characterized compounds described by simple model Hamiltonians.

A wide range of experimental probes are available for their study — including neutron and X-ray

scattering, muon spin rotation (µSR), nuclear magnetic resonance (NMR), and susceptibility and heat

capacity measurements—which yield complementary information. For instance, recently begun NMR

measurements on SCGO are providing information about the local physics at the different inequivalent

sites of the magnetic Cr ions [5], complementing our knowledge obtained from the probes from which

such local information is harder to extract [4]. In the following, however, only cursory reference will

be made to experiment, since a number of detailed experimental reviews exist, to which the reader is

2 Several of these experiments, as well as related theoretical work, are treated in other articles of this volume.

©2001 NRC Canada
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Spin Liquid State in S = 1/2 Hyper-Kagomé Antiferromagnet Na4Ir3O8

Yoshihiko Okamoto1,∗, Minoru Nohara2, Hiroko Aruga-Katori1, and Hidenori Takagi1,2

1RIKEN (The Institute of Physical and Chemical Research),
2-1 Hirosawa, Wako, Saitama 351-0198, Japan

2Department of Advanced Materials,
University of Tokyo and CREST-JST,

5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan

(Dated: May 19, 2007)

A spinel related oxide, Na4Ir3O8, was found to have a three dimensional network of corner shared
Ir4+ (t2g

5) triangles. This gives rise to an antiferromagnetically coupled S = 1/2 spin system formed
on a geometrically frustrated hyper-Kagomé lattice. Magnetization M and specific heat C data
showed the absence of long range magnetic ordering at least down to 2 K. The large magnetic specific
heat at low temperatures, which shows a power law decay with temperature and is independent
of applied magnetic field up to 12 T, is in striking parallel to those of triangular and kagomé
antiferromagnets reported to have a spin liquid ground state. These results strongly suggest that
the ground state of Na4Ir3O8 is a spin liquid.

PACS numbers: Valid PACS appear here

Experimental realization of a quantum spin liquid in
geometrically frustrated magnets has been one of the
biggest challenges in the field of magnetism since P. W.
Anderson proposed resonating valence bond theory [1] for
antiferromagnetically coupled S = 1/2 spins on a trian-
gular lattice. Geometrical frustration in magnets arises
from the incompatibility of local spin-spin interactions,
which gives rise to macroscopic degeneracy of the ground
state. Possible playgrounds for this include triangular,
kagomé, pyrochlore and garnet lattices essentially con-
sisting of networks of triangles. In real materials, how-
ever, it is not easy to prevent spin ordering at substan-
tially lower temperatures than the Curie-Weiss temper-
ature θW, the mean field transition temperature. This
is because the spin degeneracy can be lifted by coupling
with the other degrees of freedom such as the orbitals,
lattice and charges. Such an interplay between the frus-
trated spins, orbitals and lattices, for example, can be
found in a trimer singlet formation in the S = 1 trian-
gular LiVO2 [2, 3] with orbital ordering or a spin-Jahn-
Teller transition in the S = 3/2 pyrochlore ZnCr2O4 [4].
In addition, only a minute amount of disorder is known
to strongly influence the spin liquid state in geometri-
cally frustrated magnets and very often gives rise to a
formation of a glassy state of spins.

The most likely candidate for the realization of a spin
liquid ground state had been the two dimensional kagomé
antiferromagnet SrCr9pGa12−9pO19 (S = 3/2) [5, 6]. It
does not show any evidence for long range ordering down
to the lowest temperature ∼ 100 mK, and a large and field
independent magnetic specific heat was observed which
was ascribed to spin liquid contributions. Nevertheless,
the strong spin glass-like behavior at low temperatures,
very likely due to site disorder, gives us certain ambigu-
ity in identifying the spin-liquid state. Recently, a new
generation of spin liquid compounds has emerged, the S
= 1/2 triangular magnet κ-(ET)2Cu2(CN)3 [7], an or-

ganic Mott insulator, and the S = 1 triangular magnet
NiGa2S4 [8]. They were reported to have a spin liquid
ground state or at least a robust liquid phase down to
100 mK. Their magnetic and thermal properties are in
striking parallel to those of SrCr9pGa12−9pO19 but the
disorder effect appears much less.

Here we report on a three dimensional analogue of
these two dimensional spin liquids. Na4Ir3O8 was first
reported as an unidentified phase in the Na-Ir-O ternary
system by McDaniel [9]. We found that it is isostructural
to Na4Sn3O8 [10] and that a S = 1/2 hyper-Kagomé
system, consisting of low spin d5 Ir4+ ions, is realized
in Na4Ir3O8. The magnetization and specific heat mea-
surements on the ceramic samples indicate that S = 1/2
spins are highly frustrated and remain in a liquid state
down to the lowest temperature measured.

Polycrystalline samples of Na4Ir3O8 were prepared
by a solid-state reaction. Stoichiometric amounts of
Na2CO3 and IrO2 were mixed, and the mixture was cal-
cined at 750◦C for 18 h. We added 5 % excess of Na2CO3

to compensate the loss of Na during the calcination. The
product was finely ground, pressed into a pellet, sintered
at 1020◦C for 22 h on gold foil, and then quenched in
air. Powder X-ray diffraction (XRD) data showed that
the powders were single phase. The crystal structure was
determined by performing Rietveld analysis on the pow-
der XRD data using RIETAN-2000 program [11]. Ther-
modynamic and magnetic properties were measured by a
Physical Properties Measurement System (PPMS, Quan-
tum Design) and a Magnetic Properties Measurement
System (MPMS, Quantum Design).

We were able to refine the powder XRD pattern with
the cubic Na4Sn3O8 structure (P4132 or P4332) [10].
The result of refinement is summarized in table I and Fig.
1 (b). The structure of Na4Ir3O8, shown in Fig. 1 (a), is
derived from those of spinel oxides (AB2O4), which can
be intuitively demonstrated by rewriting the chemical
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FIG. 1: (a) Crystal structure of Na4Ir3O8 with the space
group P4132. Among the three Na sites, only Na1 site is
shown for clarity. Black and gray octahedra represent IrO6

and Na1O6 respectively. The spheres inside the octahedra
represent Ir and Na atoms and oxygens occupy all the corners.
(b) The X-ray diffraction pattern of Na4Ir3O8 at room tem-
perature. The crosses indicate the raw data and the solid line
indicates that calculated based on the refinement. (c) Hyper-
Kagomé Ir and Na sublattice derived from the structure of
Na4Ir3O8 with the space group P4132, shown in (a). (d) Ir
and Na sublattice derived from the structure of Na4Ir3O8 with
the space group P4332.

TABLE I: Atomic parameters obtained by refining X-ray pow-
der diffraction for Na4Ir3O8 at room temperature with a space
group P4132. The cubic lattice constant is a = 8.985 Å. g of
Na2 and Na3 are fixed to 0.75 according to Ref. [10].

x y z g B (Å)
Ir 12d 0.61456(7) x + 1/4 5/8 1.00 0.15

Na1 4b 7/8 7/8 7/8 1.00 2.6
Na2 4a 3/8 3/8 3/8 0.75 2.6
Na3 12d 0.3581(8) x + 1/4 5/8 0.75 2.6
O1 8c 0.118(11) x x 1.00 0.6
O2 24e 0.1348(9) 0.8988(8) 0.908(11) 1.00 0.6

formulae as (Na1.5)1(Ir3/4, Na1/4)2O4. The B-sublattice
of spinel oxides forms the so-called pyrochlore lattice, a
network of corner shared tetrahedra. In Na4Ir3O8, each
tetrahedron in the B-sublattice is occupied by three Ir
and one Na (Na1). These Ir and Na atoms form an in-
triguing ordering pattern as shown in Fig. 1 (c), giv-
ing rise to a network of corner shared Ir triangles, called
hyper-Kagomé lattice. All the Ir sites and Ir-Ir bonds are
equivalent and, therefore, strong geometrical frustration
is anticipated. Hyper-Kagomé is also realized in the A-
sublattice of the garnet A3B5O12 but distorted. It might
be interesting to infer here that there exists a chirality
in this hyper-Kagomé lattice and that the two structures
P4132 (Fig. 1 (c)) and P4332 (Fig. 1 (d)) have different
degenerate chiralities. Na1.5 in Na1.5(Ir3/4, Na1/4)2O4

occupies the octahedral A site rather than the tetrahe-
dral A site normally occupied in a conventional spinel
structure [10]. We refined the structure by assuming two
Na sites, Na2 and Na3, in AO6 octahedra with 75 %
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FIG. 2: Temperature dependence of the inverse magnetic sus-
ceptibility χ−1 under 1 T (a), magnetic specific heat Cm

divided by temperature T (b) and magnetic entropy Sm

(c) of polycrystalline Na4Ir3O8. To estimate Cm, data for
Na4Sn3O8 is used as a reference of the lattice contribution.
Inset: (a) Temperature dependence of magnetic susceptibil-
ity χ of Na4Ir3O8 in various fields up to 5 T. For clarity, the
curves are shifted by 3, 2 and 1 × 10−4 emu/mol Ir for 0.01,
0.1 and 1 T data respectively. (b) Cm/T vs T of Na4Ir3O8

in various fields up to 12 T. Broken lines indicate Cm propor-
tional to T 2 and T 3 respectively.

occupation following Ref. [10]. There remains a certain
ambiguity in the refinement of the Na2 and Na3 sites
because of the small scattering factor compared with Ir.

Ir in this compound is tetravalent with five electrons
in 5d orbitals. Because of the octahedral coordination
with oxygens and the large crystal field splitting effect
expected for 5d orbitals, it is natural for Ir4+ to have a
low spin (t2g

5) state with S = 1/2. The electrical resistiv-
ity ρ of a ceramic sample at room temperature was ∼ 10
Ωcm, followed by a thermally activated increase with an
activation energy of 500 K with decreasing temperature.
Considering that all Ir is equivalent, Na4Ir3O8 should be
a S = 1/2 Mott insulator formed on a hyper-Kagomé
lattice.

The temperature dependent magnetic susceptibility
χ(T ), shown in Fig. 2 (a), indicates that Na4Ir3O8 is
indeed a frustrated S = 1/2 system with a strong anti-
ferromagnetic interaction. In the χ−1 vs T plot in Fig.
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Kitaev-Heisenberg Model on a Honeycomb Lattice: Possible Exotic Phases in Iridium
Oxides A2IrO3

Jǐŕı Chaloupka,1, 2 George Jackeli,2, ∗ and Giniyat Khaliullin2

1Department of Condensed Matter Physics, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
2Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany

(Dated: July 12, 2010)

We derive and study a spin one-half Hamiltonian on a honeycomb lattice describing the exchange
interactions between Ir4+ ions in a family of layered iridates A2IrO3 (A=Li, Na). Depending on the
microscopic parameters, the Hamiltonian interpolates between the Heisenberg and exactly solvable
Kitaev models. Exact diagonalization and a complementary spin-wave analysis reveal the presence
of an extended spin-liquid phase near the Kitaev limit and a conventional Néel state close to the
Heisenberg limit. The two phases are separated by an unusual stripy antiferromagnetic state, which
is the exact ground state of the model at the midpoint between two limits.

PACS numbers: 75.10.Jm, 75.25.Dk, 75.30.Et

Magnetic systems exhibit, most commonly, long-range
classical order at sufficiently low temperatures. An ex-
ception are frustrated magnets, in which the topology of
the underlying lattice and/or competing interactions lead
to an extensively degenerate manifold of classical states.
In such systems, exotic quantum phases of Mott insula-
tors (spin liquids, valence bond solids, etc.) can emerge
as the true ground states (for reviews see Refs. [1, 2]). In
quantum spin liquids, strong zero-point fluctuations of
correlated spins prevent them to “freeze” into magnetic
or statically dimerized patterns, and conventional phase
transitions that break time-reversal and lattice symme-
tries are avoided. Spin liquids have attracted particular
attention since Anderson proposed their possible connec-
tion to superconductivity of cuprates [3].

Recently, spin-liquid states of matter have been exem-
plified, on a quantitative level, by an exactly solvable
model by Kitaev [4]. His model deals with spins one-half
that live on a honeycomb lattice. The nearest-neighbor
(NN) spins interact in a simple Ising-like fashion but, be-
cause different bonds use different spin components [see
Fig. 1(a)], the model is highly frustrated. Its ground state
is spin-disordered and supports the emergent gapless ex-
citations represented by Majorana fermions [4]. Spin-
spin correlations are, however, short-ranged and confined
to NN pairs [5, 6]. This may suggest the robustness of
the disordered state to spin perturbations. Indeed, Tsve-
lik has shown [7] that there is a window of stability for
the spin-liquid state in the Kitaev model perturbed by
isotropic Heisenberg exchange.

Finding a physical realization of this remarkable model
is a great challenge, also because of its special properties
attractive for quantum computation [4]. As the key el-
ement of the model is a bond-selective spin anisotropy,
one possible idea [8] is to explore Mott insulators of late
transition metal ions with orbital degeneracy, in which
the bond directional nature of electron orbitals can be
translated into a desired anisotropy of magnetic interac-
tions through strong spin-orbit coupling.

In this Letter, we examine the iridium oxides A2IrO3

from this perspective. In these compounds, the Ir4+ ions
have an effective spin one-half moment and form weakly
coupled honeycomb-lattice planes. Our analysis of the
underlying exchange mechanisms shows that the spin
Hamiltonian comprises two terms, ferromagnetic (FM)
and antiferromagnetic (AF), in the form of Kitaev and
Heisenberg models, respectively. The model has an in-
teresting phase behavior and hosts, in addition to the
spin-liquid state, an unusual AF order that is also an
exact solution at a certain point in phase space.
Experimental studies of iridium compounds are rather

scarce, and the nature of their insulating behavior is not
yet fully understood. In fact, Na2IrO3 was suggested as
an interesting candidate for a topological band insulator
[9]. Given that high temperature magnetic susceptibil-
ities of Na2IrO3 and Li2IrO3 obey the Curie-Weiss law
with an effective moment corresponding S = 1/2 per Ir
ion [10–13], we start here with the Mott insulator picture.
The Hamiltonian.– We recall that the Ir4+ ion in the

octahedral field has a single hole in the threefold degener-
ate t2g level hosting an orbital angular momentum l = 1.
Strong spin-orbit coupling lifts this degeneracy, and the
resulting ground state is a Kramers doublet with total
angular momentum one-half [14], referred to as “spin”
hereafter. In fact, it is predominantly of orbital origin,
and this is what makes the magnetic interactions highly
anisotropic due to the spin-orbit entanglement of mag-
netic and real spaces. In A2IrO3 compounds, the IrO6

octahedra share the edges, and Ir ions can communicate
through two 90◦ Ir-O-Ir exchange paths [8] or via direct
overlap of their orbitals. Collecting the possible exchange
processes (discussed below) and projecting them onto the
lowest Kramers doublet with S = 1/2, we obtain the fol-
lowing spin Hamiltonian on a given NN ij bond:

H(γ)
ij = −J1 Sγ

i S
γ
j + J2 Si ·Sj . (1)

Here, spin quantization axes are taken along the cubic
axes of IrO6 octahedra. In a honeycomb lattice formed

4

atures. If the exchange interactions were purely Kitaev
like they would have been ferromagnetic and we would
have obtained a positive Weiss temperature θ and addi-
tionally the ground state would have been a spin-liquid.
Therefore, the magnetic properties of these materials are
not governed entirely by Kitaev physics alone.
If on the other hand the exchange interactions were

entirely Heisenberg like, then these materials would have
shown a simple Néel type antiferromagnetic ordering.
However, recent resonant x-ray scattering measurements
on single crystalline Na2IrO3 have established that the
magnetic order is not a simple Néel antiferromagnet but
is rather of a stripy antiferromagnetic kind.16 Such a
stripy AFM state has been predicted for the Heisenberg-
Kitaev model when the parameter α in the model lies in
the range 0.4 ≤ α ≤ 0.8.11,13 Given the similarities of
the magnetic anomalies in the χ(T ) and C(T ) data for
both Na2IrO3 and Li2IrO3 it is most likely that Li2IrO3

also shows a similar stripy antiferromagnetic structure.
Thus there are strong indications that the A2IrO3 mate-
rials lie in the region 0.4 ≤ α ≤ 0.8 of the Heisenberg-
Kitaev model. Calculations of the finite temperature
Heisenberg-Kitaev model predict that if the system stays
in the region where 0.4 ≤ α ≤ 0.8 then θ monotonically
decreases with increasing α.13 Remarkably however, it is
also predicted that the magnetic ordering temperature
stays unchanged between 0.4 ≤ α ≤ 0.7 and only starts
dropping significantly as one approaches the Kitaev limit
beyond α ≥ 0.8 where long range order is replaced by a
spin-liquid state as the ground state.13 The reduction of
the Weiss temperature scale on increasing α is natural
since the Heisenberg term comes with an antiferromag-
netic sign and the Kitaev term comes with a ferromag-
netic sign. This reduction in the Weiss temperature scale
is indeed observed for our systems where θ decreases from
≈ −125 K to ≈ −33 K on going from Na2IrO3 to the
Li2IrO3 system. We can get a lower-limit estimate of
the proximity of the Li2IrO3 system to the Kitaev limit
of α ≥ 0.8 by assuming that Na2IrO3 sits at the lower
edge α = 0.4 of the region in which the stripy antiferro-
magnetism is observed. We can then use the theoretical
predictions of the variation of the Weiss temperature ver-
sus α [Ref. 13] and our experimental estimates of θ for

Na2IrO3 and Li2IrO3 to obtain α ≈ 0.6 as a lower limit
for Li2IrO3. Thus, Li2IrO3 lies very close to the Kitaev
limit α ≥ 0.8.
In going from the Na to the Li system the a, b lattice

parameters are reduced by ≈ 4.5% while the c parame-
ter is reduced by ≈ 10%. Thus, substituting Na by Li
is equivalent to preferentially applying chemical pressure
along the c axis (⊥ to the honeycomb planes). This leads
to a decrease of the c-axis distortion of the IrO6 octahe-
dra which enhances the parameters η1,2 leading to an
increased Kitaev coupling.11 This is consistent with the
value of α ≥ 0.6 for Li2IrO3 which puts its closer to the
Kitaev limit.
In addition to the above reduction of the Weiss scale,

the antiferromagnetic ordering temperature TN ≈ 15 K
is the same for both Na2IrO3 and Li2IrO3 despite a
factor of≈ 5 reduction of θ. This counter-intuitive re-
sult is again in direct agreement with the above theo-
retical predictions of the finite temperature Hiesenberg-
Kitaev model.13 The above independence of TN on θ for
0.4 ≤ α ≤ 0.7 and the factor of 8 reduction of TN com-
pared to θ for the Na system, are issues that will need
to be addressed in future experimental and theoretical
work.
In summary, our results provide the strongest support

yet that the A2IrO3 materials are the first realization of
the Heinsenberg-Kitaev model in real solid-state materi-
als. From the above comparison of experiment and the-
ory it is also clear that Li2IrO3 lies close to the α ≥ 0.8
Kitaev limit. The application of c-axis pressure to the
A2IrO3 materials can push them closer to the Kitaev
limit and the Li2IrO3 system should be easier to tune
given that it most likely lies close to α = 0.8.
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Generic Spin Model for the Honeycomb Iridates beyond the Kitaev Limit
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Recently, realizations of Kitaev physics have been sought in the A2IrO3 family of honeycomb iridates, origi-
nating from oxygen-mediated exchange through edge-shared octahedra. However, for the je⇥ = 1/2 Mott insu-
lator in these materials exchange from direct d-orbital overlap is relevant, and it was proposed that a Heisenberg
term should be added to the Kitaev model. Here we provide the generic nearest-neighbour spin Hamiltonian
when both oxygen-mediated and direct overlap are present, containing a bond-dependent o⇥-diagonal exchange
in addition to Heisenberg and Kitaev terms. We analyze this complete model using a combination of classical
techniques and exact diagonalization. Near the Kitaev limit, we find new magnetic phases, 120⌅ and incommen-
surate spiral order, as well as extended regions of zigzag and stripy order. Possible applications to Na2IrO3 and
Li2IrO3 are discussed.

The honeycomb family of iridium oxides[1–11] has at-
tracted a considerable amount of attention [12–20] due to
the possibility they lie near a realization of Kitaev’s exactly
solvable spin-1/2 honeycomb model[21]. This model hosts
a number of remarkable features: a Z2 spin liquid with gap-
less Majorana fermions and (non-Abelian) anyonic excita-
tions under an applied magnetic field. No symmetry prin-
ciple excludes terms besides the Kitaev, so additional inter-
actions are generically expected. From microscopic calcu-
lations of exchange mediated through the edge-shared oxy-
gen octahedra, it has been proposed that a pure Kitaev model
of je⇥ = 1/2 spins was the appropriate description[22]. It
was further suggested that direct overlap of the d-orbitals
generalizes this to a Heisenberg-Kitaev (HK) model[13], lin-
early interpolating between an isotropic Heisenberg model
and Kitaev’s bond-dependent exchange Hamiltonian. Exten-
sive study of the HK model[23–28] has shown a variety of fas-
cinating phenomena, including an extended spin liquid phase
and quantum phase transitions into several well-understood
magnetic ground states. While present, the zigzag phase seen
in Na2IrO3 [2, 4, 6] is di⇤cult to stabilize within the HK
model; one must resort to additional t2g-eg exchange paths[18]
or further neighbour hoppings[14]. In light of this puzzle one
may question whether the HK model provides an adequate de-
scription of the honeycomb iridates even at the nearest neigh-
bour level.

In this Letter, we show that when applied to the honey-
comb iridates the HK model is incomplete, explicitly deriving
the je⇥ = 1/2 spin model from a multiorbital t2g Hubbard-
Kanamori Hamiltonian. Considering the most idealized crys-
tal structure, an additional spin-spin interaction beyond the
HK model must be included: bond-dependent symmetric o⇥-
diagonal exchange. The complete spin Hamiltonian has the
form

H =
⇤

⌃i j⌥⇧�⇥(⇤)

⌅
J�S i · �S j + KS ⇤i S ⇤j + �

�
S �i S ⇥j + S ⇥i S �j

⇥⇧
, (1)

where J is Heisenberg exchange, K is the Kitaev exchange,
and � denotes the symmetric o⇥-diagonal exchange. On each
bond we distinguish one spin direction ⇤, labeling the bond

yx

z

zx(y)

yz(x)

xy(z)

Ir4+

O2�A+

FIG. 1: Crystal structure of the honeycomb iridates A2IrO3
with Ir4+ in black, O2� in white, and A = Na+,Li+ in gray.
For the Kitaev and bond-dependent exchanges we have
denoted the yz(x) bonds blue, the zx(y) bonds green and the
xy(z) bonds red.

�⇥(⇤) where � and ⇥ are the two remaining directions. Ex-
amining the phase diagram using a combination of classical
arguments and exact diagonalization, we find that with the in-
clusion of � new magnetic phases are stabilized near the Ki-
taev limits: an incommensurate spiral (IS) and 120⌅ order, in
addition to extended regions of zigzag and stripy order.

Microscopics.– We first construct a minimal model of a
honeycomb lattice of Ir4+ ions surrounded by a network of
edge-sharing oxygen octahedra. The Ir4+ 5d levels are split
into an eg doublet and t2g triplet by large crystal field e⇥ects,
leaving a single hole in the t2g states. Within the t2g mani-
fold, the orbital angular momentum behaves as an le⇥ = 1
triplet, with large spin-orbit coupling splitting this into an ac-
tive je⇥ = 1/2 doublet and filled je⇥ = 3/2 states. Because of
significant on-site interactions, localized je⇥ = 1/2 spins pro-
vide an e⇥ective model for the low-energy physics. To per-
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tNN
ij =

�

�
t1 t2
t2 t1

t3

�

�
Other terms are smaller 
then 20 meV and ignored.

a

b

c

Z-bonds
X-bonds

Y-bonds

Lattice	parameters	and	hopping	integrals	vs.	Pressure
(Lattice	optimized	with	SOC+U=2eV	in	VASP.	No	SOC,	U	is	included	in	Wannier	orbital	calculation)

Lattice	constants hopping:	Z-bonds	(in	eV) {X,Y}-bonds	(in	eV)
a/a0 b/b0 c/c0 t1 |t2| t3 t1 |t2| t3

-3.9 1.008 1.010 1.012 0.080 0.248 -0.139 0.078 0.248 -0.128
-1.1 0.998 0.998 1.004 0.087 0.242 -0.176 0.090 0.242 -0.185
2.1 0.988 0.986 0.996 0.094 0.241 -0.201 0.102 0.240 -0.240
5.9 0.978 0.974 0.987 0.100 0.237 -0.231 0.115 0.232 -0.302
10.2 0.968 0.962 0.980 0.106 0.238 -0.248 0.131 0.228 -0.365

Exchange	interactions	from	the	above	hopping	integrals	
(U=2.0eV,	J_H/U=0.2,	SOC=0.45eV	used.	J-K-G	ratio	is	robust	against	parameter	change.)

Lattice	constants JKG:	Z-bonds	(in	meV) JKG:	{X,Y}-bonds	(in	meV)
a/a0 b/b0 c/c0 J K Gamma J K Gamma

-3.9 1.008 1.010 1.012 -1.4 -6.5 -5.2 -1.1 -6.8 -4.9
-1.1 0.998 0.998 1.004 -2.2 -5.1 -6.1 -2.4 -4.8 -6.4
2.1 0.988 0.986 0.996 -2.7 -4.2 -6.8 -3.4 -2.7 -7.9
5.9 0.978 0.974 0.987 -3.2 -2.8 -7.5 -4.1 0.6 -9.3
10.2 0.968 0.962 0.980 -3.6 -2.1 -8.1 -4.9 4.3 -10.8

a2 6.1742 6.1742 4.0687 3.0 3.0 2.0 6.0 6.0 0.0
a1 4.1486 8.1999 0 2.0 4.0 0.0 -2.0 2.0 0.0
a3 -2.0257 2.0257 4.0687 -1.0 1.0 2.0 0.0 0.0 4.0

c-a-b c0-a0-b0raio
12.348 12.348 0 17.463 17.8271 0.9796
-4.0513 4.0513 0 5.7294 5.9194 0.9679

0 0 8.1373 8.1373 8.4562 0.9623

Pressur
e	

Pressur
e	

Hopping integral between neighboring Ir t2g orbitals:

8

bonds are ferromagnetically correlated. As a result, despite
being in the AF-Heisenberg regime, there is a net moment in
the â direction. The size of the net moment is small, especially
compared to the FMa phase, and decreases as we approach the
SPa+ phase or the AF Kitaev point. We illustrate this decrease
in net moment by the lightening of the color contours.

B. Existing magnetic orders

AFc: This collinear phase is the exact ground state in the
AF-Heisenberg region when J > �K and J > �: the LTA
succeeds in finding this exact ground state for both lattices.
This phase is the HK-AF state with moments aligned antifer-
romagnetically and locked in the ĉ direction due to the pres-
ence of �.

FMa: This coplanar state with finite net moment encom-
passes a large fraction of both phase diagrams. Only in the hy-
perhoneycomb does the LTA succeed in identifying this phase
as the exact ground state. In both lattices, the projection of
the spins along the â direction is ferromagnetic while the pro-
jection along the ĉ direction vanishes. The projection along
the b̂ direction behaves differently for the hyperhoneycomb
and the H–1 models. In the hyperhoneycomb lattice, the b̂

component orders in the skew-zigzag order, while in the H–1
lattice, the b̂ component is ferromagnetic within each honey-
comb strip. This state is connected to the HK-FM phase, and
in the case of the hyperhoneycomb lattice, it is also connected
to the J > �K/2 segment of the HK-SZ phase, where ObD
studies have shown that the HK-SZ phase orders in the b̂ di-
rection, much like the FMa phase. The Ca

2 rotation symmetry
is preserved in this phase.

Since the b̂ component of the phase in both lattices have
a vanishing net moment, only the â component contributes to
the total moment. This total moment becomes saturated (spins
point entirely in the â direction) when approaching the HK-
FM phase and decreases smoothly as we approach the SPa�

boundary. In the hyperhoneycomb case, the total moment fur-
ther decreases and vanishes smoothly as we approach the HK-
SZ phase. The magnitude of the moment along â is depicted
by the color contours in Fig. 2 where the largest projection is
colored darkest.

SSx/y: Wedged within the HK-SS, AFc, and SPb+ phases
are two skew-stripy phases, the first of which to be discussed
is the non-coplanar SSx/y phase. This phase has the largest
projection along the x(y) direction and this component orders
in a skew-stripy fashion (these two orientations are degener-
ate). In the hyperhoneycomb lattice, the other two Cartesian
components of the spins are small but finite and ensure that
the spins along each zigzag chain are collinear. In the H–1
lattice, the y(x) component also orders in a skew-stripy fash-
ion. This phase does not have a net moment and breaks all C2

symmetries.
SSb: This other skew-stripy phase is coplanar and lies far-

ther away from the FM Kitaev point relative to the SSx/y

phase. This phase borders the AFc phase and can be identified
via the LTA in the hyperhoneycomb lattice. In both lattices,
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(b) H–1 model

FIG. 5. (Color online) Classical phase diagrams for the J–K–�
pseudospin model with �  0. The details of this phase diagram
can be understood via a classical mapping that relates (J,K,�) !

(�J,�K,��); see Sec. V C for details. The color contours are
guides for the eye: in the case of spiral (SP) states, they represent the
length of the Q-vector, whereas in the case of non-spiral states, they
represent properties relevant to that particular phase; see Sec. V for
details.

Some	notable	features:	
1. Pressure	reduces	the	Ir-Ir	distance,	changing	

t3	term	drastically.	
2. Strain	is	anisotropic:	X/Y	bonds	are	more	

strongly	affected	by	the	pressure.		
3. At	high	pressure,	sign	of	Kitaev	term	can	be	

opposite	for	X/Y	and	Z	bonds.		
4. Γ	dominates	at	high	P.

Low-P

High-P
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FIG. S3. (Color online) Band structures (solid red lines) calculated from tight-binding calculations including up to (a) NN, (b) NNN, and (c)
third-NN hopping terms from the Wannier orbital calcualtions tabulated in Table. S3, compared to those from ab-initio results (dashed grey
lines). SOC is included in the calculations.

The role of further-neighbor hopping amplitudes in the
band structure are shown in Fig. S3, where the evolution of
band structure as we include NNN and third NN terms are
presented. Fig. S3 shows the change of the band structures
as further-neighbor hopping terms are included with the pres-
ence of SOC; Fig. S3(a), (b) and (c) show the bands with hop-
ping terms up to NN, NNN, and third NN terms, respectively,
with the presence of SOC. One can see that, the large SOC
in Ir tends to make the jeff = 1/2 bands to be flatter in this
locally honeycomb-like lattice, and including NNN and third
NN terms does not change the overall behavior. Comparing
Fig. S3(a) and Fig. S3(b), one can notice that the dispersion
inside the jeff = 1/2 subbands is affected by the NNN terms,
but the semi-metallic character is left unchanged. Inclusion
of third NN terms, as can be seen in Fig. S3(c), makes the
dispersion slightly closer to the ab-initio bands.
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NN exchange interactions

The exchanges J , K, and � are given by (suppressing the
bond label ↵)

J =
4
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where ti (i = 1, 2, 3), JH , U , and � are the NN hopping
amplitudes, Hund’s coupling, on-site Coulomb repulsion, and
SOC respectively[9]. ti is illustrated in Fig. S2(a). Note that,
the small amount of NN Heisenberg interaction is attributed
to the cancelation between the 2t1 and t3 in the antiferromag-
netic contrubution to J in Eq. 1. Since t2 is the largest term,
as mentioned in the main text, ferromagnetic K becomes the
most dominant contribution in the exchange interactions.

TABLE S3: A subset of Ir t2g hopping terms Tij as representatives of each
hopping channels up to third NN, where Hhop =

P
ij C

†
i ·Tij ·Cj and C† and

C† being the creation and annihilation operator for t2g states, respectively. d is
approximate distance between Ir and O. Other hopping terms can be recovered
by applying Tji = T†

ij , Ca,b,z
2

rotations, and inversion operations.

Kind rij (in Cartesian coord.) Sublattice Ue↵ = 0.0 eV Ue↵ = 1.5 eV Ue↵ = 3.0 eV

tNN dxy dxz dyz dxy dxz dyz dxy dxz dyz
X,X’ (-d, 0,+d) 1 ! 4 dxy +0.088 +0.018 +0.260 +0.080 +0.019 +0.276 +0.064 +0.021 +0.289

dxz +0.018 -0.152 +0.013 +0.020 -0.110 +0.013 +0.021 -0.051 0.005
dyz +0.259 +0.013 +0.078 +0.276 +0.013 +0.067 +0.288 0.003 +0.052

tNN dxy dxz dyz dxy dxz dyz dxy dxz dyz
Z (+d,+d, 0) 1 ! 2 dxy -0.162 -0.022 +0.021 -0.119 -0.024 +0.023 -0.059 -0.031 +0.030

dxz +0.016 +0.087 -0.239 +0.017 +0.078 -0.255 +0.025 +0.072 -0.269
dyz -0.016 -0.239 +0.086 -0.017 -0.254 +0.077 -0.024 -0.271 +0.056

Continued in next page...

Exchange interactions:

tNN
ij =

�

�
t1 t2
t2 t1

t3

�

�
Other terms are smaller 
then 20 meV and ignored.

a

b

c

Z-bonds
X-bonds

Y-bonds

Lattice	parameters	and	hopping	integrals	vs.	Pressure
(Lattice	optimized	with	SOC+U=2eV	in	VASP.	No	SOC,	U	is	included	in	Wannier	orbital	calculation)

Lattice	constants hopping:	Z-bonds	(in	eV) {X,Y}-bonds	(in	eV)
a/a0 b/b0 c/c0 t1 |t2| t3 t1 |t2| t3

-3.9 1.008 1.010 1.012 0.080 0.248 -0.139 0.078 0.248 -0.128
-1.1 0.998 0.998 1.004 0.087 0.242 -0.176 0.090 0.242 -0.185
2.1 0.988 0.986 0.996 0.094 0.241 -0.201 0.102 0.240 -0.240
5.9 0.978 0.974 0.987 0.100 0.237 -0.231 0.115 0.232 -0.302
10.2 0.968 0.962 0.980 0.106 0.238 -0.248 0.131 0.228 -0.365

Exchange	interactions	from	the	above	hopping	integrals	
(U=2.0eV,	J_H/U=0.2,	SOC=0.45eV	used.	J-K-G	ratio	is	robust	against	parameter	change.)

Lattice	constants JKG:	Z-bonds	(in	meV) JKG:	{X,Y}-bonds	(in	meV)
a/a0 b/b0 c/c0 J K Gamma J K Gamma

-3.9 1.008 1.010 1.012 -1.4 -6.5 -5.2 -1.1 -6.8 -4.9
-1.1 0.998 0.998 1.004 -2.2 -5.1 -6.1 -2.4 -4.8 -6.4
2.1 0.988 0.986 0.996 -2.7 -4.2 -6.8 -3.4 -2.7 -7.9
5.9 0.978 0.974 0.987 -3.2 -2.8 -7.5 -4.1 0.6 -9.3
10.2 0.968 0.962 0.980 -3.6 -2.1 -8.1 -4.9 4.3 -10.8

a2 6.1742 6.1742 4.0687 3.0 3.0 2.0 6.0 6.0 0.0
a1 4.1486 8.1999 0 2.0 4.0 0.0 -2.0 2.0 0.0
a3 -2.0257 2.0257 4.0687 -1.0 1.0 2.0 0.0 0.0 4.0

c-a-b c0-a0-b0raio
12.348 12.348 0 17.463 17.8271 0.9796
-4.0513 4.0513 0 5.7294 5.9194 0.9679

0 0 8.1373 8.1373 8.4562 0.9623
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bonds are ferromagnetically correlated. As a result, despite
being in the AF-Heisenberg regime, there is a net moment in
the â direction. The size of the net moment is small, especially
compared to the FMa phase, and decreases as we approach the
SPa+ phase or the AF Kitaev point. We illustrate this decrease
in net moment by the lightening of the color contours.

B. Existing magnetic orders

AFc: This collinear phase is the exact ground state in the
AF-Heisenberg region when J > �K and J > �: the LTA
succeeds in finding this exact ground state for both lattices.
This phase is the HK-AF state with moments aligned antifer-
romagnetically and locked in the ĉ direction due to the pres-
ence of �.

FMa: This coplanar state with finite net moment encom-
passes a large fraction of both phase diagrams. Only in the hy-
perhoneycomb does the LTA succeed in identifying this phase
as the exact ground state. In both lattices, the projection of
the spins along the â direction is ferromagnetic while the pro-
jection along the ĉ direction vanishes. The projection along
the b̂ direction behaves differently for the hyperhoneycomb
and the H–1 models. In the hyperhoneycomb lattice, the b̂

component orders in the skew-zigzag order, while in the H–1
lattice, the b̂ component is ferromagnetic within each honey-
comb strip. This state is connected to the HK-FM phase, and
in the case of the hyperhoneycomb lattice, it is also connected
to the J > �K/2 segment of the HK-SZ phase, where ObD
studies have shown that the HK-SZ phase orders in the b̂ di-
rection, much like the FMa phase. The Ca

2 rotation symmetry
is preserved in this phase.

Since the b̂ component of the phase in both lattices have
a vanishing net moment, only the â component contributes to
the total moment. This total moment becomes saturated (spins
point entirely in the â direction) when approaching the HK-
FM phase and decreases smoothly as we approach the SPa�

boundary. In the hyperhoneycomb case, the total moment fur-
ther decreases and vanishes smoothly as we approach the HK-
SZ phase. The magnitude of the moment along â is depicted
by the color contours in Fig. 2 where the largest projection is
colored darkest.

SSx/y: Wedged within the HK-SS, AFc, and SPb+ phases
are two skew-stripy phases, the first of which to be discussed
is the non-coplanar SSx/y phase. This phase has the largest
projection along the x(y) direction and this component orders
in a skew-stripy fashion (these two orientations are degener-
ate). In the hyperhoneycomb lattice, the other two Cartesian
components of the spins are small but finite and ensure that
the spins along each zigzag chain are collinear. In the H–1
lattice, the y(x) component also orders in a skew-stripy fash-
ion. This phase does not have a net moment and breaks all C2

symmetries.
SSb: This other skew-stripy phase is coplanar and lies far-

ther away from the FM Kitaev point relative to the SSx/y

phase. This phase borders the AFc phase and can be identified
via the LTA in the hyperhoneycomb lattice. In both lattices,
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(b) H–1 model

FIG. 5. (Color online) Classical phase diagrams for the J–K–�
pseudospin model with �  0. The details of this phase diagram
can be understood via a classical mapping that relates (J,K,�) !

(�J,�K,��); see Sec. V C for details. The color contours are
guides for the eye: in the case of spiral (SP) states, they represent the
length of the Q-vector, whereas in the case of non-spiral states, they
represent properties relevant to that particular phase; see Sec. V for
details.

Some	notable	features:	
1. Pressure	reduces	the	Ir-Ir	distance,	changing	

t3	term	drastically.	
2. Strain	is	anisotropic:	X/Y	bonds	are	more	

strongly	affected	by	the	pressure.		
3. At	high	pressure,	sign	of	Kitaev	term	can	be	

opposite	for	X/Y	and	Z	bonds.		
4. Γ	dominates	at	high	P.
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FIG. S3. (Color online) Band structures (solid red lines) calculated from tight-binding calculations including up to (a) NN, (b) NNN, and (c)
third-NN hopping terms from the Wannier orbital calcualtions tabulated in Table. S3, compared to those from ab-initio results (dashed grey
lines). SOC is included in the calculations.

The role of further-neighbor hopping amplitudes in the
band structure are shown in Fig. S3, where the evolution of
band structure as we include NNN and third NN terms are
presented. Fig. S3 shows the change of the band structures
as further-neighbor hopping terms are included with the pres-
ence of SOC; Fig. S3(a), (b) and (c) show the bands with hop-
ping terms up to NN, NNN, and third NN terms, respectively,
with the presence of SOC. One can see that, the large SOC
in Ir tends to make the jeff = 1/2 bands to be flatter in this
locally honeycomb-like lattice, and including NNN and third
NN terms does not change the overall behavior. Comparing
Fig. S3(a) and Fig. S3(b), one can notice that the dispersion
inside the jeff = 1/2 subbands is affected by the NNN terms,
but the semi-metallic character is left unchanged. Inclusion
of third NN terms, as can be seen in Fig. S3(c), makes the
dispersion slightly closer to the ab-initio bands.
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NN exchange interactions

The exchanges J , K, and � are given by (suppressing the
bond label ↵)

J =
4

27


(2t1 + t3)2(4JH + 3U)

U2
� 16JH(t1 � t3)2

(2U + 3�)2

�

K =
32JH

9


(t1 � t3)2�3t

2

2

(2U + 3�)2

�
, � =

64JH

9

t2(t1 � t3)

(2U + 3�)2
, (1)

where ti (i = 1, 2, 3), JH , U , and � are the NN hopping
amplitudes, Hund’s coupling, on-site Coulomb repulsion, and
SOC respectively[9]. ti is illustrated in Fig. S2(a). Note that,
the small amount of NN Heisenberg interaction is attributed
to the cancelation between the 2t1 and t3 in the antiferromag-
netic contrubution to J in Eq. 1. Since t2 is the largest term,
as mentioned in the main text, ferromagnetic K becomes the
most dominant contribution in the exchange interactions.

TABLE S3: A subset of Ir t2g hopping terms Tij as representatives of each
hopping channels up to third NN, where Hhop =

P
ij C

†
i ·Tij ·Cj and C† and

C† being the creation and annihilation operator for t2g states, respectively. d is
approximate distance between Ir and O. Other hopping terms can be recovered
by applying Tji = T†

ij , Ca,b,z
2

rotations, and inversion operations.

Kind rij (in Cartesian coord.) Sublattice Ue↵ = 0.0 eV Ue↵ = 1.5 eV Ue↵ = 3.0 eV

tNN dxy dxz dyz dxy dxz dyz dxy dxz dyz
X,X’ (-d, 0,+d) 1 ! 4 dxy +0.088 +0.018 +0.260 +0.080 +0.019 +0.276 +0.064 +0.021 +0.289

dxz +0.018 -0.152 +0.013 +0.020 -0.110 +0.013 +0.021 -0.051 0.005
dyz +0.259 +0.013 +0.078 +0.276 +0.013 +0.067 +0.288 0.003 +0.052

tNN dxy dxz dyz dxy dxz dyz dxy dxz dyz
Z (+d,+d, 0) 1 ! 2 dxy -0.162 -0.022 +0.021 -0.119 -0.024 +0.023 -0.059 -0.031 +0.030

dxz +0.016 +0.087 -0.239 +0.017 +0.078 -0.255 +0.025 +0.072 -0.269
dyz -0.016 -0.239 +0.086 -0.017 -0.254 +0.077 -0.024 -0.271 +0.056

Continued in next page...

Exchange interactions:

tNN
ij =
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t1 t2
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Other terms are smaller 
then 20 meV and ignored.
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Lattice	parameters	and	hopping	integrals	vs.	Pressure
(Lattice	optimized	with	SOC+U=2eV	in	VASP.	No	SOC,	U	is	included	in	Wannier	orbital	calculation)

Lattice	constants hopping:	Z-bonds	(in	eV) {X,Y}-bonds	(in	eV)
a/a0 b/b0 c/c0 t1 |t2| t3 t1 |t2| t3

-3.9 1.008 1.010 1.012 0.080 0.248 -0.139 0.078 0.248 -0.128
-1.1 0.998 0.998 1.004 0.087 0.242 -0.176 0.090 0.242 -0.185
2.1 0.988 0.986 0.996 0.094 0.241 -0.201 0.102 0.240 -0.240
5.9 0.978 0.974 0.987 0.100 0.237 -0.231 0.115 0.232 -0.302
10.2 0.968 0.962 0.980 0.106 0.238 -0.248 0.131 0.228 -0.365

Exchange	interactions	from	the	above	hopping	integrals	
(U=2.0eV,	J_H/U=0.2,	SOC=0.45eV	used.	J-K-G	ratio	is	robust	against	parameter	change.)

Lattice	constants JKG:	Z-bonds	(in	meV) JKG:	{X,Y}-bonds	(in	meV)
a/a0 b/b0 c/c0 J K Gamma J K Gamma

-3.9 1.008 1.010 1.012 -1.4 -6.5 -5.2 -1.1 -6.8 -4.9
-1.1 0.998 0.998 1.004 -2.2 -5.1 -6.1 -2.4 -4.8 -6.4
2.1 0.988 0.986 0.996 -2.7 -4.2 -6.8 -3.4 -2.7 -7.9
5.9 0.978 0.974 0.987 -3.2 -2.8 -7.5 -4.1 0.6 -9.3
10.2 0.968 0.962 0.980 -3.6 -2.1 -8.1 -4.9 4.3 -10.8

a2 6.1742 6.1742 4.0687 3.0 3.0 2.0 6.0 6.0 0.0
a1 4.1486 8.1999 0 2.0 4.0 0.0 -2.0 2.0 0.0
a3 -2.0257 2.0257 4.0687 -1.0 1.0 2.0 0.0 0.0 4.0

c-a-b c0-a0-b0raio
12.348 12.348 0 17.463 17.8271 0.9796
-4.0513 4.0513 0 5.7294 5.9194 0.9679

0 0 8.1373 8.1373 8.4562 0.9623
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bonds are ferromagnetically correlated. As a result, despite
being in the AF-Heisenberg regime, there is a net moment in
the â direction. The size of the net moment is small, especially
compared to the FMa phase, and decreases as we approach the
SPa+ phase or the AF Kitaev point. We illustrate this decrease
in net moment by the lightening of the color contours.

B. Existing magnetic orders

AFc: This collinear phase is the exact ground state in the
AF-Heisenberg region when J > �K and J > �: the LTA
succeeds in finding this exact ground state for both lattices.
This phase is the HK-AF state with moments aligned antifer-
romagnetically and locked in the ĉ direction due to the pres-
ence of �.

FMa: This coplanar state with finite net moment encom-
passes a large fraction of both phase diagrams. Only in the hy-
perhoneycomb does the LTA succeed in identifying this phase
as the exact ground state. In both lattices, the projection of
the spins along the â direction is ferromagnetic while the pro-
jection along the ĉ direction vanishes. The projection along
the b̂ direction behaves differently for the hyperhoneycomb
and the H–1 models. In the hyperhoneycomb lattice, the b̂

component orders in the skew-zigzag order, while in the H–1
lattice, the b̂ component is ferromagnetic within each honey-
comb strip. This state is connected to the HK-FM phase, and
in the case of the hyperhoneycomb lattice, it is also connected
to the J > �K/2 segment of the HK-SZ phase, where ObD
studies have shown that the HK-SZ phase orders in the b̂ di-
rection, much like the FMa phase. The Ca

2 rotation symmetry
is preserved in this phase.

Since the b̂ component of the phase in both lattices have
a vanishing net moment, only the â component contributes to
the total moment. This total moment becomes saturated (spins
point entirely in the â direction) when approaching the HK-
FM phase and decreases smoothly as we approach the SPa�

boundary. In the hyperhoneycomb case, the total moment fur-
ther decreases and vanishes smoothly as we approach the HK-
SZ phase. The magnitude of the moment along â is depicted
by the color contours in Fig. 2 where the largest projection is
colored darkest.

SSx/y: Wedged within the HK-SS, AFc, and SPb+ phases
are two skew-stripy phases, the first of which to be discussed
is the non-coplanar SSx/y phase. This phase has the largest
projection along the x(y) direction and this component orders
in a skew-stripy fashion (these two orientations are degener-
ate). In the hyperhoneycomb lattice, the other two Cartesian
components of the spins are small but finite and ensure that
the spins along each zigzag chain are collinear. In the H–1
lattice, the y(x) component also orders in a skew-stripy fash-
ion. This phase does not have a net moment and breaks all C2

symmetries.
SSb: This other skew-stripy phase is coplanar and lies far-

ther away from the FM Kitaev point relative to the SSx/y

phase. This phase borders the AFc phase and can be identified
via the LTA in the hyperhoneycomb lattice. In both lattices,
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(b) H–1 model

FIG. 5. (Color online) Classical phase diagrams for the J–K–�
pseudospin model with �  0. The details of this phase diagram
can be understood via a classical mapping that relates (J,K,�) !

(�J,�K,��); see Sec. V C for details. The color contours are
guides for the eye: in the case of spiral (SP) states, they represent the
length of the Q-vector, whereas in the case of non-spiral states, they
represent properties relevant to that particular phase; see Sec. V for
details.

Some	notable	features:	
1. Pressure	reduces	the	Ir-Ir	distance,	changing	

t3	term	drastically.	
2. Strain	is	anisotropic:	X/Y	bonds	are	more	

strongly	affected	by	the	pressure.		
3. At	high	pressure,	sign	of	Kitaev	term	can	be	

opposite	for	X/Y	and	Z	bonds.		
4. Γ	dominates	at	high	P.
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FIG. S3. (Color online) Band structures (solid red lines) calculated from tight-binding calculations including up to (a) NN, (b) NNN, and (c)
third-NN hopping terms from the Wannier orbital calcualtions tabulated in Table. S3, compared to those from ab-initio results (dashed grey
lines). SOC is included in the calculations.

The role of further-neighbor hopping amplitudes in the
band structure are shown in Fig. S3, where the evolution of
band structure as we include NNN and third NN terms are
presented. Fig. S3 shows the change of the band structures
as further-neighbor hopping terms are included with the pres-
ence of SOC; Fig. S3(a), (b) and (c) show the bands with hop-
ping terms up to NN, NNN, and third NN terms, respectively,
with the presence of SOC. One can see that, the large SOC
in Ir tends to make the jeff = 1/2 bands to be flatter in this
locally honeycomb-like lattice, and including NNN and third
NN terms does not change the overall behavior. Comparing
Fig. S3(a) and Fig. S3(b), one can notice that the dispersion
inside the jeff = 1/2 subbands is affected by the NNN terms,
but the semi-metallic character is left unchanged. Inclusion
of third NN terms, as can be seen in Fig. S3(c), makes the
dispersion slightly closer to the ab-initio bands.
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NN exchange interactions

The exchanges J , K, and � are given by (suppressing the
bond label ↵)

J =
4
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where ti (i = 1, 2, 3), JH , U , and � are the NN hopping
amplitudes, Hund’s coupling, on-site Coulomb repulsion, and
SOC respectively[9]. ti is illustrated in Fig. S2(a). Note that,
the small amount of NN Heisenberg interaction is attributed
to the cancelation between the 2t1 and t3 in the antiferromag-
netic contrubution to J in Eq. 1. Since t2 is the largest term,
as mentioned in the main text, ferromagnetic K becomes the
most dominant contribution in the exchange interactions.

TABLE S3: A subset of Ir t2g hopping terms Tij as representatives of each
hopping channels up to third NN, where Hhop =

P
ij C

†
i ·Tij ·Cj and C† and

C† being the creation and annihilation operator for t2g states, respectively. d is
approximate distance between Ir and O. Other hopping terms can be recovered
by applying Tji = T†

ij , Ca,b,z
2

rotations, and inversion operations.

Kind rij (in Cartesian coord.) Sublattice Ue↵ = 0.0 eV Ue↵ = 1.5 eV Ue↵ = 3.0 eV

tNN dxy dxz dyz dxy dxz dyz dxy dxz dyz
X,X’ (-d, 0,+d) 1 ! 4 dxy +0.088 +0.018 +0.260 +0.080 +0.019 +0.276 +0.064 +0.021 +0.289

dxz +0.018 -0.152 +0.013 +0.020 -0.110 +0.013 +0.021 -0.051 0.005
dyz +0.259 +0.013 +0.078 +0.276 +0.013 +0.067 +0.288 0.003 +0.052

tNN dxy dxz dyz dxy dxz dyz dxy dxz dyz
Z (+d,+d, 0) 1 ! 2 dxy -0.162 -0.022 +0.021 -0.119 -0.024 +0.023 -0.059 -0.031 +0.030

dxz +0.016 +0.087 -0.239 +0.017 +0.078 -0.255 +0.025 +0.072 -0.269
dyz -0.016 -0.239 +0.086 -0.017 -0.254 +0.077 -0.024 -0.271 +0.056
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FIG. 1. Triangular lattice quantum spin liquid (QSL). Panel a shows
the NaYbSe2 crystal structure. Panel b shows the conceptual phase
diagram of CsYbSe2, KYbSe2, and NaYbSe2 as a function of fitted
J2/J1 values [30]. The theoretical boundary to the quantum spin liq-
uid phase for the isotropic model is detected by neural quantum state
(NQS) simulations at J2/J1 . 0.063 ± 0.001 (see Supplemental Ma-
terials) locating NaYbSe2 well within the QSL phase. Panel c shows
schematics for potential gapped phases on the triangular lattice: the
gapped Z2 QSL as resonating valence bond (left), a chiral QSL (cen-
ter), and a particular ordering pattern [14] for a 12-site valence bond
solid (right). Note: overlapping ovals represent resonating singlet
bonds.

disorder (as in the ill-fated Yb3+ QSL candidates YbMgGaO4
[31] and Yb2Ti2O7 [32]). To further clarify NaYbSe2, we
measured the inelastic neutron spectra, AC calorimetry, and
AC susceptibility with high quality samples. We observe co-
herent excitations, lack of magnetic order, and evidence in
bulk susceptibility of a 2.1 µeV gap at low temperature. This
is strong evidence for a QSL ground state in NaYbSe2 and a
gapped QSL on the triangular lattice.

The neutron spectra at 100 mK, shown in Fig. 5, show a
highly dispersive continuum of excitations with a well-defined
lower bound, similar to KYbSe2 [28] (see supplemental ma-
terials for experimental details). This is qualitatively di↵erent
from the spectra measured by Dai et al [27] on the 3% Yb/Na
site-mixed sample which in contrast showed smeared our con-
tinua in k-space and di↵use spectra extending to low energies
in many regions of reciprocal space. (Later in the text, we will
explain why we believe our samples are free from mixing dis-
order.) Here, the only region of reciprocal space which has ap-
preciable intensity down to low energies is (1/3, 1/3, 0), corre-
sponding to the 120� magnetic order seen in sister compounds
KYbSe2 [28] and CsYbSe2 [29]. Down to 50 µeV (the limit
before the incoherent scattering on the elastic line obscures
the scattering energy for the incident energy of Ei = 1 meV),
no gap in the spectrum is resolved.

For comparison we also show matrix product state (MPS)
calculated spectra in 5f-i with J2/J1 = 0.071 (this value de-

rived from finite field non-linear spin wave fits [30]), at vary-
ing levels of exchange anisotropy � (see Supplemental Ma-
terials). The boundary to the quantum spin liquid phase for
the isotropic model is at J2/J1 = 0.063 calculated using neu-
ral quantum states (see Supplemental Materials) locating the
material in the theoretically predicted QSL phase for weak
anisotropies. Because of finite size lattice e↵ects the calcu-
lated spectra are gapped, and it is di�cult to make quantitative
comparisons between theory and neutron experiments. Never-
theless, the calculated spectra are consistent with the observed
spectra, corroborating the idea that a J2/J1 model with easy-
plane anisotropy is an appropriate model for NaYbSe2.

Despite intensity concentrated at (1/3, 1/3, 0) and similar
spectra to CsYbSe2 and KYbSe2, we observe no static mag-
netic order in NaYbSe2 in neutron scattering measurements
down to 100 mK. No magnetic ordering features are visible
in heat capacity down to 100 mK either, as shown in Fig. 3.
(Note also that our sample has similar low-temperature spe-
cific heat to those reported in Refs. [25, 33]. If the C/T max-
imum at 800 mK is an indication of sample quality, our sam-
ple is free from the site mixing reported in Ref. [27].) To test
whether applied hydrostatic pressure can induce order—as in
KYbSe2 wherein pressure enhanced TN [30]—we also mea-
sured AC calorimetry under pressure (see Supplemental Mate-
rials) shown in Fig. 3b. Up to 2.0 GPa, no sharp feature as ex-
pected for an ordering transition is seen in the data (pressure-
dependent thermalization issues cause the low-T specific heat
to increase at low T , but this is a known artifact and would not
mask a sharp ordering transition).

Also in Fig. 3c we compare NaYbSe2 heat capacity to
KYbSe2, with the temperature axis rescaled by the fitted J1
[30]. This shows not only a lack of ordering transition, but
also a smaller kBT/J1 ⇡ 0.2 maximum heat capacity and
greater low-temperature heat capacity in NaYbSe2 relative
to KYbSe2. Comparing this to thermal pure quantum state
(TPQ) simulations of the 27-site 2D triangular lattice in Fig.
3d, these trends are beautifully explained with a larger J2/J1
in NaYbSe2: the low-temperature heat capacity is largest
when J2/J1 ⇡ 0.07 and the kBT/J1 = 0.2 bump is suppressed
with larger J2. Because the TPQ simulations are of a finite
size cluster which induces an artificial energy gap, the low-
est temperature trends are not quantitatively accurate. How-
ever, on a qualitative level, this is remarkable confirmation
that NaYbSe2 is indeed closer to or inside the triangular QSL
phase.

To investigate the magnetic state to lower temperatures, we
measured AC susceptibility down to 20 mK with AC and DC
field applied along the a and c directions on NaYbSe2 (see
Supplemental Materials). In this case we observe a clear
magnetization plateau in the B k a direction at 5 T, but not
for B k c (note these data were collected simultaneously on
two separate crystals mounted on two separate susceptome-
ters mounted on the same dilution refrigerator). This agrees
with previous measurements [25], and indicates an easy-plane
exchange anisotropy in NaYbSe2: in the perfectly isotropic
triangular model, 1/3 magnetization plateaux appear both in-
plane and out-of-plane, but the out-of-plane plateau is sup-
pressed by planar anisotropy [34–36], although the in-plane
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FIG. 1. Triangular lattice quantum spin liquid (QSL). Panel a shows
the NaYbSe2 crystal structure. Panel b shows the conceptual phase
diagram of CsYbSe2, KYbSe2, and NaYbSe2 as a function of fitted
J2/J1 values [30]. The theoretical boundary to the quantum spin liq-
uid phase for the isotropic model is detected by neural quantum state
(NQS) simulations at J2/J1 . 0.063 ± 0.001 (see Supplemental Ma-
terials) locating NaYbSe2 well within the QSL phase. Panel c shows
schematics for potential gapped phases on the triangular lattice: the
gapped Z2 QSL as resonating valence bond (left), a chiral QSL (cen-
ter), and a particular ordering pattern [14] for a 12-site valence bond
solid (right). Note: overlapping ovals represent resonating singlet
bonds.

disorder (as in the ill-fated Yb3+ QSL candidates YbMgGaO4
[31] and Yb2Ti2O7 [32]). To further clarify NaYbSe2, we
measured the inelastic neutron spectra, AC calorimetry, and
AC susceptibility with high quality samples. We observe co-
herent excitations, lack of magnetic order, and evidence in
bulk susceptibility of a 2.1 µeV gap at low temperature. This
is strong evidence for a QSL ground state in NaYbSe2 and a
gapped QSL on the triangular lattice.

The neutron spectra at 100 mK, shown in Fig. 5, show a
highly dispersive continuum of excitations with a well-defined
lower bound, similar to KYbSe2 [28] (see supplemental ma-
terials for experimental details). This is qualitatively di↵erent
from the spectra measured by Dai et al [27] on the 3% Yb/Na
site-mixed sample which in contrast showed smeared our con-
tinua in k-space and di↵use spectra extending to low energies
in many regions of reciprocal space. (Later in the text, we will
explain why we believe our samples are free from mixing dis-
order.) Here, the only region of reciprocal space which has ap-
preciable intensity down to low energies is (1/3, 1/3, 0), corre-
sponding to the 120� magnetic order seen in sister compounds
KYbSe2 [28] and CsYbSe2 [29]. Down to 50 µeV (the limit
before the incoherent scattering on the elastic line obscures
the scattering energy for the incident energy of Ei = 1 meV),
no gap in the spectrum is resolved.

For comparison we also show matrix product state (MPS)
calculated spectra in 5f-i with J2/J1 = 0.071 (this value de-

rived from finite field non-linear spin wave fits [30]), at vary-
ing levels of exchange anisotropy � (see Supplemental Ma-
terials). The boundary to the quantum spin liquid phase for
the isotropic model is at J2/J1 = 0.063 calculated using neu-
ral quantum states (see Supplemental Materials) locating the
material in the theoretically predicted QSL phase for weak
anisotropies. Because of finite size lattice e↵ects the calcu-
lated spectra are gapped, and it is di�cult to make quantitative
comparisons between theory and neutron experiments. Never-
theless, the calculated spectra are consistent with the observed
spectra, corroborating the idea that a J2/J1 model with easy-
plane anisotropy is an appropriate model for NaYbSe2.

Despite intensity concentrated at (1/3, 1/3, 0) and similar
spectra to CsYbSe2 and KYbSe2, we observe no static mag-
netic order in NaYbSe2 in neutron scattering measurements
down to 100 mK. No magnetic ordering features are visible
in heat capacity down to 100 mK either, as shown in Fig. 3.
(Note also that our sample has similar low-temperature spe-
cific heat to those reported in Refs. [25, 33]. If the C/T max-
imum at 800 mK is an indication of sample quality, our sam-
ple is free from the site mixing reported in Ref. [27].) To test
whether applied hydrostatic pressure can induce order—as in
KYbSe2 wherein pressure enhanced TN [30]—we also mea-
sured AC calorimetry under pressure (see Supplemental Mate-
rials) shown in Fig. 3b. Up to 2.0 GPa, no sharp feature as ex-
pected for an ordering transition is seen in the data (pressure-
dependent thermalization issues cause the low-T specific heat
to increase at low T , but this is a known artifact and would not
mask a sharp ordering transition).

Also in Fig. 3c we compare NaYbSe2 heat capacity to
KYbSe2, with the temperature axis rescaled by the fitted J1
[30]. This shows not only a lack of ordering transition, but
also a smaller kBT/J1 ⇡ 0.2 maximum heat capacity and
greater low-temperature heat capacity in NaYbSe2 relative
to KYbSe2. Comparing this to thermal pure quantum state
(TPQ) simulations of the 27-site 2D triangular lattice in Fig.
3d, these trends are beautifully explained with a larger J2/J1
in NaYbSe2: the low-temperature heat capacity is largest
when J2/J1 ⇡ 0.07 and the kBT/J1 = 0.2 bump is suppressed
with larger J2. Because the TPQ simulations are of a finite
size cluster which induces an artificial energy gap, the low-
est temperature trends are not quantitatively accurate. How-
ever, on a qualitative level, this is remarkable confirmation
that NaYbSe2 is indeed closer to or inside the triangular QSL
phase.

To investigate the magnetic state to lower temperatures, we
measured AC susceptibility down to 20 mK with AC and DC
field applied along the a and c directions on NaYbSe2 (see
Supplemental Materials). In this case we observe a clear
magnetization plateau in the B k a direction at 5 T, but not
for B k c (note these data were collected simultaneously on
two separate crystals mounted on two separate susceptome-
ters mounted on the same dilution refrigerator). This agrees
with previous measurements [25], and indicates an easy-plane
exchange anisotropy in NaYbSe2: in the perfectly isotropic
triangular model, 1/3 magnetization plateaux appear both in-
plane and out-of-plane, but the out-of-plane plateau is sup-
pressed by planar anisotropy [34–36], although the in-plane
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Susceptibility of a spinon Fermi surface coupled to a U(1) gauge field
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We study the theory of a U(1) gauge field coupled to a spinon Fermi surface. Recently this model
has been proposed as a possible description of the organic compound κ-(BEDT-TTF)2Cu2(CN)3.
We calculate the susceptibility of this system and in particular examine the effect of pairing of
the underlying spin liquid. We show that this proposed theory is consistent with the observed
susceptibility measurements.

PACS numbers:

The organic compounds κ-(BEDT-TTF)2X are an in-
teresting class of materials. Recent experiments have
shown promise that this compound where the anion, X, is
Cu2(CN)3 may be the first experimental realized spin liq-
uid. This material can be described as a nearly isotropic
effectively two dimensional spin 1/2 triangular lattice at
half-filling. Experimentally, this material is found to be
insulating and yet it has no long range magnetic ordering
down to mK temperatures. Also the static spin suscep-
tibility remains finite down to the lowest temperatures
measured. [1] These observations have led to the pro-
posal that the state may be described by a spinon Fermi
surface coupled to a U(1) gauge field. [2, 3] The suscep-
tibility is fit with the high temperature series expansion
of the spin 1/2 Heisenberg model on a triangular lattice.
From this fit, the exchange coupling J is found to be
around 250 K. In addition, the susceptibility is found to
drop sharply at low temperatures around 10 K before
saturating to a finite value.[1]

Recent measurements of the specific heat have sug-
gested the existence of a peak in the electronic specific
heat at around 6 K, once the phonon contribution has
been subtracted away. [4] Led by this discovery, it was
proposed that the U(1) spin liquid state may have some
sort of pairing instability. [5] Since the specific heat was
also found to be unaffected by a magnetic field of up to
8T, conventional singlet pairing is unlikely. The pair-
ing could, however, be ordinary BCS triplet pairing or a
new kind of pairing. Recently Lee et al. [5] proposed a
possible new kind of pairing called “Amperean”pairing.
Unlike normal BCS pairing across the Fermi surface, this
pairing is between two spinons on the same side of the
Fermi surface. In particular, in the Amperean paired
state, one pairs the spin with momentum Q + p with
the spin with momentum Q − p where |Q| = kF and
|p| small. The Amperean pairing can occur between two
particles carrying almost parallel momenta due to the
attractive interaction mediated by the magnetic fluctua-
tions of the emergent gauge field. As a result the pairs
carry net momentum 2kF as opposed to 0 in the BCS
state. In particular, the authors showed that it is possi-
ble for there to be an instability to this kind of pairing
for the spinon Fermi surface coupled to a U(1) gauge
field. They also derived a number of experimental conse-
quences of this model and show how they could explain
many of the features seen in the actual experiments on

κ-(BEDT-TTF)2Cu2(CN)3 Here we calculate the effect
of pairing on the zero-field spin susceptibility of such a
system and compare the result to what is experimentally
seen in this organic compound.

Starting from a spinon Fermi surface, it is clear that
at T = 0 the spinons give rise to a Pauli paramagnetic
term due to the non-zero density of states. Standard
BCS singlet pairing, however, leads to the reduction of
this paramagnetism as a gap opens. At first sight, this
seems to provide a natural explanation of the sharp drop
in susceptibility below 10 K. However we have already ex-
cluded BCS singlet pairing because it is inconsistent with
the observed insensitivity of the specific heat to mag-
netic field. Both triplet BCS pairing and alternate types
of pairing such as LOFF and Amperean are consistent
with the specific heat measurement. However it turns
out that for such pairing states, the spinon contribution
to the Pauli paramagnetism is unaffected by the onset of
pairing, which seems inconsistent with the observed drop
of susceptibility at low temperatures. In this paper, we
will show that the drop of susceptibility can be explained
if the effect of gauge fluctuations is taken into account.
Before we include the effect of gauge fluctuations, be-
low we first ignore the gauge fluctuations and explain
why the onset of pairing does not affect the contribution
of spinons to the spin susceptibility in the Amperean,
LOFF and triplet BCS pairing states.

To see this, we begin with a spinon system with a well
defined Fermi surface. Applying a magnetic field creates
two different Fermi seas for the up and down spinons,
as shown in Fig. 1. First we consider the case of Am-
perean pairing, where pairing occurs on the same side of
the Fermi surface. It is possible for both of these spinons
to lie near the Fermi surface even after the magnetic field
has been applied (Fig. 1). This is achieved by pairing
the spin up spinon with momentum Q+∆Q+p with the
spin down spinon with momentum Q −∆Q − p, where
|p| " kF and ∆Q = (µBH/vF) Q̂. Moreover, the phase
space available for p is unchanged with the applied field
H , as long as the curvature difference between spin up
and down Fermi surfaces when H #= 0 can be ignored.
Thus in this approximation, there is no Zeeman limiting
field for this pairing. Furthermore, the susceptibility is
not reduced by pairing because although the opening of
the pairing gap does smear out the momentum distribu-
tion nk, it leaves the occupied area of up and down spins
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be proximate to a spin liquid with positive evidence for the two key 
features: quantum entanglement and exotic quasiparticles.

Experiments
CNCS
We measured the low-energy KYbSe2 single-crystal neutron spectrum 
on the Cold Neutron Chopper Spectrometer (CNCS) spectrometer33 at 
Oak Ridge National Laboratory’s Spallation Neutron Source34 between 
0.3 and 2.0 K using a 3He refrigerator (Methods). The data are shown 
in Fig. 2.

In the elastic channel, quasi-Bragg intensities appear between 1.0 
and 0.3 K, which look like (1/3, 1/3) Bragg peaks signalling 120° correla-
tions. They have no dependence on ℓ (Fig. 2p), which evidences truly 2D 
static correlations and weak interplane exchange (as a side note, this 
weak interplane exchange is expected given the fragility of the crystal 
interplane bonds: KYbSe2 planes readily flake off when the crystals are 
not handled gently). Fitting the in-plane scattering to extract the cor-
relation length using the (101) peak to define the resolution width, we 
find that the magnetic peaks are much broader than the nuclear Bragg 
peaks with a fitted correlation length of 47 ± 10 Å at 0.3 K (approxi-
mately ten unit cells in the plane). In Supplementary Fig. 1, we show 
these quasi-Bragg intensities become well-defined Bragg peaks below 
TN = 290 mK, evidencing a transition to 120° long-range magnetic order.

In the inelastic channel, two features stand out in the low- 
temperature KYbSe2 spectrum: a diffuse continuum of excitations 
and a pronounced 0.2 meV energy minimum at M = (1/2, 0, 0). Both 
these features are evident in the triangular-lattice Ba3CoSb2O9 com-
pound35–38. The ‘roton-like’ minimum at M is a generic feature of the 
2D quantum triangular-lattice Heisenberg antiferromagnet and is a 
nonlinear effect (that is, not captured by linear spin-wave theory)39–41. 
Fits to the KYbSe2 roton mode (Supplementary Fig. 4) show a mode 
maximum of 0.288(12) meV and a roton minimum 0.200(13) meV at M.  
This indicates that strong quantum effects are at work in KYbSe2.

The continuum, meanwhile, extends up to 1.6 meV, over five 
times the roton-mode bandwidth. This is far too high in energy to be a 
two-magnon continuum, which is limited to twice the single-magnon 
bandwidth. Integrating the scattering intensity over the entire 
Brillouin zone shows that ∼60% of the magnetic scattering intensity 
is found above 0.4 meV, compared with only ∼29% between 0.05 and 
0.40 meV, showing that the continuum scattering carries twice the 
spectral weight of the ‘single-magnon’ intensity. Perhaps, most inter-
estingly, the continuum in KYbSe2 comes all the way down to the sharp 
low-energy modes (Fig. 2a). The KYbSe2 diffuse continuum with a sharp 
lower bound is reminiscent of the Van Hove singularity observed in 
one-dimensional (1D) spin chains—which are known to have highly 
entangled ground states with fractionalized spinon excitations32,42,43. 

excitations and so on, which are not unique to QSL states. Instead, 
to conclusively identify an experimental QSL, ‘positive evidence’ is 
needed: experimental evidence of either (1) a highly entangled ground 
state or (2) exotic quasiparticles—both of which are key properties  
of a QSL.

Beginning with Anderson’s resonating valence-bond state11, the 
2D triangular geometry has long been studied as a platform for QSLs. 
Although the simplest spin-1/2 model with the nearest-neighbour 
antiferromagnetic Heisenberg interactions orders magnetically in a 
120° phase, the magnetic frustration makes the order weak12. The 
magnetic order can be further destabilized by additional interactions 
such as a next-nearest-neighbour exchange coupling. In that case, it 
has been found that a realistic strength as small as ∼10% of the main 
interaction is enough to destroy the magnetic order and bring the 
system into the QSL phase13–19 (which is continuously connected to a 
QSL phase driven by nearest-neighbour anisotropic exchange20). Deter-
mining the nature of the QSL phase is a theoretical challenge, with 
proposals ranging from gapped ℤ

2

 and gapless U(1) Dirac to chiral13–19, 
with no clear consensus within the community. To discern among pos-
sible QSL states, experiments are necessitated.

In the last decade, Yb3+-based materials have become popular 
as QSL candidates because of the Yb3+ effective S = 1/2 state. Most 
recently, a class of delafossite materials have been proposed as rela-
tively disorder-free QSL candidates, including NaYbO2 (refs. 21–23), 
NaYbS2 (refs. 24,25), NaYbSe2 (refs. 26,27) and CsYbSe2 (ref. 28). Each of 
these materials shows diffuse excitations and no long-range magnetic 
order down to 0.4 K or lower, but because neither are unique to the QSL 
states (both are also caused by spin glass29, random singlet phases30 or 
2D magnetic order only in the zero-temperature limit), they remain 
QSL candidates only.

Here we investigate a new member of the Yb3+ delafossite fam-
ily: KYbSe2, which forms a layered triangular lattice of magnetic Yb3+ 
ions (Fig. 1a). This material shows no long-range order above 400 mK 
(ref. 31), and finite-field ordered phases similar to NaYbO2 (ref. 22) 
and NaYbS2 (ref. 25). Thus, it appears promising as a QSL candidate. 
We successfully apply entanglement witnesses, namely, one tangle, 
two tangle and quantum Fisher information (QFI), to KYbSe2 (ref. 32)  
and detect the presence of quantum entanglement at low temper-
atures. Using a combination of density functional theory (DFT), 
Onsager reaction field (ORF) theory, Schwinger bosons (SBs) and 
tensor network approach to model KYbSe2, we find that its physics is 
well captured by a microscopic spin-1/2 Hamiltonian with nearest- and 
next-nearest-neighbour Heisenberg interactions on the triangular 
lattice in proximity to the QSL phase (Fig. 1b). Finally, the neutron 
spectrum displays signatures of quantum criticality and fractional-
ized spinon quasiparticles. Together, these results show KYbSe2 to 
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which vanishes in the entire paramagnetic regime [47]. In
addition, two different variational Monte Carlo (VMC) studies
claimed for a gapless spin liquid close to J2/J1 = 1/8: Kaneko
and co-workers [48] used a full optimization of the pairing of a
Gutzwiller-projected BCS wave function [obtaining a critical
spin liquid for 0.10(1) ! J2/J1 ! 0.135(5)] and Mishmash
and collaborators [49] considered few variational Ansätze to
describe both magnetic and nonmagnetic phases (here, they
obtained evidence for a gapless nodal d-wave spin liquid for
0.06 " J2/J1 " 0.17). In the former case, the full optimization
of the pairing function faces technical difficulties, which
make it difficult to reach true energy minima; in the latter
one, the variational states are relatively simple and do not
exhaust the rich variety of states that can be obtained within
the fermionic representation of Gutzwiller-projected states.
Indeed, the variational energies that we get are much better
than those of these two papers, indicating the high accuracy of
the present approach.

By contrast, density-matrix renormalization group
(DMRG) studies find a gapped Z2 topological spin liquid
for 0.06 " J2/J1 " 0.17 [50] and 0.08 " J2/J1 " 0.16 [51],
with signatures of possible spontaneously broken rotational
symmetry. Following this proposal, Zheng, Mei, and Qi, [52],
and, in an independent work, Lu [53] have performed a
classification of symmetric and nematic Z2 spin liquids, and
pointed out promising candidates at the fermionic mean-
field level. This approach was extended by Bieri, Lhuillier,
and Messio [54] to include chiral spin liquids as well. A
bosonic mean-field classification has likewise been accom-
plished [55,56], with some of the states addressed already in
earlier works [57,58].

In this paper, we address the J1-J2 Heisenberg model on
the triangular lattice from the viewpoint of versatile Gutzwiller
projected Abrikosov-fermion wave functions (optionally sup-
plemented by Lanczos optimization), which we implemented
by using efficient VMC techniques. To enable a comparison of
the variational energies, we also perform DMRG and Lanczos
diagonalizations for specific regions in parameter space. In
order to resolve the magnetic susceptibility profile in the
paramagnetic regime, we employ pseudofermion functional
renormalization group (PFFRG) calculations, the results of
which are then compared with analogous results from DMRG
and VMC. Our main VMC results are summarized as follows:
a spin-liquid phase is stabilized for 0.08 " J2/J1 " 0.16
(Fig. 1), in excellent agreement with DMRG [50,51] and
CCM [46]. Within the spin-liquid regime, however, we find
no signal of stabilization for any of the gapped symmetric
or nematic Z2 states proposed in Refs. [52,53]. In particular,
the gapped Z2 spin liquids are found to have higher energies
compared to the gapless U(1) Dirac spin liquid (DSL); the
gapless Z2 spin liquids suffer the same fate. We find that
nematic order only onsets simultaneously with collinear anti-
ferromagnetic order, which is also supported by the analysis
of nematic response functions in PFFRG. On performing a
couple of Lanczos optimization steps on the VMC variational
result, followed by a zero-variance extrapolation, we obtain
estimates of the exact ground-state and S = 2 excited-state
energies on different cluster sizes. Our estimate of the ground-
state energy on finite-systems is in excellent agreement with

(a) 120 AF (c) Stripe AF(b) Spin liquid
J2/J10.160.080

FIG. 1. Schematic illustrations of the coplanar three-sublattice
(black, blue, and red) magnetic order on the triangular lattice
(a), the resonating-valence bond spin liquid (b), and the collinear
two-sublattice (blue and red) stripe magnetic order (c). The phase
diagram, as obtained by using variational Monte Carlo method is
also reported. Note that the DSL found here can be represented as a
resonating-valence bond spin liquid with a power-law distribution of
bond amplitudes.

exact diagonalization and other numerical methods. In the
thermodynamic limit, our estimate of the ground-state energy
is equal to the one obtained by DMRG, within error bars.
However, in contrast to DMRG results, which found a finite
spin excitation gap, the S = 2 gap computed in VMC is found
to extrapolate to zero (within error bars) in the thermodynamic
limit. These findings strongly point to a gapless spin liquid
ground state, yielding a clear disagreement with the findings
by DMRG.

The article is organized as follows. In Sec. II, we describe
the model Hamiltonian and discuss its finite-size spectra
obtained from exact diagonalization, followed by a description
of the pseudofermion spin representation framework. In
Sec. III, the variational Monte Carlo method, the associated
wave functions, and the pseudofermion functional renormal-
ization group method are explained. In Sec. IV, we present the
results on, the energy optimization of competing variational
states, spin excitation gap, spin structure factors, followed by a
discussion of the findings from different methods. Conclusions
are given in Sec. V.

II. MODEL

The Hamiltonian for the spin- 1
2 Heisenberg J1-J2 antifer-

romagnetic model is

H = J1

∑

〈i,j〉
Si · Sj + J2

∑

〈〈i,j〉〉
Si · Sj , (1)

where both J1 and J2 are positive; 〈i,j 〉 and 〈〈i,j 〉〉 denote
sums over nearest-neighbor (NN) and next-nearest-neighbor
(NNN) pairs of sites, respectively. Si = (Sx

i ,S
y
i ,Sz

i ) denotes
the spin operator acting on a spin- 1

2 at site i. All energies will
be given in units of J1.

A. Finite-size spectra

Before discussing our main results based on VMC and
PFFRG approaches (see Sec. IV), we would like to show
the results of exact diagonalizations on a small 6 × 6 cluster.
All eigenstates can be classified according to their quantum
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FIG. 1. Triangular lattice quantum spin liquid (QSL). Panel a shows
the NaYbSe2 crystal structure. Panel b shows the conceptual phase
diagram of CsYbSe2, KYbSe2, and NaYbSe2 as a function of fitted
J2/J1 values [30]. The theoretical boundary to the quantum spin liq-
uid phase for the isotropic model is detected by neural quantum state
(NQS) simulations at J2/J1 . 0.063 ± 0.001 (see Supplemental Ma-
terials) locating NaYbSe2 well within the QSL phase. Panel c shows
schematics for potential gapped phases on the triangular lattice: the
gapped Z2 QSL as resonating valence bond (left), a chiral QSL (cen-
ter), and a particular ordering pattern [14] for a 12-site valence bond
solid (right). Note: overlapping ovals represent resonating singlet
bonds.

disorder (as in the ill-fated Yb3+ QSL candidates YbMgGaO4
[31] and Yb2Ti2O7 [32]). To further clarify NaYbSe2, we
measured the inelastic neutron spectra, AC calorimetry, and
AC susceptibility with high quality samples. We observe co-
herent excitations, lack of magnetic order, and evidence in
bulk susceptibility of a 2.1 µeV gap at low temperature. This
is strong evidence for a QSL ground state in NaYbSe2 and a
gapped QSL on the triangular lattice.

The neutron spectra at 100 mK, shown in Fig. 5, show a
highly dispersive continuum of excitations with a well-defined
lower bound, similar to KYbSe2 [28] (see supplemental ma-
terials for experimental details). This is qualitatively di↵erent
from the spectra measured by Dai et al [27] on the 3% Yb/Na
site-mixed sample which in contrast showed smeared our con-
tinua in k-space and di↵use spectra extending to low energies
in many regions of reciprocal space. (Later in the text, we will
explain why we believe our samples are free from mixing dis-
order.) Here, the only region of reciprocal space which has ap-
preciable intensity down to low energies is (1/3, 1/3, 0), corre-
sponding to the 120� magnetic order seen in sister compounds
KYbSe2 [28] and CsYbSe2 [29]. Down to 50 µeV (the limit
before the incoherent scattering on the elastic line obscures
the scattering energy for the incident energy of Ei = 1 meV),
no gap in the spectrum is resolved.

For comparison we also show matrix product state (MPS)
calculated spectra in 5f-i with J2/J1 = 0.071 (this value de-

rived from finite field non-linear spin wave fits [30]), at vary-
ing levels of exchange anisotropy � (see Supplemental Ma-
terials). The boundary to the quantum spin liquid phase for
the isotropic model is at J2/J1 = 0.063 calculated using neu-
ral quantum states (see Supplemental Materials) locating the
material in the theoretically predicted QSL phase for weak
anisotropies. Because of finite size lattice e↵ects the calcu-
lated spectra are gapped, and it is di�cult to make quantitative
comparisons between theory and neutron experiments. Never-
theless, the calculated spectra are consistent with the observed
spectra, corroborating the idea that a J2/J1 model with easy-
plane anisotropy is an appropriate model for NaYbSe2.

Despite intensity concentrated at (1/3, 1/3, 0) and similar
spectra to CsYbSe2 and KYbSe2, we observe no static mag-
netic order in NaYbSe2 in neutron scattering measurements
down to 100 mK. No magnetic ordering features are visible
in heat capacity down to 100 mK either, as shown in Fig. 3.
(Note also that our sample has similar low-temperature spe-
cific heat to those reported in Refs. [25, 33]. If the C/T max-
imum at 800 mK is an indication of sample quality, our sam-
ple is free from the site mixing reported in Ref. [27].) To test
whether applied hydrostatic pressure can induce order—as in
KYbSe2 wherein pressure enhanced TN [30]—we also mea-
sured AC calorimetry under pressure (see Supplemental Mate-
rials) shown in Fig. 3b. Up to 2.0 GPa, no sharp feature as ex-
pected for an ordering transition is seen in the data (pressure-
dependent thermalization issues cause the low-T specific heat
to increase at low T , but this is a known artifact and would not
mask a sharp ordering transition).

Also in Fig. 3c we compare NaYbSe2 heat capacity to
KYbSe2, with the temperature axis rescaled by the fitted J1
[30]. This shows not only a lack of ordering transition, but
also a smaller kBT/J1 ⇡ 0.2 maximum heat capacity and
greater low-temperature heat capacity in NaYbSe2 relative
to KYbSe2. Comparing this to thermal pure quantum state
(TPQ) simulations of the 27-site 2D triangular lattice in Fig.
3d, these trends are beautifully explained with a larger J2/J1
in NaYbSe2: the low-temperature heat capacity is largest
when J2/J1 ⇡ 0.07 and the kBT/J1 = 0.2 bump is suppressed
with larger J2. Because the TPQ simulations are of a finite
size cluster which induces an artificial energy gap, the low-
est temperature trends are not quantitatively accurate. How-
ever, on a qualitative level, this is remarkable confirmation
that NaYbSe2 is indeed closer to or inside the triangular QSL
phase.

To investigate the magnetic state to lower temperatures, we
measured AC susceptibility down to 20 mK with AC and DC
field applied along the a and c directions on NaYbSe2 (see
Supplemental Materials). In this case we observe a clear
magnetization plateau in the B k a direction at 5 T, but not
for B k c (note these data were collected simultaneously on
two separate crystals mounted on two separate susceptome-
ters mounted on the same dilution refrigerator). This agrees
with previous measurements [25], and indicates an easy-plane
exchange anisotropy in NaYbSe2: in the perfectly isotropic
triangular model, 1/3 magnetization plateaux appear both in-
plane and out-of-plane, but the out-of-plane plateau is sup-
pressed by planar anisotropy [34–36], although the in-plane
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be proximate to a spin liquid with positive evidence for the two key 
features: quantum entanglement and exotic quasiparticles.

Experiments
CNCS
We measured the low-energy KYbSe2 single-crystal neutron spectrum 
on the Cold Neutron Chopper Spectrometer (CNCS) spectrometer33 at 
Oak Ridge National Laboratory’s Spallation Neutron Source34 between 
0.3 and 2.0 K using a 3He refrigerator (Methods). The data are shown 
in Fig. 2.

In the elastic channel, quasi-Bragg intensities appear between 1.0 
and 0.3 K, which look like (1/3, 1/3) Bragg peaks signalling 120° correla-
tions. They have no dependence on ℓ (Fig. 2p), which evidences truly 2D 
static correlations and weak interplane exchange (as a side note, this 
weak interplane exchange is expected given the fragility of the crystal 
interplane bonds: KYbSe2 planes readily flake off when the crystals are 
not handled gently). Fitting the in-plane scattering to extract the cor-
relation length using the (101) peak to define the resolution width, we 
find that the magnetic peaks are much broader than the nuclear Bragg 
peaks with a fitted correlation length of 47 ± 10 Å at 0.3 K (approxi-
mately ten unit cells in the plane). In Supplementary Fig. 1, we show 
these quasi-Bragg intensities become well-defined Bragg peaks below 
TN = 290 mK, evidencing a transition to 120° long-range magnetic order.

In the inelastic channel, two features stand out in the low- 
temperature KYbSe2 spectrum: a diffuse continuum of excitations 
and a pronounced 0.2 meV energy minimum at M = (1/2, 0, 0). Both 
these features are evident in the triangular-lattice Ba3CoSb2O9 com-
pound35–38. The ‘roton-like’ minimum at M is a generic feature of the 
2D quantum triangular-lattice Heisenberg antiferromagnet and is a 
nonlinear effect (that is, not captured by linear spin-wave theory)39–41. 
Fits to the KYbSe2 roton mode (Supplementary Fig. 4) show a mode 
maximum of 0.288(12) meV and a roton minimum 0.200(13) meV at M.  
This indicates that strong quantum effects are at work in KYbSe2.

The continuum, meanwhile, extends up to 1.6 meV, over five 
times the roton-mode bandwidth. This is far too high in energy to be a 
two-magnon continuum, which is limited to twice the single-magnon 
bandwidth. Integrating the scattering intensity over the entire 
Brillouin zone shows that ∼60% of the magnetic scattering intensity 
is found above 0.4 meV, compared with only ∼29% between 0.05 and 
0.40 meV, showing that the continuum scattering carries twice the 
spectral weight of the ‘single-magnon’ intensity. Perhaps, most inter-
estingly, the continuum in KYbSe2 comes all the way down to the sharp 
low-energy modes (Fig. 2a). The KYbSe2 diffuse continuum with a sharp 
lower bound is reminiscent of the Van Hove singularity observed in 
one-dimensional (1D) spin chains—which are known to have highly 
entangled ground states with fractionalized spinon excitations32,42,43. 

excitations and so on, which are not unique to QSL states. Instead, 
to conclusively identify an experimental QSL, ‘positive evidence’ is 
needed: experimental evidence of either (1) a highly entangled ground 
state or (2) exotic quasiparticles—both of which are key properties  
of a QSL.

Beginning with Anderson’s resonating valence-bond state11, the 
2D triangular geometry has long been studied as a platform for QSLs. 
Although the simplest spin-1/2 model with the nearest-neighbour 
antiferromagnetic Heisenberg interactions orders magnetically in a 
120° phase, the magnetic frustration makes the order weak12. The 
magnetic order can be further destabilized by additional interactions 
such as a next-nearest-neighbour exchange coupling. In that case, it 
has been found that a realistic strength as small as ∼10% of the main 
interaction is enough to destroy the magnetic order and bring the 
system into the QSL phase13–19 (which is continuously connected to a 
QSL phase driven by nearest-neighbour anisotropic exchange20). Deter-
mining the nature of the QSL phase is a theoretical challenge, with 
proposals ranging from gapped ℤ

2

 and gapless U(1) Dirac to chiral13–19, 
with no clear consensus within the community. To discern among pos-
sible QSL states, experiments are necessitated.

In the last decade, Yb3+-based materials have become popular 
as QSL candidates because of the Yb3+ effective S = 1/2 state. Most 
recently, a class of delafossite materials have been proposed as rela-
tively disorder-free QSL candidates, including NaYbO2 (refs. 21–23), 
NaYbS2 (refs. 24,25), NaYbSe2 (refs. 26,27) and CsYbSe2 (ref. 28). Each of 
these materials shows diffuse excitations and no long-range magnetic 
order down to 0.4 K or lower, but because neither are unique to the QSL 
states (both are also caused by spin glass29, random singlet phases30 or 
2D magnetic order only in the zero-temperature limit), they remain 
QSL candidates only.

Here we investigate a new member of the Yb3+ delafossite fam-
ily: KYbSe2, which forms a layered triangular lattice of magnetic Yb3+ 
ions (Fig. 1a). This material shows no long-range order above 400 mK 
(ref. 31), and finite-field ordered phases similar to NaYbO2 (ref. 22) 
and NaYbS2 (ref. 25). Thus, it appears promising as a QSL candidate. 
We successfully apply entanglement witnesses, namely, one tangle, 
two tangle and quantum Fisher information (QFI), to KYbSe2 (ref. 32)  
and detect the presence of quantum entanglement at low temper-
atures. Using a combination of density functional theory (DFT), 
Onsager reaction field (ORF) theory, Schwinger bosons (SBs) and 
tensor network approach to model KYbSe2, we find that its physics is 
well captured by a microscopic spin-1/2 Hamiltonian with nearest- and 
next-nearest-neighbour Heisenberg interactions on the triangular 
lattice in proximity to the QSL phase (Fig. 1b). Finally, the neutron 
spectrum displays signatures of quantum criticality and fractional-
ized spinon quasiparticles. Together, these results show KYbSe2 to 
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Fig. 1 | Crystal structure and phase diagram of KYbSe2. a, Crystal structure 
with a side view of the stacked triangular layers and the top view showing the 
Yb3+ triangular lattice mediated by Se2− ions. b, Schematic of the phase diagram 
of the triangular-lattice Heisenberg antiferromagnet as a function of second-

neighbour exchange strength J2. This includes a zero-temperature 120° ordered 
phase for J2/J1 ≲ 0.06, a zero-temperature-stripe ordered phase for J2/J1 ≳ 0.16 and 
an intermediate QSL phase13–19. Near the quantum critical points, we expect the 
quantum critical regime extending at a finite temperature.
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which vanishes in the entire paramagnetic regime [47]. In
addition, two different variational Monte Carlo (VMC) studies
claimed for a gapless spin liquid close to J2/J1 = 1/8: Kaneko
and co-workers [48] used a full optimization of the pairing of a
Gutzwiller-projected BCS wave function [obtaining a critical
spin liquid for 0.10(1) ! J2/J1 ! 0.135(5)] and Mishmash
and collaborators [49] considered few variational Ansätze to
describe both magnetic and nonmagnetic phases (here, they
obtained evidence for a gapless nodal d-wave spin liquid for
0.06 " J2/J1 " 0.17). In the former case, the full optimization
of the pairing function faces technical difficulties, which
make it difficult to reach true energy minima; in the latter
one, the variational states are relatively simple and do not
exhaust the rich variety of states that can be obtained within
the fermionic representation of Gutzwiller-projected states.
Indeed, the variational energies that we get are much better
than those of these two papers, indicating the high accuracy of
the present approach.

By contrast, density-matrix renormalization group
(DMRG) studies find a gapped Z2 topological spin liquid
for 0.06 " J2/J1 " 0.17 [50] and 0.08 " J2/J1 " 0.16 [51],
with signatures of possible spontaneously broken rotational
symmetry. Following this proposal, Zheng, Mei, and Qi, [52],
and, in an independent work, Lu [53] have performed a
classification of symmetric and nematic Z2 spin liquids, and
pointed out promising candidates at the fermionic mean-
field level. This approach was extended by Bieri, Lhuillier,
and Messio [54] to include chiral spin liquids as well. A
bosonic mean-field classification has likewise been accom-
plished [55,56], with some of the states addressed already in
earlier works [57,58].

In this paper, we address the J1-J2 Heisenberg model on
the triangular lattice from the viewpoint of versatile Gutzwiller
projected Abrikosov-fermion wave functions (optionally sup-
plemented by Lanczos optimization), which we implemented
by using efficient VMC techniques. To enable a comparison of
the variational energies, we also perform DMRG and Lanczos
diagonalizations for specific regions in parameter space. In
order to resolve the magnetic susceptibility profile in the
paramagnetic regime, we employ pseudofermion functional
renormalization group (PFFRG) calculations, the results of
which are then compared with analogous results from DMRG
and VMC. Our main VMC results are summarized as follows:
a spin-liquid phase is stabilized for 0.08 " J2/J1 " 0.16
(Fig. 1), in excellent agreement with DMRG [50,51] and
CCM [46]. Within the spin-liquid regime, however, we find
no signal of stabilization for any of the gapped symmetric
or nematic Z2 states proposed in Refs. [52,53]. In particular,
the gapped Z2 spin liquids are found to have higher energies
compared to the gapless U(1) Dirac spin liquid (DSL); the
gapless Z2 spin liquids suffer the same fate. We find that
nematic order only onsets simultaneously with collinear anti-
ferromagnetic order, which is also supported by the analysis
of nematic response functions in PFFRG. On performing a
couple of Lanczos optimization steps on the VMC variational
result, followed by a zero-variance extrapolation, we obtain
estimates of the exact ground-state and S = 2 excited-state
energies on different cluster sizes. Our estimate of the ground-
state energy on finite-systems is in excellent agreement with

(a) 120 AF (c) Stripe AF(b) Spin liquid
J2/J10.160.080

FIG. 1. Schematic illustrations of the coplanar three-sublattice
(black, blue, and red) magnetic order on the triangular lattice
(a), the resonating-valence bond spin liquid (b), and the collinear
two-sublattice (blue and red) stripe magnetic order (c). The phase
diagram, as obtained by using variational Monte Carlo method is
also reported. Note that the DSL found here can be represented as a
resonating-valence bond spin liquid with a power-law distribution of
bond amplitudes.

exact diagonalization and other numerical methods. In the
thermodynamic limit, our estimate of the ground-state energy
is equal to the one obtained by DMRG, within error bars.
However, in contrast to DMRG results, which found a finite
spin excitation gap, the S = 2 gap computed in VMC is found
to extrapolate to zero (within error bars) in the thermodynamic
limit. These findings strongly point to a gapless spin liquid
ground state, yielding a clear disagreement with the findings
by DMRG.

The article is organized as follows. In Sec. II, we describe
the model Hamiltonian and discuss its finite-size spectra
obtained from exact diagonalization, followed by a description
of the pseudofermion spin representation framework. In
Sec. III, the variational Monte Carlo method, the associated
wave functions, and the pseudofermion functional renormal-
ization group method are explained. In Sec. IV, we present the
results on, the energy optimization of competing variational
states, spin excitation gap, spin structure factors, followed by a
discussion of the findings from different methods. Conclusions
are given in Sec. V.

II. MODEL

The Hamiltonian for the spin- 1
2 Heisenberg J1-J2 antifer-

romagnetic model is

H = J1

∑

〈i,j〉
Si · Sj + J2

∑

〈〈i,j〉〉
Si · Sj , (1)

where both J1 and J2 are positive; 〈i,j 〉 and 〈〈i,j 〉〉 denote
sums over nearest-neighbor (NN) and next-nearest-neighbor
(NNN) pairs of sites, respectively. Si = (Sx

i ,S
y
i ,Sz

i ) denotes
the spin operator acting on a spin- 1

2 at site i. All energies will
be given in units of J1.

A. Finite-size spectra

Before discussing our main results based on VMC and
PFFRG approaches (see Sec. IV), we would like to show
the results of exact diagonalizations on a small 6 × 6 cluster.
All eigenstates can be classified according to their quantum
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which vanishes in the entire paramagnetic regime [47]. In
addition, two different variational Monte Carlo (VMC) studies
claimed for a gapless spin liquid close to J2/J1 = 1/8: Kaneko
and co-workers [48] used a full optimization of the pairing of a
Gutzwiller-projected BCS wave function [obtaining a critical
spin liquid for 0.10(1) ! J2/J1 ! 0.135(5)] and Mishmash
and collaborators [49] considered few variational Ansätze to
describe both magnetic and nonmagnetic phases (here, they
obtained evidence for a gapless nodal d-wave spin liquid for
0.06 " J2/J1 " 0.17). In the former case, the full optimization
of the pairing function faces technical difficulties, which
make it difficult to reach true energy minima; in the latter
one, the variational states are relatively simple and do not
exhaust the rich variety of states that can be obtained within
the fermionic representation of Gutzwiller-projected states.
Indeed, the variational energies that we get are much better
than those of these two papers, indicating the high accuracy of
the present approach.

By contrast, density-matrix renormalization group
(DMRG) studies find a gapped Z2 topological spin liquid
for 0.06 " J2/J1 " 0.17 [50] and 0.08 " J2/J1 " 0.16 [51],
with signatures of possible spontaneously broken rotational
symmetry. Following this proposal, Zheng, Mei, and Qi, [52],
and, in an independent work, Lu [53] have performed a
classification of symmetric and nematic Z2 spin liquids, and
pointed out promising candidates at the fermionic mean-
field level. This approach was extended by Bieri, Lhuillier,
and Messio [54] to include chiral spin liquids as well. A
bosonic mean-field classification has likewise been accom-
plished [55,56], with some of the states addressed already in
earlier works [57,58].

In this paper, we address the J1-J2 Heisenberg model on
the triangular lattice from the viewpoint of versatile Gutzwiller
projected Abrikosov-fermion wave functions (optionally sup-
plemented by Lanczos optimization), which we implemented
by using efficient VMC techniques. To enable a comparison of
the variational energies, we also perform DMRG and Lanczos
diagonalizations for specific regions in parameter space. In
order to resolve the magnetic susceptibility profile in the
paramagnetic regime, we employ pseudofermion functional
renormalization group (PFFRG) calculations, the results of
which are then compared with analogous results from DMRG
and VMC. Our main VMC results are summarized as follows:
a spin-liquid phase is stabilized for 0.08 " J2/J1 " 0.16
(Fig. 1), in excellent agreement with DMRG [50,51] and
CCM [46]. Within the spin-liquid regime, however, we find
no signal of stabilization for any of the gapped symmetric
or nematic Z2 states proposed in Refs. [52,53]. In particular,
the gapped Z2 spin liquids are found to have higher energies
compared to the gapless U(1) Dirac spin liquid (DSL); the
gapless Z2 spin liquids suffer the same fate. We find that
nematic order only onsets simultaneously with collinear anti-
ferromagnetic order, which is also supported by the analysis
of nematic response functions in PFFRG. On performing a
couple of Lanczos optimization steps on the VMC variational
result, followed by a zero-variance extrapolation, we obtain
estimates of the exact ground-state and S = 2 excited-state
energies on different cluster sizes. Our estimate of the ground-
state energy on finite-systems is in excellent agreement with

(a) 120 AF (c) Stripe AF(b) Spin liquid
J2/J10.160.080

FIG. 1. Schematic illustrations of the coplanar three-sublattice
(black, blue, and red) magnetic order on the triangular lattice
(a), the resonating-valence bond spin liquid (b), and the collinear
two-sublattice (blue and red) stripe magnetic order (c). The phase
diagram, as obtained by using variational Monte Carlo method is
also reported. Note that the DSL found here can be represented as a
resonating-valence bond spin liquid with a power-law distribution of
bond amplitudes.

exact diagonalization and other numerical methods. In the
thermodynamic limit, our estimate of the ground-state energy
is equal to the one obtained by DMRG, within error bars.
However, in contrast to DMRG results, which found a finite
spin excitation gap, the S = 2 gap computed in VMC is found
to extrapolate to zero (within error bars) in the thermodynamic
limit. These findings strongly point to a gapless spin liquid
ground state, yielding a clear disagreement with the findings
by DMRG.

The article is organized as follows. In Sec. II, we describe
the model Hamiltonian and discuss its finite-size spectra
obtained from exact diagonalization, followed by a description
of the pseudofermion spin representation framework. In
Sec. III, the variational Monte Carlo method, the associated
wave functions, and the pseudofermion functional renormal-
ization group method are explained. In Sec. IV, we present the
results on, the energy optimization of competing variational
states, spin excitation gap, spin structure factors, followed by a
discussion of the findings from different methods. Conclusions
are given in Sec. V.

II. MODEL

The Hamiltonian for the spin- 1
2 Heisenberg J1-J2 antifer-

romagnetic model is

H = J1

∑

〈i,j〉
Si · Sj + J2

∑

〈〈i,j〉〉
Si · Sj , (1)

where both J1 and J2 are positive; 〈i,j 〉 and 〈〈i,j 〉〉 denote
sums over nearest-neighbor (NN) and next-nearest-neighbor
(NNN) pairs of sites, respectively. Si = (Sx

i ,S
y
i ,Sz

i ) denotes
the spin operator acting on a spin- 1

2 at site i. All energies will
be given in units of J1.

A. Finite-size spectra

Before discussing our main results based on VMC and
PFFRG approaches (see Sec. IV), we would like to show
the results of exact diagonalizations on a small 6 × 6 cluster.
All eigenstates can be classified according to their quantum
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This well-defined lower bound to the continuum distinguishes KYbSe2 
from other QSL candidates, such as NaCaNi2F7 (ref. 44), YbMgGaO4 
(refs. 45,46) and herbertsmithite8, which are diffuse everywhere. 
This also distinguishes KYbSe2 from NaYbSe2, which does not have a 
lower bound to its continuum27. Whether this signals a genuine QSL in  
NaYbSe2 or the effect of its 3% site disorder is unclear.

ARCS
To understand how ‘quantum’ the KYbSe2 spins are, we measured the 
crystalline electric-field (CEF) excitations using the wide ARCS47 at Oak 
Ridge National Lab’s Spallation Neutron Source. We fitted a single-ion 
CEF Hamiltonian to the excitations using PyCrystalField version 2.2.2 
(ref. 48) software; data and fits are shown in Fig. 3 (Supplementary 
Section V provides details on the CEF fitting procedure).

The best-fit CEF Hamiltonian shows a ground-state doublet:
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with the first excited state at 17.1(3) meV. This ground-state dou-
blet gives a weak easy plane g tensor gxx = gyy = 3.0(2) and gzz = 1.8(6).  
As indicated by the large gxx and gyy, the ground-state doublet allows  
for substantial quantum tunnelling from effective spin operator J±. 
Thus, the Yb3+ spins in KYbSe2 can be treated like a spin-1/2 system.

Entanglement witnesses
Diffuse neutron excitations suggest—but do not prove—proximity to 
QSL behaviour, which makes their mere observation ambiguous. For-
tunately, entanglement witnesses provide a way out of this quandary: 
by quantifying entanglement in KYbSe2, we can rule out trivial phases 
like random singlet or valence-bond-solid states.

We apply three entanglement witnesses to the KYbSe2 data (same 
as that in other work32,42): one-tangle τ1, which quantifies the entan-
glement of a spin with the entire system49,50; two-tangle τ2, which 
quantifies the total bipartite entanglement derived from quantum 
concurrence51,52; and QFI, which gives a lower bound on multipartite 
entanglement53. Methods provides details of these calculations.

The one-tangle value is calculated from the static spin at zero 
temperature and ranges between zero (unentangled state) and one 
(maximally entangled state). In Supplementary Fig. 1, we extract the 
T → 0 static moment from fits to the Yb3+ zero-temperature heat capac-
ity nuclear Schottky anomaly, giving a local static ordered moment 
of 0.58(1)µB per ion. Comparing this with the maximum ground-state 
static moment from the CEF fit µ = 1.48(8) meV, this is only 39(2)% of 
the maximum static moment. Projecting it onto an effective S = 1/2, 
τ1 = 0.85(2). This evidences substantial spin entanglement in KYbSe2.

The two-tangle value is calculated from the Fourier transform 
to real space of the frequency-integrated S(q, ω) (Fig. 4). We find that 
none of the neighbouring spin correlators exceed the classical 〈Si ⋅ Sj〉 
threshold, and thus, the two-tangle value is zero for all the tempera-
tures in KYbSe2. This makes sense given quantum monogamy54 and six 
equivalent nearest neighbours for every site to distribute its entangle-
ment. The significance of this will become apparent shortly.

The third entanglement witness, that is, QFI, is calculated from 
an energy integral at a specific point in Q (ref. 53). For KYbSe2, we 
evaluate QFI at (1/3, 1/3), the wavevector associated with the strong-
est correlations. The scattering and nQFI are shown in Fig. 4. At 1 and 
2 K, nQFI = 1.39(6) and 0.82(4), respectively, indicating non-zero wit-
nessed entanglement below 1 K. At 0.3 K, nQFI = 3.4(2), which shows 
multipartite entanglement with an entanglement depth of four spins 
in a highly correlated ground state. Importantly, this non-zero entan-
glement appears for all six Q vectors along the nearest-neighbour 
bond directions.

Clearly, these entanglement witnesses reveal appreciable spin 
entanglement in KYbSe2, but the combination of two-tangle and QFI 
values is particularly revealing. The zero τ2 shows that the entangle-
ment is spread out over the nearest neighbours rather than pairing 
with a particular neighbour in singlets. This is what one expects for 
a highly entangled ground state (that is, vanishing τ2 for the Kitaev 
spin liquid55). Meanwhile, the QFI shows at least bipartite entangle-
ment within the (1/3, 1/3) correlations. Both of these rule out classical 
glassiness or random singlet formation. Instead, they point to many 
sites entangled together at the lowest temperatures—as one would 
expect for a QSL.
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Fig. 2 | Neutron spectrum of KYbSe2 at 0.3, 1.0 and 2.0 K. a–c, Energy-
dependent scattering along (−k/2 − 1/2, k, 0), which includes the position  
where the dispersion touches zero energy (left). These plots comprise data  
with Ei = 1.55 meV below #ω = 0.50 meV and Ei = 3.32 meV above #ω = 0.50 meV. 
Note the roton-like mode at 0.3 K and the diffuse high-energy spectrum.  

d–o, Constant-energy slices measured with Ei = 1.55 meV. The elastic intensity 
associated with (1/3, 1/3) static magnetism, which disappears at higher 
temperatures, is shown in d. p–r, Plot of the elastic intensity as a function of ℓ, 
which reveals almost no dependence on ℓ, and thus the 2D correlations.
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This well-defined lower bound to the continuum distinguishes KYbSe2 
from other QSL candidates, such as NaCaNi2F7 (ref. 44), YbMgGaO4 
(refs. 45,46) and herbertsmithite8, which are diffuse everywhere. 
This also distinguishes KYbSe2 from NaYbSe2, which does not have a 
lower bound to its continuum27. Whether this signals a genuine QSL in  
NaYbSe2 or the effect of its 3% site disorder is unclear.

ARCS
To understand how ‘quantum’ the KYbSe2 spins are, we measured the 
crystalline electric-field (CEF) excitations using the wide ARCS47 at Oak 
Ridge National Lab’s Spallation Neutron Source. We fitted a single-ion 
CEF Hamiltonian to the excitations using PyCrystalField version 2.2.2 
(ref. 48) software; data and fits are shown in Fig. 3 (Supplementary 
Section V provides details on the CEF fitting procedure).

The best-fit CEF Hamiltonian shows a ground-state doublet:
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with the first excited state at 17.1(3) meV. This ground-state dou-
blet gives a weak easy plane g tensor gxx = gyy = 3.0(2) and gzz = 1.8(6).  
As indicated by the large gxx and gyy, the ground-state doublet allows  
for substantial quantum tunnelling from effective spin operator J±. 
Thus, the Yb3+ spins in KYbSe2 can be treated like a spin-1/2 system.

Entanglement witnesses
Diffuse neutron excitations suggest—but do not prove—proximity to 
QSL behaviour, which makes their mere observation ambiguous. For-
tunately, entanglement witnesses provide a way out of this quandary: 
by quantifying entanglement in KYbSe2, we can rule out trivial phases 
like random singlet or valence-bond-solid states.

We apply three entanglement witnesses to the KYbSe2 data (same 
as that in other work32,42): one-tangle τ1, which quantifies the entan-
glement of a spin with the entire system49,50; two-tangle τ2, which 
quantifies the total bipartite entanglement derived from quantum 
concurrence51,52; and QFI, which gives a lower bound on multipartite 
entanglement53. Methods provides details of these calculations.

The one-tangle value is calculated from the static spin at zero 
temperature and ranges between zero (unentangled state) and one 
(maximally entangled state). In Supplementary Fig. 1, we extract the 
T → 0 static moment from fits to the Yb3+ zero-temperature heat capac-
ity nuclear Schottky anomaly, giving a local static ordered moment 
of 0.58(1)µB per ion. Comparing this with the maximum ground-state 
static moment from the CEF fit µ = 1.48(8) meV, this is only 39(2)% of 
the maximum static moment. Projecting it onto an effective S = 1/2, 
τ1 = 0.85(2). This evidences substantial spin entanglement in KYbSe2.

The two-tangle value is calculated from the Fourier transform 
to real space of the frequency-integrated S(q, ω) (Fig. 4). We find that 
none of the neighbouring spin correlators exceed the classical 〈Si ⋅ Sj〉 
threshold, and thus, the two-tangle value is zero for all the tempera-
tures in KYbSe2. This makes sense given quantum monogamy54 and six 
equivalent nearest neighbours for every site to distribute its entangle-
ment. The significance of this will become apparent shortly.

The third entanglement witness, that is, QFI, is calculated from 
an energy integral at a specific point in Q (ref. 53). For KYbSe2, we 
evaluate QFI at (1/3, 1/3), the wavevector associated with the strong-
est correlations. The scattering and nQFI are shown in Fig. 4. At 1 and 
2 K, nQFI = 1.39(6) and 0.82(4), respectively, indicating non-zero wit-
nessed entanglement below 1 K. At 0.3 K, nQFI = 3.4(2), which shows 
multipartite entanglement with an entanglement depth of four spins 
in a highly correlated ground state. Importantly, this non-zero entan-
glement appears for all six Q vectors along the nearest-neighbour 
bond directions.

Clearly, these entanglement witnesses reveal appreciable spin 
entanglement in KYbSe2, but the combination of two-tangle and QFI 
values is particularly revealing. The zero τ2 shows that the entangle-
ment is spread out over the nearest neighbours rather than pairing 
with a particular neighbour in singlets. This is what one expects for 
a highly entangled ground state (that is, vanishing τ2 for the Kitaev 
spin liquid55). Meanwhile, the QFI shows at least bipartite entangle-
ment within the (1/3, 1/3) correlations. Both of these rule out classical 
glassiness or random singlet formation. Instead, they point to many 
sites entangled together at the lowest temperatures—as one would 
expect for a QSL.
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Fig. 2 | Neutron spectrum of KYbSe2 at 0.3, 1.0 and 2.0 K. a–c, Energy-
dependent scattering along (−k/2 − 1/2, k, 0), which includes the position  
where the dispersion touches zero energy (left). These plots comprise data  
with Ei = 1.55 meV below #ω = 0.50 meV and Ei = 3.32 meV above #ω = 0.50 meV. 
Note the roton-like mode at 0.3 K and the diffuse high-energy spectrum.  

d–o, Constant-energy slices measured with Ei = 1.55 meV. The elastic intensity 
associated with (1/3, 1/3) static magnetism, which disappears at higher 
temperatures, is shown in d. p–r, Plot of the elastic intensity as a function of ℓ, 
which reveals almost no dependence on ℓ, and thus the 2D correlations.
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This well-defined lower bound to the continuum distinguishes KYbSe2 
from other QSL candidates, such as NaCaNi2F7 (ref. 44), YbMgGaO4 
(refs. 45,46) and herbertsmithite8, which are diffuse everywhere. 
This also distinguishes KYbSe2 from NaYbSe2, which does not have a 
lower bound to its continuum27. Whether this signals a genuine QSL in  
NaYbSe2 or the effect of its 3% site disorder is unclear.

ARCS
To understand how ‘quantum’ the KYbSe2 spins are, we measured the 
crystalline electric-field (CEF) excitations using the wide ARCS47 at Oak 
Ridge National Lab’s Spallation Neutron Source. We fitted a single-ion 
CEF Hamiltonian to the excitations using PyCrystalField version 2.2.2 
(ref. 48) software; data and fits are shown in Fig. 3 (Supplementary 
Section V provides details on the CEF fitting procedure).

The best-fit CEF Hamiltonian shows a ground-state doublet:
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with the first excited state at 17.1(3) meV. This ground-state dou-
blet gives a weak easy plane g tensor gxx = gyy = 3.0(2) and gzz = 1.8(6).  
As indicated by the large gxx and gyy, the ground-state doublet allows  
for substantial quantum tunnelling from effective spin operator J±. 
Thus, the Yb3+ spins in KYbSe2 can be treated like a spin-1/2 system.

Entanglement witnesses
Diffuse neutron excitations suggest—but do not prove—proximity to 
QSL behaviour, which makes their mere observation ambiguous. For-
tunately, entanglement witnesses provide a way out of this quandary: 
by quantifying entanglement in KYbSe2, we can rule out trivial phases 
like random singlet or valence-bond-solid states.

We apply three entanglement witnesses to the KYbSe2 data (same 
as that in other work32,42): one-tangle τ1, which quantifies the entan-
glement of a spin with the entire system49,50; two-tangle τ2, which 
quantifies the total bipartite entanglement derived from quantum 
concurrence51,52; and QFI, which gives a lower bound on multipartite 
entanglement53. Methods provides details of these calculations.

The one-tangle value is calculated from the static spin at zero 
temperature and ranges between zero (unentangled state) and one 
(maximally entangled state). In Supplementary Fig. 1, we extract the 
T → 0 static moment from fits to the Yb3+ zero-temperature heat capac-
ity nuclear Schottky anomaly, giving a local static ordered moment 
of 0.58(1)µB per ion. Comparing this with the maximum ground-state 
static moment from the CEF fit µ = 1.48(8) meV, this is only 39(2)% of 
the maximum static moment. Projecting it onto an effective S = 1/2, 
τ1 = 0.85(2). This evidences substantial spin entanglement in KYbSe2.

The two-tangle value is calculated from the Fourier transform 
to real space of the frequency-integrated S(q, ω) (Fig. 4). We find that 
none of the neighbouring spin correlators exceed the classical 〈Si ⋅ Sj〉 
threshold, and thus, the two-tangle value is zero for all the tempera-
tures in KYbSe2. This makes sense given quantum monogamy54 and six 
equivalent nearest neighbours for every site to distribute its entangle-
ment. The significance of this will become apparent shortly.

The third entanglement witness, that is, QFI, is calculated from 
an energy integral at a specific point in Q (ref. 53). For KYbSe2, we 
evaluate QFI at (1/3, 1/3), the wavevector associated with the strong-
est correlations. The scattering and nQFI are shown in Fig. 4. At 1 and 
2 K, nQFI = 1.39(6) and 0.82(4), respectively, indicating non-zero wit-
nessed entanglement below 1 K. At 0.3 K, nQFI = 3.4(2), which shows 
multipartite entanglement with an entanglement depth of four spins 
in a highly correlated ground state. Importantly, this non-zero entan-
glement appears for all six Q vectors along the nearest-neighbour 
bond directions.

Clearly, these entanglement witnesses reveal appreciable spin 
entanglement in KYbSe2, but the combination of two-tangle and QFI 
values is particularly revealing. The zero τ2 shows that the entangle-
ment is spread out over the nearest neighbours rather than pairing 
with a particular neighbour in singlets. This is what one expects for 
a highly entangled ground state (that is, vanishing τ2 for the Kitaev 
spin liquid55). Meanwhile, the QFI shows at least bipartite entangle-
ment within the (1/3, 1/3) correlations. Both of these rule out classical 
glassiness or random singlet formation. Instead, they point to many 
sites entangled together at the lowest temperatures—as one would 
expect for a QSL.
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Fig. 2 | Neutron spectrum of KYbSe2 at 0.3, 1.0 and 2.0 K. a–c, Energy-
dependent scattering along (−k/2 − 1/2, k, 0), which includes the position  
where the dispersion touches zero energy (left). These plots comprise data  
with Ei = 1.55 meV below #ω = 0.50 meV and Ei = 3.32 meV above #ω = 0.50 meV. 
Note the roton-like mode at 0.3 K and the diffuse high-energy spectrum.  

d–o, Constant-energy slices measured with Ei = 1.55 meV. The elastic intensity 
associated with (1/3, 1/3) static magnetism, which disappears at higher 
temperatures, is shown in d. p–r, Plot of the elastic intensity as a function of ℓ, 
which reveals almost no dependence on ℓ, and thus the 2D correlations.
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Microscopic modelling
To better understand the features observed in KYbSe2, and find a micro-
scopic model for the compound, we use a combination of theoretical 

techniques such as DFT (which showed a magnetic insulating state 
(Methods)), the ORF, SBs and tensor networks.

ORF: estimating the exchange ratios
First, we employ the ORF56 to fit the energy-integrated paramag-
netic scattering shown in Fig. 5. This approach neglects quantum 
fluctuations, but in the paramagnetic regime, it is accurate up to a 
temperature-dependent energy-scale normalization57, which—in 
our case—is unknown. Despite this limitation, ORF does give rela-
tive anisotropy and ratios between exchanges. Using the g tensor 
derived from the CEF fits and allowing for first- and second-neighbour 
exchange, we find the off-diagonal anisotropic exchange is small and 
the nearest-neighbour exchange is isotropic to within the uncer-
tainty (Methods), making KYbSe2 a very good approximation to a 
triangular-lattice Heisenberg antiferromagnet described by the micro-
scopic J1−J2 Hamiltonian:
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Moreover, the fitted J2/J1 = 0.047(7). This is extremely close to the 
predicted phase boundary between 120° magnetic order and a QSL 
phase on the triangular-lattice Heisenberg antiferromagnet: J2/J1 ≈ 0.06 
(refs. 13–19). Thus, the ORF fits show that KYbSe2 has a nearly isotropic 
Heisenberg exchange and is very close to a QSL phase.

SBs: comparing the neutron spectrum
To understand the inelastic neutron spectrum, we turn to the SB theory 
beyond the mean-field level58–60. This is a parton formulation, where 
the Heisenberg model is expressed in terms of interacting spin-1/2 
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FIG. 1. Triangular lattice quantum spin liquid (QSL). Panel a shows
the NaYbSe2 crystal structure. Panel b shows the conceptual phase
diagram of CsYbSe2, KYbSe2, and NaYbSe2 as a function of fitted
J2/J1 values [30]. The theoretical boundary to the quantum spin liq-
uid phase for the isotropic model is detected by neural quantum state
(NQS) simulations at J2/J1 . 0.063 ± 0.001 (see Supplemental Ma-
terials) locating NaYbSe2 well within the QSL phase. Panel c shows
schematics for potential gapped phases on the triangular lattice: the
gapped Z2 QSL as resonating valence bond (left), a chiral QSL (cen-
ter), and a particular ordering pattern [14] for a 12-site valence bond
solid (right). Note: overlapping ovals represent resonating singlet
bonds.

disorder (as in the ill-fated Yb3+ QSL candidates YbMgGaO4
[31] and Yb2Ti2O7 [32]). To further clarify NaYbSe2, we
measured the inelastic neutron spectra, AC calorimetry, and
AC susceptibility with high quality samples. We observe co-
herent excitations, lack of magnetic order, and evidence in
bulk susceptibility of a 2.1 µeV gap at low temperature. This
is strong evidence for a QSL ground state in NaYbSe2 and a
gapped QSL on the triangular lattice.

The neutron spectra at 100 mK, shown in Fig. 5, show a
highly dispersive continuum of excitations with a well-defined
lower bound, similar to KYbSe2 [28] (see supplemental ma-
terials for experimental details). This is qualitatively di↵erent
from the spectra measured by Dai et al [27] on the 3% Yb/Na
site-mixed sample which in contrast showed smeared our con-
tinua in k-space and di↵use spectra extending to low energies
in many regions of reciprocal space. (Later in the text, we will
explain why we believe our samples are free from mixing dis-
order.) Here, the only region of reciprocal space which has ap-
preciable intensity down to low energies is (1/3, 1/3, 0), corre-
sponding to the 120� magnetic order seen in sister compounds
KYbSe2 [28] and CsYbSe2 [29]. Down to 50 µeV (the limit
before the incoherent scattering on the elastic line obscures
the scattering energy for the incident energy of Ei = 1 meV),
no gap in the spectrum is resolved.

For comparison we also show matrix product state (MPS)
calculated spectra in 5f-i with J2/J1 = 0.071 (this value de-

rived from finite field non-linear spin wave fits [30]), at vary-
ing levels of exchange anisotropy � (see Supplemental Ma-
terials). The boundary to the quantum spin liquid phase for
the isotropic model is at J2/J1 = 0.063 calculated using neu-
ral quantum states (see Supplemental Materials) locating the
material in the theoretically predicted QSL phase for weak
anisotropies. Because of finite size lattice e↵ects the calcu-
lated spectra are gapped, and it is di�cult to make quantitative
comparisons between theory and neutron experiments. Never-
theless, the calculated spectra are consistent with the observed
spectra, corroborating the idea that a J2/J1 model with easy-
plane anisotropy is an appropriate model for NaYbSe2.

Despite intensity concentrated at (1/3, 1/3, 0) and similar
spectra to CsYbSe2 and KYbSe2, we observe no static mag-
netic order in NaYbSe2 in neutron scattering measurements
down to 100 mK. No magnetic ordering features are visible
in heat capacity down to 100 mK either, as shown in Fig. 3.
(Note also that our sample has similar low-temperature spe-
cific heat to those reported in Refs. [25, 33]. If the C/T max-
imum at 800 mK is an indication of sample quality, our sam-
ple is free from the site mixing reported in Ref. [27].) To test
whether applied hydrostatic pressure can induce order—as in
KYbSe2 wherein pressure enhanced TN [30]—we also mea-
sured AC calorimetry under pressure (see Supplemental Mate-
rials) shown in Fig. 3b. Up to 2.0 GPa, no sharp feature as ex-
pected for an ordering transition is seen in the data (pressure-
dependent thermalization issues cause the low-T specific heat
to increase at low T , but this is a known artifact and would not
mask a sharp ordering transition).

Also in Fig. 3c we compare NaYbSe2 heat capacity to
KYbSe2, with the temperature axis rescaled by the fitted J1
[30]. This shows not only a lack of ordering transition, but
also a smaller kBT/J1 ⇡ 0.2 maximum heat capacity and
greater low-temperature heat capacity in NaYbSe2 relative
to KYbSe2. Comparing this to thermal pure quantum state
(TPQ) simulations of the 27-site 2D triangular lattice in Fig.
3d, these trends are beautifully explained with a larger J2/J1
in NaYbSe2: the low-temperature heat capacity is largest
when J2/J1 ⇡ 0.07 and the kBT/J1 = 0.2 bump is suppressed
with larger J2. Because the TPQ simulations are of a finite
size cluster which induces an artificial energy gap, the low-
est temperature trends are not quantitatively accurate. How-
ever, on a qualitative level, this is remarkable confirmation
that NaYbSe2 is indeed closer to or inside the triangular QSL
phase.

To investigate the magnetic state to lower temperatures, we
measured AC susceptibility down to 20 mK with AC and DC
field applied along the a and c directions on NaYbSe2 (see
Supplemental Materials). In this case we observe a clear
magnetization plateau in the B k a direction at 5 T, but not
for B k c (note these data were collected simultaneously on
two separate crystals mounted on two separate susceptome-
ters mounted on the same dilution refrigerator). This agrees
with previous measurements [25], and indicates an easy-plane
exchange anisotropy in NaYbSe2: in the perfectly isotropic
triangular model, 1/3 magnetization plateaux appear both in-
plane and out-of-plane, but the out-of-plane plateau is sup-
pressed by planar anisotropy [34–36], although the in-plane
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be proximate to a spin liquid with positive evidence for the two key 
features: quantum entanglement and exotic quasiparticles.

Experiments
CNCS
We measured the low-energy KYbSe2 single-crystal neutron spectrum 
on the Cold Neutron Chopper Spectrometer (CNCS) spectrometer33 at 
Oak Ridge National Laboratory’s Spallation Neutron Source34 between 
0.3 and 2.0 K using a 3He refrigerator (Methods). The data are shown 
in Fig. 2.

In the elastic channel, quasi-Bragg intensities appear between 1.0 
and 0.3 K, which look like (1/3, 1/3) Bragg peaks signalling 120° correla-
tions. They have no dependence on ℓ (Fig. 2p), which evidences truly 2D 
static correlations and weak interplane exchange (as a side note, this 
weak interplane exchange is expected given the fragility of the crystal 
interplane bonds: KYbSe2 planes readily flake off when the crystals are 
not handled gently). Fitting the in-plane scattering to extract the cor-
relation length using the (101) peak to define the resolution width, we 
find that the magnetic peaks are much broader than the nuclear Bragg 
peaks with a fitted correlation length of 47 ± 10 Å at 0.3 K (approxi-
mately ten unit cells in the plane). In Supplementary Fig. 1, we show 
these quasi-Bragg intensities become well-defined Bragg peaks below 
TN = 290 mK, evidencing a transition to 120° long-range magnetic order.

In the inelastic channel, two features stand out in the low- 
temperature KYbSe2 spectrum: a diffuse continuum of excitations 
and a pronounced 0.2 meV energy minimum at M = (1/2, 0, 0). Both 
these features are evident in the triangular-lattice Ba3CoSb2O9 com-
pound35–38. The ‘roton-like’ minimum at M is a generic feature of the 
2D quantum triangular-lattice Heisenberg antiferromagnet and is a 
nonlinear effect (that is, not captured by linear spin-wave theory)39–41. 
Fits to the KYbSe2 roton mode (Supplementary Fig. 4) show a mode 
maximum of 0.288(12) meV and a roton minimum 0.200(13) meV at M.  
This indicates that strong quantum effects are at work in KYbSe2.

The continuum, meanwhile, extends up to 1.6 meV, over five 
times the roton-mode bandwidth. This is far too high in energy to be a 
two-magnon continuum, which is limited to twice the single-magnon 
bandwidth. Integrating the scattering intensity over the entire 
Brillouin zone shows that ∼60% of the magnetic scattering intensity 
is found above 0.4 meV, compared with only ∼29% between 0.05 and 
0.40 meV, showing that the continuum scattering carries twice the 
spectral weight of the ‘single-magnon’ intensity. Perhaps, most inter-
estingly, the continuum in KYbSe2 comes all the way down to the sharp 
low-energy modes (Fig. 2a). The KYbSe2 diffuse continuum with a sharp 
lower bound is reminiscent of the Van Hove singularity observed in 
one-dimensional (1D) spin chains—which are known to have highly 
entangled ground states with fractionalized spinon excitations32,42,43. 

excitations and so on, which are not unique to QSL states. Instead, 
to conclusively identify an experimental QSL, ‘positive evidence’ is 
needed: experimental evidence of either (1) a highly entangled ground 
state or (2) exotic quasiparticles—both of which are key properties  
of a QSL.

Beginning with Anderson’s resonating valence-bond state11, the 
2D triangular geometry has long been studied as a platform for QSLs. 
Although the simplest spin-1/2 model with the nearest-neighbour 
antiferromagnetic Heisenberg interactions orders magnetically in a 
120° phase, the magnetic frustration makes the order weak12. The 
magnetic order can be further destabilized by additional interactions 
such as a next-nearest-neighbour exchange coupling. In that case, it 
has been found that a realistic strength as small as ∼10% of the main 
interaction is enough to destroy the magnetic order and bring the 
system into the QSL phase13–19 (which is continuously connected to a 
QSL phase driven by nearest-neighbour anisotropic exchange20). Deter-
mining the nature of the QSL phase is a theoretical challenge, with 
proposals ranging from gapped ℤ

2

 and gapless U(1) Dirac to chiral13–19, 
with no clear consensus within the community. To discern among pos-
sible QSL states, experiments are necessitated.

In the last decade, Yb3+-based materials have become popular 
as QSL candidates because of the Yb3+ effective S = 1/2 state. Most 
recently, a class of delafossite materials have been proposed as rela-
tively disorder-free QSL candidates, including NaYbO2 (refs. 21–23), 
NaYbS2 (refs. 24,25), NaYbSe2 (refs. 26,27) and CsYbSe2 (ref. 28). Each of 
these materials shows diffuse excitations and no long-range magnetic 
order down to 0.4 K or lower, but because neither are unique to the QSL 
states (both are also caused by spin glass29, random singlet phases30 or 
2D magnetic order only in the zero-temperature limit), they remain 
QSL candidates only.

Here we investigate a new member of the Yb3+ delafossite fam-
ily: KYbSe2, which forms a layered triangular lattice of magnetic Yb3+ 
ions (Fig. 1a). This material shows no long-range order above 400 mK 
(ref. 31), and finite-field ordered phases similar to NaYbO2 (ref. 22) 
and NaYbS2 (ref. 25). Thus, it appears promising as a QSL candidate. 
We successfully apply entanglement witnesses, namely, one tangle, 
two tangle and quantum Fisher information (QFI), to KYbSe2 (ref. 32)  
and detect the presence of quantum entanglement at low temper-
atures. Using a combination of density functional theory (DFT), 
Onsager reaction field (ORF) theory, Schwinger bosons (SBs) and 
tensor network approach to model KYbSe2, we find that its physics is 
well captured by a microscopic spin-1/2 Hamiltonian with nearest- and 
next-nearest-neighbour Heisenberg interactions on the triangular 
lattice in proximity to the QSL phase (Fig. 1b). Finally, the neutron 
spectrum displays signatures of quantum criticality and fractional-
ized spinon quasiparticles. Together, these results show KYbSe2 to 
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which vanishes in the entire paramagnetic regime [47]. In
addition, two different variational Monte Carlo (VMC) studies
claimed for a gapless spin liquid close to J2/J1 = 1/8: Kaneko
and co-workers [48] used a full optimization of the pairing of a
Gutzwiller-projected BCS wave function [obtaining a critical
spin liquid for 0.10(1) ! J2/J1 ! 0.135(5)] and Mishmash
and collaborators [49] considered few variational Ansätze to
describe both magnetic and nonmagnetic phases (here, they
obtained evidence for a gapless nodal d-wave spin liquid for
0.06 " J2/J1 " 0.17). In the former case, the full optimization
of the pairing function faces technical difficulties, which
make it difficult to reach true energy minima; in the latter
one, the variational states are relatively simple and do not
exhaust the rich variety of states that can be obtained within
the fermionic representation of Gutzwiller-projected states.
Indeed, the variational energies that we get are much better
than those of these two papers, indicating the high accuracy of
the present approach.

By contrast, density-matrix renormalization group
(DMRG) studies find a gapped Z2 topological spin liquid
for 0.06 " J2/J1 " 0.17 [50] and 0.08 " J2/J1 " 0.16 [51],
with signatures of possible spontaneously broken rotational
symmetry. Following this proposal, Zheng, Mei, and Qi, [52],
and, in an independent work, Lu [53] have performed a
classification of symmetric and nematic Z2 spin liquids, and
pointed out promising candidates at the fermionic mean-
field level. This approach was extended by Bieri, Lhuillier,
and Messio [54] to include chiral spin liquids as well. A
bosonic mean-field classification has likewise been accom-
plished [55,56], with some of the states addressed already in
earlier works [57,58].

In this paper, we address the J1-J2 Heisenberg model on
the triangular lattice from the viewpoint of versatile Gutzwiller
projected Abrikosov-fermion wave functions (optionally sup-
plemented by Lanczos optimization), which we implemented
by using efficient VMC techniques. To enable a comparison of
the variational energies, we also perform DMRG and Lanczos
diagonalizations for specific regions in parameter space. In
order to resolve the magnetic susceptibility profile in the
paramagnetic regime, we employ pseudofermion functional
renormalization group (PFFRG) calculations, the results of
which are then compared with analogous results from DMRG
and VMC. Our main VMC results are summarized as follows:
a spin-liquid phase is stabilized for 0.08 " J2/J1 " 0.16
(Fig. 1), in excellent agreement with DMRG [50,51] and
CCM [46]. Within the spin-liquid regime, however, we find
no signal of stabilization for any of the gapped symmetric
or nematic Z2 states proposed in Refs. [52,53]. In particular,
the gapped Z2 spin liquids are found to have higher energies
compared to the gapless U(1) Dirac spin liquid (DSL); the
gapless Z2 spin liquids suffer the same fate. We find that
nematic order only onsets simultaneously with collinear anti-
ferromagnetic order, which is also supported by the analysis
of nematic response functions in PFFRG. On performing a
couple of Lanczos optimization steps on the VMC variational
result, followed by a zero-variance extrapolation, we obtain
estimates of the exact ground-state and S = 2 excited-state
energies on different cluster sizes. Our estimate of the ground-
state energy on finite-systems is in excellent agreement with

(a) 120 AF (c) Stripe AF(b) Spin liquid
J2/J10.160.080

FIG. 1. Schematic illustrations of the coplanar three-sublattice
(black, blue, and red) magnetic order on the triangular lattice
(a), the resonating-valence bond spin liquid (b), and the collinear
two-sublattice (blue and red) stripe magnetic order (c). The phase
diagram, as obtained by using variational Monte Carlo method is
also reported. Note that the DSL found here can be represented as a
resonating-valence bond spin liquid with a power-law distribution of
bond amplitudes.

exact diagonalization and other numerical methods. In the
thermodynamic limit, our estimate of the ground-state energy
is equal to the one obtained by DMRG, within error bars.
However, in contrast to DMRG results, which found a finite
spin excitation gap, the S = 2 gap computed in VMC is found
to extrapolate to zero (within error bars) in the thermodynamic
limit. These findings strongly point to a gapless spin liquid
ground state, yielding a clear disagreement with the findings
by DMRG.

The article is organized as follows. In Sec. II, we describe
the model Hamiltonian and discuss its finite-size spectra
obtained from exact diagonalization, followed by a description
of the pseudofermion spin representation framework. In
Sec. III, the variational Monte Carlo method, the associated
wave functions, and the pseudofermion functional renormal-
ization group method are explained. In Sec. IV, we present the
results on, the energy optimization of competing variational
states, spin excitation gap, spin structure factors, followed by a
discussion of the findings from different methods. Conclusions
are given in Sec. V.

II. MODEL

The Hamiltonian for the spin- 1
2 Heisenberg J1-J2 antifer-

romagnetic model is

H = J1

∑

〈i,j〉
Si · Sj + J2

∑

〈〈i,j〉〉
Si · Sj , (1)

where both J1 and J2 are positive; 〈i,j 〉 and 〈〈i,j 〉〉 denote
sums over nearest-neighbor (NN) and next-nearest-neighbor
(NNN) pairs of sites, respectively. Si = (Sx

i ,S
y
i ,Sz

i ) denotes
the spin operator acting on a spin- 1

2 at site i. All energies will
be given in units of J1.

A. Finite-size spectra

Before discussing our main results based on VMC and
PFFRG approaches (see Sec. IV), we would like to show
the results of exact diagonalizations on a small 6 × 6 cluster.
All eigenstates can be classified according to their quantum
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which vanishes in the entire paramagnetic regime [47]. In
addition, two different variational Monte Carlo (VMC) studies
claimed for a gapless spin liquid close to J2/J1 = 1/8: Kaneko
and co-workers [48] used a full optimization of the pairing of a
Gutzwiller-projected BCS wave function [obtaining a critical
spin liquid for 0.10(1) ! J2/J1 ! 0.135(5)] and Mishmash
and collaborators [49] considered few variational Ansätze to
describe both magnetic and nonmagnetic phases (here, they
obtained evidence for a gapless nodal d-wave spin liquid for
0.06 " J2/J1 " 0.17). In the former case, the full optimization
of the pairing function faces technical difficulties, which
make it difficult to reach true energy minima; in the latter
one, the variational states are relatively simple and do not
exhaust the rich variety of states that can be obtained within
the fermionic representation of Gutzwiller-projected states.
Indeed, the variational energies that we get are much better
than those of these two papers, indicating the high accuracy of
the present approach.

By contrast, density-matrix renormalization group
(DMRG) studies find a gapped Z2 topological spin liquid
for 0.06 " J2/J1 " 0.17 [50] and 0.08 " J2/J1 " 0.16 [51],
with signatures of possible spontaneously broken rotational
symmetry. Following this proposal, Zheng, Mei, and Qi, [52],
and, in an independent work, Lu [53] have performed a
classification of symmetric and nematic Z2 spin liquids, and
pointed out promising candidates at the fermionic mean-
field level. This approach was extended by Bieri, Lhuillier,
and Messio [54] to include chiral spin liquids as well. A
bosonic mean-field classification has likewise been accom-
plished [55,56], with some of the states addressed already in
earlier works [57,58].

In this paper, we address the J1-J2 Heisenberg model on
the triangular lattice from the viewpoint of versatile Gutzwiller
projected Abrikosov-fermion wave functions (optionally sup-
plemented by Lanczos optimization), which we implemented
by using efficient VMC techniques. To enable a comparison of
the variational energies, we also perform DMRG and Lanczos
diagonalizations for specific regions in parameter space. In
order to resolve the magnetic susceptibility profile in the
paramagnetic regime, we employ pseudofermion functional
renormalization group (PFFRG) calculations, the results of
which are then compared with analogous results from DMRG
and VMC. Our main VMC results are summarized as follows:
a spin-liquid phase is stabilized for 0.08 " J2/J1 " 0.16
(Fig. 1), in excellent agreement with DMRG [50,51] and
CCM [46]. Within the spin-liquid regime, however, we find
no signal of stabilization for any of the gapped symmetric
or nematic Z2 states proposed in Refs. [52,53]. In particular,
the gapped Z2 spin liquids are found to have higher energies
compared to the gapless U(1) Dirac spin liquid (DSL); the
gapless Z2 spin liquids suffer the same fate. We find that
nematic order only onsets simultaneously with collinear anti-
ferromagnetic order, which is also supported by the analysis
of nematic response functions in PFFRG. On performing a
couple of Lanczos optimization steps on the VMC variational
result, followed by a zero-variance extrapolation, we obtain
estimates of the exact ground-state and S = 2 excited-state
energies on different cluster sizes. Our estimate of the ground-
state energy on finite-systems is in excellent agreement with
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FIG. 1. Schematic illustrations of the coplanar three-sublattice
(black, blue, and red) magnetic order on the triangular lattice
(a), the resonating-valence bond spin liquid (b), and the collinear
two-sublattice (blue and red) stripe magnetic order (c). The phase
diagram, as obtained by using variational Monte Carlo method is
also reported. Note that the DSL found here can be represented as a
resonating-valence bond spin liquid with a power-law distribution of
bond amplitudes.

exact diagonalization and other numerical methods. In the
thermodynamic limit, our estimate of the ground-state energy
is equal to the one obtained by DMRG, within error bars.
However, in contrast to DMRG results, which found a finite
spin excitation gap, the S = 2 gap computed in VMC is found
to extrapolate to zero (within error bars) in the thermodynamic
limit. These findings strongly point to a gapless spin liquid
ground state, yielding a clear disagreement with the findings
by DMRG.

The article is organized as follows. In Sec. II, we describe
the model Hamiltonian and discuss its finite-size spectra
obtained from exact diagonalization, followed by a description
of the pseudofermion spin representation framework. In
Sec. III, the variational Monte Carlo method, the associated
wave functions, and the pseudofermion functional renormal-
ization group method are explained. In Sec. IV, we present the
results on, the energy optimization of competing variational
states, spin excitation gap, spin structure factors, followed by a
discussion of the findings from different methods. Conclusions
are given in Sec. V.

II. MODEL

The Hamiltonian for the spin- 1
2 Heisenberg J1-J2 antifer-

romagnetic model is

H = J1

∑

〈i,j〉
Si · Sj + J2

∑

〈〈i,j〉〉
Si · Sj , (1)

where both J1 and J2 are positive; 〈i,j 〉 and 〈〈i,j 〉〉 denote
sums over nearest-neighbor (NN) and next-nearest-neighbor
(NNN) pairs of sites, respectively. Si = (Sx

i ,S
y
i ,Sz

i ) denotes
the spin operator acting on a spin- 1

2 at site i. All energies will
be given in units of J1.

A. Finite-size spectra

Before discussing our main results based on VMC and
PFFRG approaches (see Sec. IV), we would like to show
the results of exact diagonalizations on a small 6 × 6 cluster.
All eigenstates can be classified according to their quantum
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FIG. 1. Triangular lattice quantum spin liquid (QSL). Panel a shows
the NaYbSe2 crystal structure. Panel b shows the conceptual phase
diagram of CsYbSe2, KYbSe2, and NaYbSe2 as a function of fitted
J2/J1 values [30]. The theoretical boundary to the quantum spin liq-
uid phase for the isotropic model is detected by neural quantum state
(NQS) simulations at J2/J1 . 0.063 ± 0.001 (see Supplemental Ma-
terials) locating NaYbSe2 well within the QSL phase. Panel c shows
schematics for potential gapped phases on the triangular lattice: the
gapped Z2 QSL as resonating valence bond (left), a chiral QSL (cen-
ter), and a particular ordering pattern [14] for a 12-site valence bond
solid (right). Note: overlapping ovals represent resonating singlet
bonds.

disorder (as in the ill-fated Yb3+ QSL candidates YbMgGaO4
[31] and Yb2Ti2O7 [32]). To further clarify NaYbSe2, we
measured the inelastic neutron spectra, AC calorimetry, and
AC susceptibility with high quality samples. We observe co-
herent excitations, lack of magnetic order, and evidence in
bulk susceptibility of a 2.1 µeV gap at low temperature. This
is strong evidence for a QSL ground state in NaYbSe2 and a
gapped QSL on the triangular lattice.

The neutron spectra at 100 mK, shown in Fig. 5, show a
highly dispersive continuum of excitations with a well-defined
lower bound, similar to KYbSe2 [28] (see supplemental ma-
terials for experimental details). This is qualitatively di↵erent
from the spectra measured by Dai et al [27] on the 3% Yb/Na
site-mixed sample which in contrast showed smeared our con-
tinua in k-space and di↵use spectra extending to low energies
in many regions of reciprocal space. (Later in the text, we will
explain why we believe our samples are free from mixing dis-
order.) Here, the only region of reciprocal space which has ap-
preciable intensity down to low energies is (1/3, 1/3, 0), corre-
sponding to the 120� magnetic order seen in sister compounds
KYbSe2 [28] and CsYbSe2 [29]. Down to 50 µeV (the limit
before the incoherent scattering on the elastic line obscures
the scattering energy for the incident energy of Ei = 1 meV),
no gap in the spectrum is resolved.

For comparison we also show matrix product state (MPS)
calculated spectra in 5f-i with J2/J1 = 0.071 (this value de-

rived from finite field non-linear spin wave fits [30]), at vary-
ing levels of exchange anisotropy � (see Supplemental Ma-
terials). The boundary to the quantum spin liquid phase for
the isotropic model is at J2/J1 = 0.063 calculated using neu-
ral quantum states (see Supplemental Materials) locating the
material in the theoretically predicted QSL phase for weak
anisotropies. Because of finite size lattice e↵ects the calcu-
lated spectra are gapped, and it is di�cult to make quantitative
comparisons between theory and neutron experiments. Never-
theless, the calculated spectra are consistent with the observed
spectra, corroborating the idea that a J2/J1 model with easy-
plane anisotropy is an appropriate model for NaYbSe2.

Despite intensity concentrated at (1/3, 1/3, 0) and similar
spectra to CsYbSe2 and KYbSe2, we observe no static mag-
netic order in NaYbSe2 in neutron scattering measurements
down to 100 mK. No magnetic ordering features are visible
in heat capacity down to 100 mK either, as shown in Fig. 3.
(Note also that our sample has similar low-temperature spe-
cific heat to those reported in Refs. [25, 33]. If the C/T max-
imum at 800 mK is an indication of sample quality, our sam-
ple is free from the site mixing reported in Ref. [27].) To test
whether applied hydrostatic pressure can induce order—as in
KYbSe2 wherein pressure enhanced TN [30]—we also mea-
sured AC calorimetry under pressure (see Supplemental Mate-
rials) shown in Fig. 3b. Up to 2.0 GPa, no sharp feature as ex-
pected for an ordering transition is seen in the data (pressure-
dependent thermalization issues cause the low-T specific heat
to increase at low T , but this is a known artifact and would not
mask a sharp ordering transition).

Also in Fig. 3c we compare NaYbSe2 heat capacity to
KYbSe2, with the temperature axis rescaled by the fitted J1
[30]. This shows not only a lack of ordering transition, but
also a smaller kBT/J1 ⇡ 0.2 maximum heat capacity and
greater low-temperature heat capacity in NaYbSe2 relative
to KYbSe2. Comparing this to thermal pure quantum state
(TPQ) simulations of the 27-site 2D triangular lattice in Fig.
3d, these trends are beautifully explained with a larger J2/J1
in NaYbSe2: the low-temperature heat capacity is largest
when J2/J1 ⇡ 0.07 and the kBT/J1 = 0.2 bump is suppressed
with larger J2. Because the TPQ simulations are of a finite
size cluster which induces an artificial energy gap, the low-
est temperature trends are not quantitatively accurate. How-
ever, on a qualitative level, this is remarkable confirmation
that NaYbSe2 is indeed closer to or inside the triangular QSL
phase.

To investigate the magnetic state to lower temperatures, we
measured AC susceptibility down to 20 mK with AC and DC
field applied along the a and c directions on NaYbSe2 (see
Supplemental Materials). In this case we observe a clear
magnetization plateau in the B k a direction at 5 T, but not
for B k c (note these data were collected simultaneously on
two separate crystals mounted on two separate susceptome-
ters mounted on the same dilution refrigerator). This agrees
with previous measurements [25], and indicates an easy-plane
exchange anisotropy in NaYbSe2: in the perfectly isotropic
triangular model, 1/3 magnetization plateaux appear both in-
plane and out-of-plane, but the out-of-plane plateau is sup-
pressed by planar anisotropy [34–36], although the in-plane
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FIG. 1. Triangular lattice quantum spin liquid (QSL). Panel a shows
the NaYbSe2 crystal structure. Panel b shows the conceptual phase
diagram of CsYbSe2, KYbSe2, and NaYbSe2 as a function of fitted
J2/J1 values [30]. The theoretical boundary to the quantum spin liq-
uid phase for the isotropic model is detected by neural quantum state
(NQS) simulations at J2/J1 . 0.063 ± 0.001 (see Supplemental Ma-
terials) locating NaYbSe2 well within the QSL phase. Panel c shows
schematics for potential gapped phases on the triangular lattice: the
gapped Z2 QSL as resonating valence bond (left), a chiral QSL (cen-
ter), and a particular ordering pattern [14] for a 12-site valence bond
solid (right). Note: overlapping ovals represent resonating singlet
bonds.

disorder (as in the ill-fated Yb3+ QSL candidates YbMgGaO4
[31] and Yb2Ti2O7 [32]). To further clarify NaYbSe2, we
measured the inelastic neutron spectra, AC calorimetry, and
AC susceptibility with high quality samples. We observe co-
herent excitations, lack of magnetic order, and evidence in
bulk susceptibility of a 2.1 µeV gap at low temperature. This
is strong evidence for a QSL ground state in NaYbSe2 and a
gapped QSL on the triangular lattice.

The neutron spectra at 100 mK, shown in Fig. 5, show a
highly dispersive continuum of excitations with a well-defined
lower bound, similar to KYbSe2 [28] (see supplemental ma-
terials for experimental details). This is qualitatively di↵erent
from the spectra measured by Dai et al [27] on the 3% Yb/Na
site-mixed sample which in contrast showed smeared our con-
tinua in k-space and di↵use spectra extending to low energies
in many regions of reciprocal space. (Later in the text, we will
explain why we believe our samples are free from mixing dis-
order.) Here, the only region of reciprocal space which has ap-
preciable intensity down to low energies is (1/3, 1/3, 0), corre-
sponding to the 120� magnetic order seen in sister compounds
KYbSe2 [28] and CsYbSe2 [29]. Down to 50 µeV (the limit
before the incoherent scattering on the elastic line obscures
the scattering energy for the incident energy of Ei = 1 meV),
no gap in the spectrum is resolved.

For comparison we also show matrix product state (MPS)
calculated spectra in 5f-i with J2/J1 = 0.071 (this value de-

rived from finite field non-linear spin wave fits [30]), at vary-
ing levels of exchange anisotropy � (see Supplemental Ma-
terials). The boundary to the quantum spin liquid phase for
the isotropic model is at J2/J1 = 0.063 calculated using neu-
ral quantum states (see Supplemental Materials) locating the
material in the theoretically predicted QSL phase for weak
anisotropies. Because of finite size lattice e↵ects the calcu-
lated spectra are gapped, and it is di�cult to make quantitative
comparisons between theory and neutron experiments. Never-
theless, the calculated spectra are consistent with the observed
spectra, corroborating the idea that a J2/J1 model with easy-
plane anisotropy is an appropriate model for NaYbSe2.

Despite intensity concentrated at (1/3, 1/3, 0) and similar
spectra to CsYbSe2 and KYbSe2, we observe no static mag-
netic order in NaYbSe2 in neutron scattering measurements
down to 100 mK. No magnetic ordering features are visible
in heat capacity down to 100 mK either, as shown in Fig. 3.
(Note also that our sample has similar low-temperature spe-
cific heat to those reported in Refs. [25, 33]. If the C/T max-
imum at 800 mK is an indication of sample quality, our sam-
ple is free from the site mixing reported in Ref. [27].) To test
whether applied hydrostatic pressure can induce order—as in
KYbSe2 wherein pressure enhanced TN [30]—we also mea-
sured AC calorimetry under pressure (see Supplemental Mate-
rials) shown in Fig. 3b. Up to 2.0 GPa, no sharp feature as ex-
pected for an ordering transition is seen in the data (pressure-
dependent thermalization issues cause the low-T specific heat
to increase at low T , but this is a known artifact and would not
mask a sharp ordering transition).

Also in Fig. 3c we compare NaYbSe2 heat capacity to
KYbSe2, with the temperature axis rescaled by the fitted J1
[30]. This shows not only a lack of ordering transition, but
also a smaller kBT/J1 ⇡ 0.2 maximum heat capacity and
greater low-temperature heat capacity in NaYbSe2 relative
to KYbSe2. Comparing this to thermal pure quantum state
(TPQ) simulations of the 27-site 2D triangular lattice in Fig.
3d, these trends are beautifully explained with a larger J2/J1
in NaYbSe2: the low-temperature heat capacity is largest
when J2/J1 ⇡ 0.07 and the kBT/J1 = 0.2 bump is suppressed
with larger J2. Because the TPQ simulations are of a finite
size cluster which induces an artificial energy gap, the low-
est temperature trends are not quantitatively accurate. How-
ever, on a qualitative level, this is remarkable confirmation
that NaYbSe2 is indeed closer to or inside the triangular QSL
phase.

To investigate the magnetic state to lower temperatures, we
measured AC susceptibility down to 20 mK with AC and DC
field applied along the a and c directions on NaYbSe2 (see
Supplemental Materials). In this case we observe a clear
magnetization plateau in the B k a direction at 5 T, but not
for B k c (note these data were collected simultaneously on
two separate crystals mounted on two separate susceptome-
ters mounted on the same dilution refrigerator). This agrees
with previous measurements [25], and indicates an easy-plane
exchange anisotropy in NaYbSe2: in the perfectly isotropic
triangular model, 1/3 magnetization plateaux appear both in-
plane and out-of-plane, but the out-of-plane plateau is sup-
pressed by planar anisotropy [34–36], although the in-plane
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FIG. 1. Triangular lattice quantum spin liquid (QSL). Panel a shows
the NaYbSe2 crystal structure. Panel b shows the conceptual phase
diagram of CsYbSe2, KYbSe2, and NaYbSe2 as a function of fitted
J2/J1 values [30]. The theoretical boundary to the quantum spin liq-
uid phase for the isotropic model is detected by neural quantum state
(NQS) simulations at J2/J1 . 0.063 ± 0.001 (see Supplemental Ma-
terials) locating NaYbSe2 well within the QSL phase. Panel c shows
schematics for potential gapped phases on the triangular lattice: the
gapped Z2 QSL as resonating valence bond (left), a chiral QSL (cen-
ter), and a particular ordering pattern [14] for a 12-site valence bond
solid (right). Note: overlapping ovals represent resonating singlet
bonds.

disorder (as in the ill-fated Yb3+ QSL candidates YbMgGaO4
[31] and Yb2Ti2O7 [32]). To further clarify NaYbSe2, we
measured the inelastic neutron spectra, AC calorimetry, and
AC susceptibility with high quality samples. We observe co-
herent excitations, lack of magnetic order, and evidence in
bulk susceptibility of a 2.1 µeV gap at low temperature. This
is strong evidence for a QSL ground state in NaYbSe2 and a
gapped QSL on the triangular lattice.

The neutron spectra at 100 mK, shown in Fig. 5, show a
highly dispersive continuum of excitations with a well-defined
lower bound, similar to KYbSe2 [28] (see supplemental ma-
terials for experimental details). This is qualitatively di↵erent
from the spectra measured by Dai et al [27] on the 3% Yb/Na
site-mixed sample which in contrast showed smeared our con-
tinua in k-space and di↵use spectra extending to low energies
in many regions of reciprocal space. (Later in the text, we will
explain why we believe our samples are free from mixing dis-
order.) Here, the only region of reciprocal space which has ap-
preciable intensity down to low energies is (1/3, 1/3, 0), corre-
sponding to the 120� magnetic order seen in sister compounds
KYbSe2 [28] and CsYbSe2 [29]. Down to 50 µeV (the limit
before the incoherent scattering on the elastic line obscures
the scattering energy for the incident energy of Ei = 1 meV),
no gap in the spectrum is resolved.

For comparison we also show matrix product state (MPS)
calculated spectra in 5f-i with J2/J1 = 0.071 (this value de-

rived from finite field non-linear spin wave fits [30]), at vary-
ing levels of exchange anisotropy � (see Supplemental Ma-
terials). The boundary to the quantum spin liquid phase for
the isotropic model is at J2/J1 = 0.063 calculated using neu-
ral quantum states (see Supplemental Materials) locating the
material in the theoretically predicted QSL phase for weak
anisotropies. Because of finite size lattice e↵ects the calcu-
lated spectra are gapped, and it is di�cult to make quantitative
comparisons between theory and neutron experiments. Never-
theless, the calculated spectra are consistent with the observed
spectra, corroborating the idea that a J2/J1 model with easy-
plane anisotropy is an appropriate model for NaYbSe2.

Despite intensity concentrated at (1/3, 1/3, 0) and similar
spectra to CsYbSe2 and KYbSe2, we observe no static mag-
netic order in NaYbSe2 in neutron scattering measurements
down to 100 mK. No magnetic ordering features are visible
in heat capacity down to 100 mK either, as shown in Fig. 3.
(Note also that our sample has similar low-temperature spe-
cific heat to those reported in Refs. [25, 33]. If the C/T max-
imum at 800 mK is an indication of sample quality, our sam-
ple is free from the site mixing reported in Ref. [27].) To test
whether applied hydrostatic pressure can induce order—as in
KYbSe2 wherein pressure enhanced TN [30]—we also mea-
sured AC calorimetry under pressure (see Supplemental Mate-
rials) shown in Fig. 3b. Up to 2.0 GPa, no sharp feature as ex-
pected for an ordering transition is seen in the data (pressure-
dependent thermalization issues cause the low-T specific heat
to increase at low T , but this is a known artifact and would not
mask a sharp ordering transition).

Also in Fig. 3c we compare NaYbSe2 heat capacity to
KYbSe2, with the temperature axis rescaled by the fitted J1
[30]. This shows not only a lack of ordering transition, but
also a smaller kBT/J1 ⇡ 0.2 maximum heat capacity and
greater low-temperature heat capacity in NaYbSe2 relative
to KYbSe2. Comparing this to thermal pure quantum state
(TPQ) simulations of the 27-site 2D triangular lattice in Fig.
3d, these trends are beautifully explained with a larger J2/J1
in NaYbSe2: the low-temperature heat capacity is largest
when J2/J1 ⇡ 0.07 and the kBT/J1 = 0.2 bump is suppressed
with larger J2. Because the TPQ simulations are of a finite
size cluster which induces an artificial energy gap, the low-
est temperature trends are not quantitatively accurate. How-
ever, on a qualitative level, this is remarkable confirmation
that NaYbSe2 is indeed closer to or inside the triangular QSL
phase.

To investigate the magnetic state to lower temperatures, we
measured AC susceptibility down to 20 mK with AC and DC
field applied along the a and c directions on NaYbSe2 (see
Supplemental Materials). In this case we observe a clear
magnetization plateau in the B k a direction at 5 T, but not
for B k c (note these data were collected simultaneously on
two separate crystals mounted on two separate susceptome-
ters mounted on the same dilution refrigerator). This agrees
with previous measurements [25], and indicates an easy-plane
exchange anisotropy in NaYbSe2: in the perfectly isotropic
triangular model, 1/3 magnetization plateaux appear both in-
plane and out-of-plane, but the out-of-plane plateau is sup-
pressed by planar anisotropy [34–36], although the in-plane
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FIG. 1. Triangular lattice quantum spin liquid (QSL). Panel a shows
the NaYbSe2 crystal structure. Panel b shows the conceptual phase
diagram of CsYbSe2, KYbSe2, and NaYbSe2 as a function of fitted
J2/J1 values [30]. The theoretical boundary to the quantum spin liq-
uid phase for the isotropic model is detected by neural quantum state
(NQS) simulations at J2/J1 . 0.063 ± 0.001 (see Supplemental Ma-
terials) locating NaYbSe2 well within the QSL phase. Panel c shows
schematics for potential gapped phases on the triangular lattice: the
gapped Z2 QSL as resonating valence bond (left), a chiral QSL (cen-
ter), and a particular ordering pattern [14] for a 12-site valence bond
solid (right). Note: overlapping ovals represent resonating singlet
bonds.

disorder (as in the ill-fated Yb3+ QSL candidates YbMgGaO4
[31] and Yb2Ti2O7 [32]). To further clarify NaYbSe2, we
measured the inelastic neutron spectra, AC calorimetry, and
AC susceptibility with high quality samples. We observe co-
herent excitations, lack of magnetic order, and evidence in
bulk susceptibility of a 2.1 µeV gap at low temperature. This
is strong evidence for a QSL ground state in NaYbSe2 and a
gapped QSL on the triangular lattice.

The neutron spectra at 100 mK, shown in Fig. 5, show a
highly dispersive continuum of excitations with a well-defined
lower bound, similar to KYbSe2 [28] (see supplemental ma-
terials for experimental details). This is qualitatively di↵erent
from the spectra measured by Dai et al [27] on the 3% Yb/Na
site-mixed sample which in contrast showed smeared our con-
tinua in k-space and di↵use spectra extending to low energies
in many regions of reciprocal space. (Later in the text, we will
explain why we believe our samples are free from mixing dis-
order.) Here, the only region of reciprocal space which has ap-
preciable intensity down to low energies is (1/3, 1/3, 0), corre-
sponding to the 120� magnetic order seen in sister compounds
KYbSe2 [28] and CsYbSe2 [29]. Down to 50 µeV (the limit
before the incoherent scattering on the elastic line obscures
the scattering energy for the incident energy of Ei = 1 meV),
no gap in the spectrum is resolved.

For comparison we also show matrix product state (MPS)
calculated spectra in 5f-i with J2/J1 = 0.071 (this value de-

rived from finite field non-linear spin wave fits [30]), at vary-
ing levels of exchange anisotropy � (see Supplemental Ma-
terials). The boundary to the quantum spin liquid phase for
the isotropic model is at J2/J1 = 0.063 calculated using neu-
ral quantum states (see Supplemental Materials) locating the
material in the theoretically predicted QSL phase for weak
anisotropies. Because of finite size lattice e↵ects the calcu-
lated spectra are gapped, and it is di�cult to make quantitative
comparisons between theory and neutron experiments. Never-
theless, the calculated spectra are consistent with the observed
spectra, corroborating the idea that a J2/J1 model with easy-
plane anisotropy is an appropriate model for NaYbSe2.

Despite intensity concentrated at (1/3, 1/3, 0) and similar
spectra to CsYbSe2 and KYbSe2, we observe no static mag-
netic order in NaYbSe2 in neutron scattering measurements
down to 100 mK. No magnetic ordering features are visible
in heat capacity down to 100 mK either, as shown in Fig. 3.
(Note also that our sample has similar low-temperature spe-
cific heat to those reported in Refs. [25, 33]. If the C/T max-
imum at 800 mK is an indication of sample quality, our sam-
ple is free from the site mixing reported in Ref. [27].) To test
whether applied hydrostatic pressure can induce order—as in
KYbSe2 wherein pressure enhanced TN [30]—we also mea-
sured AC calorimetry under pressure (see Supplemental Mate-
rials) shown in Fig. 3b. Up to 2.0 GPa, no sharp feature as ex-
pected for an ordering transition is seen in the data (pressure-
dependent thermalization issues cause the low-T specific heat
to increase at low T , but this is a known artifact and would not
mask a sharp ordering transition).

Also in Fig. 3c we compare NaYbSe2 heat capacity to
KYbSe2, with the temperature axis rescaled by the fitted J1
[30]. This shows not only a lack of ordering transition, but
also a smaller kBT/J1 ⇡ 0.2 maximum heat capacity and
greater low-temperature heat capacity in NaYbSe2 relative
to KYbSe2. Comparing this to thermal pure quantum state
(TPQ) simulations of the 27-site 2D triangular lattice in Fig.
3d, these trends are beautifully explained with a larger J2/J1
in NaYbSe2: the low-temperature heat capacity is largest
when J2/J1 ⇡ 0.07 and the kBT/J1 = 0.2 bump is suppressed
with larger J2. Because the TPQ simulations are of a finite
size cluster which induces an artificial energy gap, the low-
est temperature trends are not quantitatively accurate. How-
ever, on a qualitative level, this is remarkable confirmation
that NaYbSe2 is indeed closer to or inside the triangular QSL
phase.

To investigate the magnetic state to lower temperatures, we
measured AC susceptibility down to 20 mK with AC and DC
field applied along the a and c directions on NaYbSe2 (see
Supplemental Materials). In this case we observe a clear
magnetization plateau in the B k a direction at 5 T, but not
for B k c (note these data were collected simultaneously on
two separate crystals mounted on two separate susceptome-
ters mounted on the same dilution refrigerator). This agrees
with previous measurements [25], and indicates an easy-plane
exchange anisotropy in NaYbSe2: in the perfectly isotropic
triangular model, 1/3 magnetization plateaux appear both in-
plane and out-of-plane, but the out-of-plane plateau is sup-
pressed by planar anisotropy [34–36], although the in-plane
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be proximate to a spin liquid with positive evidence for the two key 
features: quantum entanglement and exotic quasiparticles.

Experiments
CNCS
We measured the low-energy KYbSe2 single-crystal neutron spectrum 
on the Cold Neutron Chopper Spectrometer (CNCS) spectrometer33 at 
Oak Ridge National Laboratory’s Spallation Neutron Source34 between 
0.3 and 2.0 K using a 3He refrigerator (Methods). The data are shown 
in Fig. 2.

In the elastic channel, quasi-Bragg intensities appear between 1.0 
and 0.3 K, which look like (1/3, 1/3) Bragg peaks signalling 120° correla-
tions. They have no dependence on ℓ (Fig. 2p), which evidences truly 2D 
static correlations and weak interplane exchange (as a side note, this 
weak interplane exchange is expected given the fragility of the crystal 
interplane bonds: KYbSe2 planes readily flake off when the crystals are 
not handled gently). Fitting the in-plane scattering to extract the cor-
relation length using the (101) peak to define the resolution width, we 
find that the magnetic peaks are much broader than the nuclear Bragg 
peaks with a fitted correlation length of 47 ± 10 Å at 0.3 K (approxi-
mately ten unit cells in the plane). In Supplementary Fig. 1, we show 
these quasi-Bragg intensities become well-defined Bragg peaks below 
TN = 290 mK, evidencing a transition to 120° long-range magnetic order.

In the inelastic channel, two features stand out in the low- 
temperature KYbSe2 spectrum: a diffuse continuum of excitations 
and a pronounced 0.2 meV energy minimum at M = (1/2, 0, 0). Both 
these features are evident in the triangular-lattice Ba3CoSb2O9 com-
pound35–38. The ‘roton-like’ minimum at M is a generic feature of the 
2D quantum triangular-lattice Heisenberg antiferromagnet and is a 
nonlinear effect (that is, not captured by linear spin-wave theory)39–41. 
Fits to the KYbSe2 roton mode (Supplementary Fig. 4) show a mode 
maximum of 0.288(12) meV and a roton minimum 0.200(13) meV at M.  
This indicates that strong quantum effects are at work in KYbSe2.

The continuum, meanwhile, extends up to 1.6 meV, over five 
times the roton-mode bandwidth. This is far too high in energy to be a 
two-magnon continuum, which is limited to twice the single-magnon 
bandwidth. Integrating the scattering intensity over the entire 
Brillouin zone shows that ∼60% of the magnetic scattering intensity 
is found above 0.4 meV, compared with only ∼29% between 0.05 and 
0.40 meV, showing that the continuum scattering carries twice the 
spectral weight of the ‘single-magnon’ intensity. Perhaps, most inter-
estingly, the continuum in KYbSe2 comes all the way down to the sharp 
low-energy modes (Fig. 2a). The KYbSe2 diffuse continuum with a sharp 
lower bound is reminiscent of the Van Hove singularity observed in 
one-dimensional (1D) spin chains—which are known to have highly 
entangled ground states with fractionalized spinon excitations32,42,43. 

excitations and so on, which are not unique to QSL states. Instead, 
to conclusively identify an experimental QSL, ‘positive evidence’ is 
needed: experimental evidence of either (1) a highly entangled ground 
state or (2) exotic quasiparticles—both of which are key properties  
of a QSL.

Beginning with Anderson’s resonating valence-bond state11, the 
2D triangular geometry has long been studied as a platform for QSLs. 
Although the simplest spin-1/2 model with the nearest-neighbour 
antiferromagnetic Heisenberg interactions orders magnetically in a 
120° phase, the magnetic frustration makes the order weak12. The 
magnetic order can be further destabilized by additional interactions 
such as a next-nearest-neighbour exchange coupling. In that case, it 
has been found that a realistic strength as small as ∼10% of the main 
interaction is enough to destroy the magnetic order and bring the 
system into the QSL phase13–19 (which is continuously connected to a 
QSL phase driven by nearest-neighbour anisotropic exchange20). Deter-
mining the nature of the QSL phase is a theoretical challenge, with 
proposals ranging from gapped ℤ
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 and gapless U(1) Dirac to chiral13–19, 
with no clear consensus within the community. To discern among pos-
sible QSL states, experiments are necessitated.

In the last decade, Yb3+-based materials have become popular 
as QSL candidates because of the Yb3+ effective S = 1/2 state. Most 
recently, a class of delafossite materials have been proposed as rela-
tively disorder-free QSL candidates, including NaYbO2 (refs. 21–23), 
NaYbS2 (refs. 24,25), NaYbSe2 (refs. 26,27) and CsYbSe2 (ref. 28). Each of 
these materials shows diffuse excitations and no long-range magnetic 
order down to 0.4 K or lower, but because neither are unique to the QSL 
states (both are also caused by spin glass29, random singlet phases30 or 
2D magnetic order only in the zero-temperature limit), they remain 
QSL candidates only.

Here we investigate a new member of the Yb3+ delafossite fam-
ily: KYbSe2, which forms a layered triangular lattice of magnetic Yb3+ 
ions (Fig. 1a). This material shows no long-range order above 400 mK 
(ref. 31), and finite-field ordered phases similar to NaYbO2 (ref. 22) 
and NaYbS2 (ref. 25). Thus, it appears promising as a QSL candidate. 
We successfully apply entanglement witnesses, namely, one tangle, 
two tangle and quantum Fisher information (QFI), to KYbSe2 (ref. 32)  
and detect the presence of quantum entanglement at low temper-
atures. Using a combination of density functional theory (DFT), 
Onsager reaction field (ORF) theory, Schwinger bosons (SBs) and 
tensor network approach to model KYbSe2, we find that its physics is 
well captured by a microscopic spin-1/2 Hamiltonian with nearest- and 
next-nearest-neighbour Heisenberg interactions on the triangular 
lattice in proximity to the QSL phase (Fig. 1b). Finally, the neutron 
spectrum displays signatures of quantum criticality and fractional-
ized spinon quasiparticles. Together, these results show KYbSe2 to 
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Fig. 1 | Crystal structure and phase diagram of KYbSe2. a, Crystal structure 
with a side view of the stacked triangular layers and the top view showing the 
Yb3+ triangular lattice mediated by Se2− ions. b, Schematic of the phase diagram 
of the triangular-lattice Heisenberg antiferromagnet as a function of second-

neighbour exchange strength J2. This includes a zero-temperature 120° ordered 
phase for J2/J1 ≲ 0.06, a zero-temperature-stripe ordered phase for J2/J1 ≳ 0.16 and 
an intermediate QSL phase13–19. Near the quantum critical points, we expect the 
quantum critical regime extending at a finite temperature.
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which vanishes in the entire paramagnetic regime [47]. In
addition, two different variational Monte Carlo (VMC) studies
claimed for a gapless spin liquid close to J2/J1 = 1/8: Kaneko
and co-workers [48] used a full optimization of the pairing of a
Gutzwiller-projected BCS wave function [obtaining a critical
spin liquid for 0.10(1) ! J2/J1 ! 0.135(5)] and Mishmash
and collaborators [49] considered few variational Ansätze to
describe both magnetic and nonmagnetic phases (here, they
obtained evidence for a gapless nodal d-wave spin liquid for
0.06 " J2/J1 " 0.17). In the former case, the full optimization
of the pairing function faces technical difficulties, which
make it difficult to reach true energy minima; in the latter
one, the variational states are relatively simple and do not
exhaust the rich variety of states that can be obtained within
the fermionic representation of Gutzwiller-projected states.
Indeed, the variational energies that we get are much better
than those of these two papers, indicating the high accuracy of
the present approach.

By contrast, density-matrix renormalization group
(DMRG) studies find a gapped Z2 topological spin liquid
for 0.06 " J2/J1 " 0.17 [50] and 0.08 " J2/J1 " 0.16 [51],
with signatures of possible spontaneously broken rotational
symmetry. Following this proposal, Zheng, Mei, and Qi, [52],
and, in an independent work, Lu [53] have performed a
classification of symmetric and nematic Z2 spin liquids, and
pointed out promising candidates at the fermionic mean-
field level. This approach was extended by Bieri, Lhuillier,
and Messio [54] to include chiral spin liquids as well. A
bosonic mean-field classification has likewise been accom-
plished [55,56], with some of the states addressed already in
earlier works [57,58].

In this paper, we address the J1-J2 Heisenberg model on
the triangular lattice from the viewpoint of versatile Gutzwiller
projected Abrikosov-fermion wave functions (optionally sup-
plemented by Lanczos optimization), which we implemented
by using efficient VMC techniques. To enable a comparison of
the variational energies, we also perform DMRG and Lanczos
diagonalizations for specific regions in parameter space. In
order to resolve the magnetic susceptibility profile in the
paramagnetic regime, we employ pseudofermion functional
renormalization group (PFFRG) calculations, the results of
which are then compared with analogous results from DMRG
and VMC. Our main VMC results are summarized as follows:
a spin-liquid phase is stabilized for 0.08 " J2/J1 " 0.16
(Fig. 1), in excellent agreement with DMRG [50,51] and
CCM [46]. Within the spin-liquid regime, however, we find
no signal of stabilization for any of the gapped symmetric
or nematic Z2 states proposed in Refs. [52,53]. In particular,
the gapped Z2 spin liquids are found to have higher energies
compared to the gapless U(1) Dirac spin liquid (DSL); the
gapless Z2 spin liquids suffer the same fate. We find that
nematic order only onsets simultaneously with collinear anti-
ferromagnetic order, which is also supported by the analysis
of nematic response functions in PFFRG. On performing a
couple of Lanczos optimization steps on the VMC variational
result, followed by a zero-variance extrapolation, we obtain
estimates of the exact ground-state and S = 2 excited-state
energies on different cluster sizes. Our estimate of the ground-
state energy on finite-systems is in excellent agreement with

(a) 120 AF (c) Stripe AF(b) Spin liquid
J2/J10.160.080

FIG. 1. Schematic illustrations of the coplanar three-sublattice
(black, blue, and red) magnetic order on the triangular lattice
(a), the resonating-valence bond spin liquid (b), and the collinear
two-sublattice (blue and red) stripe magnetic order (c). The phase
diagram, as obtained by using variational Monte Carlo method is
also reported. Note that the DSL found here can be represented as a
resonating-valence bond spin liquid with a power-law distribution of
bond amplitudes.

exact diagonalization and other numerical methods. In the
thermodynamic limit, our estimate of the ground-state energy
is equal to the one obtained by DMRG, within error bars.
However, in contrast to DMRG results, which found a finite
spin excitation gap, the S = 2 gap computed in VMC is found
to extrapolate to zero (within error bars) in the thermodynamic
limit. These findings strongly point to a gapless spin liquid
ground state, yielding a clear disagreement with the findings
by DMRG.

The article is organized as follows. In Sec. II, we describe
the model Hamiltonian and discuss its finite-size spectra
obtained from exact diagonalization, followed by a description
of the pseudofermion spin representation framework. In
Sec. III, the variational Monte Carlo method, the associated
wave functions, and the pseudofermion functional renormal-
ization group method are explained. In Sec. IV, we present the
results on, the energy optimization of competing variational
states, spin excitation gap, spin structure factors, followed by a
discussion of the findings from different methods. Conclusions
are given in Sec. V.

II. MODEL

The Hamiltonian for the spin- 1
2 Heisenberg J1-J2 antifer-

romagnetic model is

H = J1

∑

〈i,j〉
Si · Sj + J2

∑

〈〈i,j〉〉
Si · Sj , (1)

where both J1 and J2 are positive; 〈i,j 〉 and 〈〈i,j 〉〉 denote
sums over nearest-neighbor (NN) and next-nearest-neighbor
(NNN) pairs of sites, respectively. Si = (Sx

i ,S
y
i ,Sz

i ) denotes
the spin operator acting on a spin- 1

2 at site i. All energies will
be given in units of J1.

A. Finite-size spectra

Before discussing our main results based on VMC and
PFFRG approaches (see Sec. IV), we would like to show
the results of exact diagonalizations on a small 6 × 6 cluster.
All eigenstates can be classified according to their quantum
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describe both magnetic and nonmagnetic phases (here, they
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make it difficult to reach true energy minima; in the latter
one, the variational states are relatively simple and do not
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classification of symmetric and nematic Z2 spin liquids, and
pointed out promising candidates at the fermionic mean-
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and Messio [54] to include chiral spin liquids as well. A
bosonic mean-field classification has likewise been accom-
plished [55,56], with some of the states addressed already in
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In this paper, we address the J1-J2 Heisenberg model on
the triangular lattice from the viewpoint of versatile Gutzwiller
projected Abrikosov-fermion wave functions (optionally sup-
plemented by Lanczos optimization), which we implemented
by using efficient VMC techniques. To enable a comparison of
the variational energies, we also perform DMRG and Lanczos
diagonalizations for specific regions in parameter space. In
order to resolve the magnetic susceptibility profile in the
paramagnetic regime, we employ pseudofermion functional
renormalization group (PFFRG) calculations, the results of
which are then compared with analogous results from DMRG
and VMC. Our main VMC results are summarized as follows:
a spin-liquid phase is stabilized for 0.08 " J2/J1 " 0.16
(Fig. 1), in excellent agreement with DMRG [50,51] and
CCM [46]. Within the spin-liquid regime, however, we find
no signal of stabilization for any of the gapped symmetric
or nematic Z2 states proposed in Refs. [52,53]. In particular,
the gapped Z2 spin liquids are found to have higher energies
compared to the gapless U(1) Dirac spin liquid (DSL); the
gapless Z2 spin liquids suffer the same fate. We find that
nematic order only onsets simultaneously with collinear anti-
ferromagnetic order, which is also supported by the analysis
of nematic response functions in PFFRG. On performing a
couple of Lanczos optimization steps on the VMC variational
result, followed by a zero-variance extrapolation, we obtain
estimates of the exact ground-state and S = 2 excited-state
energies on different cluster sizes. Our estimate of the ground-
state energy on finite-systems is in excellent agreement with
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FIG. 1. Schematic illustrations of the coplanar three-sublattice
(black, blue, and red) magnetic order on the triangular lattice
(a), the resonating-valence bond spin liquid (b), and the collinear
two-sublattice (blue and red) stripe magnetic order (c). The phase
diagram, as obtained by using variational Monte Carlo method is
also reported. Note that the DSL found here can be represented as a
resonating-valence bond spin liquid with a power-law distribution of
bond amplitudes.

exact diagonalization and other numerical methods. In the
thermodynamic limit, our estimate of the ground-state energy
is equal to the one obtained by DMRG, within error bars.
However, in contrast to DMRG results, which found a finite
spin excitation gap, the S = 2 gap computed in VMC is found
to extrapolate to zero (within error bars) in the thermodynamic
limit. These findings strongly point to a gapless spin liquid
ground state, yielding a clear disagreement with the findings
by DMRG.

The article is organized as follows. In Sec. II, we describe
the model Hamiltonian and discuss its finite-size spectra
obtained from exact diagonalization, followed by a description
of the pseudofermion spin representation framework. In
Sec. III, the variational Monte Carlo method, the associated
wave functions, and the pseudofermion functional renormal-
ization group method are explained. In Sec. IV, we present the
results on, the energy optimization of competing variational
states, spin excitation gap, spin structure factors, followed by a
discussion of the findings from different methods. Conclusions
are given in Sec. V.

II. MODEL

The Hamiltonian for the spin- 1
2 Heisenberg J1-J2 antifer-

romagnetic model is

H = J1

∑

〈i,j〉
Si · Sj + J2

∑

〈〈i,j〉〉
Si · Sj , (1)

where both J1 and J2 are positive; 〈i,j 〉 and 〈〈i,j 〉〉 denote
sums over nearest-neighbor (NN) and next-nearest-neighbor
(NNN) pairs of sites, respectively. Si = (Sx

i ,S
y
i ,Sz

i ) denotes
the spin operator acting on a spin- 1

2 at site i. All energies will
be given in units of J1.

A. Finite-size spectra

Before discussing our main results based on VMC and
PFFRG approaches (see Sec. IV), we would like to show
the results of exact diagonalizations on a small 6 × 6 cluster.
All eigenstates can be classified according to their quantum
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wavevector are found. It is tempting to connect the pos-
sible ordered states on the triangular lattice as emerging
from spin condensation out of the few Schwinger boson
spin liquid states allowed by the PSG. New quantum
transitions are expected on spinon condensation out of
the spin liquid states obtained here, and will be the sub-
ject of future study.

Layout of the paper: In Section II we briefly review the
Schwinger boson mean field theory. Section III analyzes
possible spin liquid states on the triangular lattice. It
first reviews the Projective Symmetry Group classifica-
tion of spin liquid states and the strong constraints that
arise from relations between symmetry group elements.
This is then applied to Schwinger boson states on the
triangular lattice. A new state is found, the π-flux state,
which is further analyzed - in particular spin configura-
tions resulting from spinon condensation are described,
and Hamiltonians stabilizing this mean field solution are
obtained. The general effect of ring exchange interactions
on Schwinger boson mean field states is discussed. In Sec-
tion VI possible spin liquid states on the Kagomé lattice
are studied, and the properties of one of them, which
is unusually stable against spin ordering, is described in
more detail. The PSG analysis and other details are rele-
gated to the appendices, which also contains analysis for
other lattices of interest such as the anisotropic triangu-
lar lattice.

II. SCHWINGER BOSON MEAN FIELD
THEORY

There are a variety of ways of formulating the
Schwinger boson mean field theory, for example, as a
large-N approach12,13, or as an approximate variational
approach.

Here we will formulate a variational approach that will
provide us with a unified way to study the effect of dif-
ferent interactions. We write the spin Hamiltonian:

H = J1

∑

〈ij〉

Si · Sj + J2

∑

〈〈ij〉〉

Si · Sj + · · · (1)

in terms of Schwinger bosons:

Si · Sj =
1

4
b†i σσσ,σ′bi σ′ · b†j τστ,τ ′bj τ ′ (2)

with the constraint that at every site:

∑

σ

b†i σbi σ = κ (3)

where for a spin system with spin S, κ = 2S. In the
analysis below, it will be convenient to consider κ to be a
continuous parameter, taking on any non-negative value.

We now consider a variational approach to finding the
ground states and excitations of (1). Motivated by the
operator identity

Si · Sj =: B̂†
ijB̂ij : −Â†

ijÂij (4)

where : : is normal ordering, and operators Â and B̂ are
defined as

B̂ij =
1

2

∑

σ

b†iσbjσ (5)

Âij =
1

2

∑

σ,σ′

εσσ′biσbjσ′ (6)

we consider a ”Mean Field” Hamiltonian which is
quadratic in terms of the Schwinger bosons,

HMF =
∑

ij

Jij(−A∗
ijÂij + B∗

ijB̂ij + h.c.)

+
∑

ij

Jij(A
∗
ijAij − B∗

ijBij)

−µ ·
∑

i

(

∑

σ

b†iσbiσ − κ

)

(7)

where complex numbers Aij = −Aji , Bij = B∗
ji are the

parameters of the mean field ansatz.
In the large-N Sp(N) theory, the mean field Hamil-

tonian contains only the large-N generalization of the A
term. However, since both A and B terms are consistent
with global SU(2) symmetry (global spin rotation sym-
metry) they are both included in the current theory. The
introduction of both terms can be found in Gazza18 and
many other papers19,20.

This Hamiltonian is used to generate a variational
wavefunction in terms of the variational parameters
|Ψ(Aij , Bij , µ)〉. In order to obtain a spin wavefunc-
tion, we need to project |Ψ〉 into the constrained Hilbert
space where the total number of bosons at each site is
exactly 2S. Strictly speaking one must evaluate varia-
tional energies after this projection step, using the spin
Hamiltonian (1). This generalization of Gutzwiller pro-
jection to Schwinger boson has been studied by Chen and
collaborators21,22. However, since this hard projection is
not possible to implement analytically (it is even difficult
to do numerically) we rely on a approximate strategy that
forgoes implementing the constraint locally, but only on
the average - i.e. we tune µ to ensure that:

∑

σ

〈b†i σbi σ〉 = κ (8)

we then evaluate the expectation value of the Hamilto-
nian (2), written out in terms of Schwinger bosons (2)
using the variational wavefunction. The resulting vari-
ational energy is then minimized with respect to the
variational parameters Aij , Bij . This yields the self-
consistent equations,

〈Âij〉 = Aij , 〈B̂ij〉 = Bij (9)
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be proximate to a spin liquid with positive evidence for the two key 
features: quantum entanglement and exotic quasiparticles.

Experiments
CNCS
We measured the low-energy KYbSe2 single-crystal neutron spectrum 
on the Cold Neutron Chopper Spectrometer (CNCS) spectrometer33 at 
Oak Ridge National Laboratory’s Spallation Neutron Source34 between 
0.3 and 2.0 K using a 3He refrigerator (Methods). The data are shown 
in Fig. 2.

In the elastic channel, quasi-Bragg intensities appear between 1.0 
and 0.3 K, which look like (1/3, 1/3) Bragg peaks signalling 120° correla-
tions. They have no dependence on ℓ (Fig. 2p), which evidences truly 2D 
static correlations and weak interplane exchange (as a side note, this 
weak interplane exchange is expected given the fragility of the crystal 
interplane bonds: KYbSe2 planes readily flake off when the crystals are 
not handled gently). Fitting the in-plane scattering to extract the cor-
relation length using the (101) peak to define the resolution width, we 
find that the magnetic peaks are much broader than the nuclear Bragg 
peaks with a fitted correlation length of 47 ± 10 Å at 0.3 K (approxi-
mately ten unit cells in the plane). In Supplementary Fig. 1, we show 
these quasi-Bragg intensities become well-defined Bragg peaks below 
TN = 290 mK, evidencing a transition to 120° long-range magnetic order.

In the inelastic channel, two features stand out in the low- 
temperature KYbSe2 spectrum: a diffuse continuum of excitations 
and a pronounced 0.2 meV energy minimum at M = (1/2, 0, 0). Both 
these features are evident in the triangular-lattice Ba3CoSb2O9 com-
pound35–38. The ‘roton-like’ minimum at M is a generic feature of the 
2D quantum triangular-lattice Heisenberg antiferromagnet and is a 
nonlinear effect (that is, not captured by linear spin-wave theory)39–41. 
Fits to the KYbSe2 roton mode (Supplementary Fig. 4) show a mode 
maximum of 0.288(12) meV and a roton minimum 0.200(13) meV at M.  
This indicates that strong quantum effects are at work in KYbSe2.

The continuum, meanwhile, extends up to 1.6 meV, over five 
times the roton-mode bandwidth. This is far too high in energy to be a 
two-magnon continuum, which is limited to twice the single-magnon 
bandwidth. Integrating the scattering intensity over the entire 
Brillouin zone shows that ∼60% of the magnetic scattering intensity 
is found above 0.4 meV, compared with only ∼29% between 0.05 and 
0.40 meV, showing that the continuum scattering carries twice the 
spectral weight of the ‘single-magnon’ intensity. Perhaps, most inter-
estingly, the continuum in KYbSe2 comes all the way down to the sharp 
low-energy modes (Fig. 2a). The KYbSe2 diffuse continuum with a sharp 
lower bound is reminiscent of the Van Hove singularity observed in 
one-dimensional (1D) spin chains—which are known to have highly 
entangled ground states with fractionalized spinon excitations32,42,43. 

excitations and so on, which are not unique to QSL states. Instead, 
to conclusively identify an experimental QSL, ‘positive evidence’ is 
needed: experimental evidence of either (1) a highly entangled ground 
state or (2) exotic quasiparticles—both of which are key properties  
of a QSL.

Beginning with Anderson’s resonating valence-bond state11, the 
2D triangular geometry has long been studied as a platform for QSLs. 
Although the simplest spin-1/2 model with the nearest-neighbour 
antiferromagnetic Heisenberg interactions orders magnetically in a 
120° phase, the magnetic frustration makes the order weak12. The 
magnetic order can be further destabilized by additional interactions 
such as a next-nearest-neighbour exchange coupling. In that case, it 
has been found that a realistic strength as small as ∼10% of the main 
interaction is enough to destroy the magnetic order and bring the 
system into the QSL phase13–19 (which is continuously connected to a 
QSL phase driven by nearest-neighbour anisotropic exchange20). Deter-
mining the nature of the QSL phase is a theoretical challenge, with 
proposals ranging from gapped ℤ

2

 and gapless U(1) Dirac to chiral13–19, 
with no clear consensus within the community. To discern among pos-
sible QSL states, experiments are necessitated.

In the last decade, Yb3+-based materials have become popular 
as QSL candidates because of the Yb3+ effective S = 1/2 state. Most 
recently, a class of delafossite materials have been proposed as rela-
tively disorder-free QSL candidates, including NaYbO2 (refs. 21–23), 
NaYbS2 (refs. 24,25), NaYbSe2 (refs. 26,27) and CsYbSe2 (ref. 28). Each of 
these materials shows diffuse excitations and no long-range magnetic 
order down to 0.4 K or lower, but because neither are unique to the QSL 
states (both are also caused by spin glass29, random singlet phases30 or 
2D magnetic order only in the zero-temperature limit), they remain 
QSL candidates only.

Here we investigate a new member of the Yb3+ delafossite fam-
ily: KYbSe2, which forms a layered triangular lattice of magnetic Yb3+ 
ions (Fig. 1a). This material shows no long-range order above 400 mK 
(ref. 31), and finite-field ordered phases similar to NaYbO2 (ref. 22) 
and NaYbS2 (ref. 25). Thus, it appears promising as a QSL candidate. 
We successfully apply entanglement witnesses, namely, one tangle, 
two tangle and quantum Fisher information (QFI), to KYbSe2 (ref. 32)  
and detect the presence of quantum entanglement at low temper-
atures. Using a combination of density functional theory (DFT), 
Onsager reaction field (ORF) theory, Schwinger bosons (SBs) and 
tensor network approach to model KYbSe2, we find that its physics is 
well captured by a microscopic spin-1/2 Hamiltonian with nearest- and 
next-nearest-neighbour Heisenberg interactions on the triangular 
lattice in proximity to the QSL phase (Fig. 1b). Finally, the neutron 
spectrum displays signatures of quantum criticality and fractional-
ized spinon quasiparticles. Together, these results show KYbSe2 to 
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This well-defined lower bound to the continuum distinguishes KYbSe2 
from other QSL candidates, such as NaCaNi2F7 (ref. 44), YbMgGaO4 
(refs. 45,46) and herbertsmithite8, which are diffuse everywhere. 
This also distinguishes KYbSe2 from NaYbSe2, which does not have a 
lower bound to its continuum27. Whether this signals a genuine QSL in  
NaYbSe2 or the effect of its 3% site disorder is unclear.

ARCS
To understand how ‘quantum’ the KYbSe2 spins are, we measured the 
crystalline electric-field (CEF) excitations using the wide ARCS47 at Oak 
Ridge National Lab’s Spallation Neutron Source. We fitted a single-ion 
CEF Hamiltonian to the excitations using PyCrystalField version 2.2.2 
(ref. 48) software; data and fits are shown in Fig. 3 (Supplementary 
Section V provides details on the CEF fitting procedure).

The best-fit CEF Hamiltonian shows a ground-state doublet:
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with the first excited state at 17.1(3) meV. This ground-state dou-
blet gives a weak easy plane g tensor gxx = gyy = 3.0(2) and gzz = 1.8(6).  
As indicated by the large gxx and gyy, the ground-state doublet allows  
for substantial quantum tunnelling from effective spin operator J±. 
Thus, the Yb3+ spins in KYbSe2 can be treated like a spin-1/2 system.

Entanglement witnesses
Diffuse neutron excitations suggest—but do not prove—proximity to 
QSL behaviour, which makes their mere observation ambiguous. For-
tunately, entanglement witnesses provide a way out of this quandary: 
by quantifying entanglement in KYbSe2, we can rule out trivial phases 
like random singlet or valence-bond-solid states.

We apply three entanglement witnesses to the KYbSe2 data (same 
as that in other work32,42): one-tangle τ1, which quantifies the entan-
glement of a spin with the entire system49,50; two-tangle τ2, which 
quantifies the total bipartite entanglement derived from quantum 
concurrence51,52; and QFI, which gives a lower bound on multipartite 
entanglement53. Methods provides details of these calculations.

The one-tangle value is calculated from the static spin at zero 
temperature and ranges between zero (unentangled state) and one 
(maximally entangled state). In Supplementary Fig. 1, we extract the 
T → 0 static moment from fits to the Yb3+ zero-temperature heat capac-
ity nuclear Schottky anomaly, giving a local static ordered moment 
of 0.58(1)µB per ion. Comparing this with the maximum ground-state 
static moment from the CEF fit µ = 1.48(8) meV, this is only 39(2)% of 
the maximum static moment. Projecting it onto an effective S = 1/2, 
τ1 = 0.85(2). This evidences substantial spin entanglement in KYbSe2.

The two-tangle value is calculated from the Fourier transform 
to real space of the frequency-integrated S(q, ω) (Fig. 4). We find that 
none of the neighbouring spin correlators exceed the classical 〈Si ⋅ Sj〉 
threshold, and thus, the two-tangle value is zero for all the tempera-
tures in KYbSe2. This makes sense given quantum monogamy54 and six 
equivalent nearest neighbours for every site to distribute its entangle-
ment. The significance of this will become apparent shortly.

The third entanglement witness, that is, QFI, is calculated from 
an energy integral at a specific point in Q (ref. 53). For KYbSe2, we 
evaluate QFI at (1/3, 1/3), the wavevector associated with the strong-
est correlations. The scattering and nQFI are shown in Fig. 4. At 1 and 
2 K, nQFI = 1.39(6) and 0.82(4), respectively, indicating non-zero wit-
nessed entanglement below 1 K. At 0.3 K, nQFI = 3.4(2), which shows 
multipartite entanglement with an entanglement depth of four spins 
in a highly correlated ground state. Importantly, this non-zero entan-
glement appears for all six Q vectors along the nearest-neighbour 
bond directions.

Clearly, these entanglement witnesses reveal appreciable spin 
entanglement in KYbSe2, but the combination of two-tangle and QFI 
values is particularly revealing. The zero τ2 shows that the entangle-
ment is spread out over the nearest neighbours rather than pairing 
with a particular neighbour in singlets. This is what one expects for 
a highly entangled ground state (that is, vanishing τ2 for the Kitaev 
spin liquid55). Meanwhile, the QFI shows at least bipartite entangle-
ment within the (1/3, 1/3) correlations. Both of these rule out classical 
glassiness or random singlet formation. Instead, they point to many 
sites entangled together at the lowest temperatures—as one would 
expect for a QSL.
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bosons or spinons, whose condensation leads to long-range magnetic 
ordering58,59. Methods provides the details.

The dynamical spin structure factor S(q, ω) at T = 0 using SB60 for 
J2/J1 = 0.05 is shown in Fig. 5d. On a qualitative level, this result captures 
the features seen in the experimental data: the strong dispersive cone 
emanating from K, the continuum scattering at higher energies, the 
diffuse high-energy feature at M and the pronounced low-energy 
‘roton-like’ mode at M. We note that the downturn of the roton-like 
mode is much less pronounced in the SB result because of the lack  
of 1/N corrections to the internal vertices and the single-spinon 
propagator60. However, the most remarkable aspect of this com-
parison is that the SB approach captures the intensity modulation of  
the continuum scattering at higher energies, which is determined 
by the two-spinon continuum of the SB theory. This correspond-
ence points to the continuum scattering in KYbSe2 originating from 
its proximity to a deconfined spin-liquid state with fractionalized 
spinon excitations.

The measured continuum scattering extends up to higher ener-
gies than SB predicts: ∼1.6 meV, approximately three times the fitted 
value, that is, J1 = 0.56(3) meV (Supplementary Fig. 5). We attribute 
this discrepancy to the lack of four-spinon contributions arising from  
Feynman diagrams, which have not been included in the SB calcu-
lation60. Note that the KYbSe2 continuum extent does match the 

predicted continuum extent near the J2/J1 ≈ 0.06 transition point as 
calculated by Gutzwiller-projected variational Monte Carlo61.

Tensor networks: full-spectrum model
The third technique we use to model the diffuse inelastic neutron 
scattering is based on tensor networks (Methods). A related approach 
was recently used to interpret and describe the scattering of CsYbSe2  
(ref. 28), and provides a full quantum picture of the neutron spectrum. 
The downside to this technique is finite-size effects, which cause broad-
ened modes and gaps in the low-energy spectrum. Nevertheless, quali-
tative comparisons can be made.

The simulated data along high-symmetry directions of the 
Brillouin zone for J2/J1 = 0.05 are shown in Fig. 5e. The overall features 
of the experimental data are reproduced in the simulations: the asym-
metric dispersive modes emanating from K, the diffuse continuum 
extending to high energies and even the broad 1 meV feature at M. 
This shows that the triangular-lattice Heisenberg J1–J2 model is indeed 
an appropriate model for KYbSe2. Further microscopic simulations 
show that most of the high-energy scattering remains unchanged 
as J2 is increased and the system enters the QSL phase, showing that 
the high-energy scattering can be interpreted as bound spinons of a 
proximate spin liquid.

Critical scaling
So far, the entanglement witnesses and theoretical comparisons indi-
cate that KYbSe2 is close to the J1–J2 QSL quantum critical point. If this is 
true, we should see quantum critical scaling in the finite-temperature 
neutron spectrum62–65. Plotting scattered intensity times (kBT)α versus 
#ω/kBT (Fig. 6), we see a critical exponent α = 1.73(12) over more than 
a decade in ω/T. Theoretically, the semiclassical spin-wave scattering 
from an ordered Heisenberg triangular lattice predicts an exponent 
of α = 1. The observed scattering is unquestionably inconsistent with 
this (Fig. 6a). Thus, this scaling shows that the inelastic spectrum of 
KYbSe2 is dominated by non-magnon quasiparticles, confirming the 
above interpretation of fractionalized spinons.

Elastic Bragg scattering and heat capacity show a transition to 
long-range magnetic order below TN = 290 mK (Supplementary Fig. 1), 
showing that KYbSe2 is on the 120° side of the phase boundary. Never-
theless, the critical scaling is strong evidence that KYbSe2 is within the 
quantum critical regime at finite T.

This scaling holds over a single decade in #ω/kBT, which may not 
be enough to definitively establish the power-law behaviour. Neverthe-
less, if it holds over a larger range, it has important implications regard-
ing the nature of the QSL state. Indeed, the gapped ℤ

2

 QSL state 
proposed in another work66 is the only liquid that can be continuously 
connected with 120° Néel ordered state, as it does not break any sym-
metries and has the lowest-energy modes at the K points67 (the 
low-energy excitations of the other possibility, a π-flux state, are 
gapped at the K points and gapless at the M points, inconsistent with 
the observations). The resulting quantum critical point is expected to 
have a dynamically generated O(4) symmetry68,69.

Conclusion
These results show that KYbSe2 is within the quantum critical fan of 
a QSL state. The CEF fits show an isotropic J = 1/2 doublet with strong 
quantum effects, and ORF simulations show a J2/J1 ratio within the 
120° ordered phase but very close to the QSL quantum critical point 
of J2/J1 ≈ 0.06. Entanglement witnesses reveal an entangled ground 
state with distributed entanglement, just as was shown in the 1D case 
to indicate proximity to quantum criticality53. Finally, there are strong 
signs of quantum criticality in the neutron spectrum: (1) the majority 
spectral weight in the continuum, (2) the sharp lower continuum bound 
reminiscent of the 1D spinon spectrum, (3) strong correspondence to 
SB and tensor network simulations near the transition to a spin liquid 
and (4) critical scaling incompatible with semiclassical excitations; 
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be proximate to a spin liquid with positive evidence for the two key 
features: quantum entanglement and exotic quasiparticles.

Experiments
CNCS
We measured the low-energy KYbSe2 single-crystal neutron spectrum 
on the Cold Neutron Chopper Spectrometer (CNCS) spectrometer33 at 
Oak Ridge National Laboratory’s Spallation Neutron Source34 between 
0.3 and 2.0 K using a 3He refrigerator (Methods). The data are shown 
in Fig. 2.

In the elastic channel, quasi-Bragg intensities appear between 1.0 
and 0.3 K, which look like (1/3, 1/3) Bragg peaks signalling 120° correla-
tions. They have no dependence on ℓ (Fig. 2p), which evidences truly 2D 
static correlations and weak interplane exchange (as a side note, this 
weak interplane exchange is expected given the fragility of the crystal 
interplane bonds: KYbSe2 planes readily flake off when the crystals are 
not handled gently). Fitting the in-plane scattering to extract the cor-
relation length using the (101) peak to define the resolution width, we 
find that the magnetic peaks are much broader than the nuclear Bragg 
peaks with a fitted correlation length of 47 ± 10 Å at 0.3 K (approxi-
mately ten unit cells in the plane). In Supplementary Fig. 1, we show 
these quasi-Bragg intensities become well-defined Bragg peaks below 
TN = 290 mK, evidencing a transition to 120° long-range magnetic order.

In the inelastic channel, two features stand out in the low- 
temperature KYbSe2 spectrum: a diffuse continuum of excitations 
and a pronounced 0.2 meV energy minimum at M = (1/2, 0, 0). Both 
these features are evident in the triangular-lattice Ba3CoSb2O9 com-
pound35–38. The ‘roton-like’ minimum at M is a generic feature of the 
2D quantum triangular-lattice Heisenberg antiferromagnet and is a 
nonlinear effect (that is, not captured by linear spin-wave theory)39–41. 
Fits to the KYbSe2 roton mode (Supplementary Fig. 4) show a mode 
maximum of 0.288(12) meV and a roton minimum 0.200(13) meV at M.  
This indicates that strong quantum effects are at work in KYbSe2.

The continuum, meanwhile, extends up to 1.6 meV, over five 
times the roton-mode bandwidth. This is far too high in energy to be a 
two-magnon continuum, which is limited to twice the single-magnon 
bandwidth. Integrating the scattering intensity over the entire 
Brillouin zone shows that ∼60% of the magnetic scattering intensity 
is found above 0.4 meV, compared with only ∼29% between 0.05 and 
0.40 meV, showing that the continuum scattering carries twice the 
spectral weight of the ‘single-magnon’ intensity. Perhaps, most inter-
estingly, the continuum in KYbSe2 comes all the way down to the sharp 
low-energy modes (Fig. 2a). The KYbSe2 diffuse continuum with a sharp 
lower bound is reminiscent of the Van Hove singularity observed in 
one-dimensional (1D) spin chains—which are known to have highly 
entangled ground states with fractionalized spinon excitations32,42,43. 

excitations and so on, which are not unique to QSL states. Instead, 
to conclusively identify an experimental QSL, ‘positive evidence’ is 
needed: experimental evidence of either (1) a highly entangled ground 
state or (2) exotic quasiparticles—both of which are key properties  
of a QSL.

Beginning with Anderson’s resonating valence-bond state11, the 
2D triangular geometry has long been studied as a platform for QSLs. 
Although the simplest spin-1/2 model with the nearest-neighbour 
antiferromagnetic Heisenberg interactions orders magnetically in a 
120° phase, the magnetic frustration makes the order weak12. The 
magnetic order can be further destabilized by additional interactions 
such as a next-nearest-neighbour exchange coupling. In that case, it 
has been found that a realistic strength as small as ∼10% of the main 
interaction is enough to destroy the magnetic order and bring the 
system into the QSL phase13–19 (which is continuously connected to a 
QSL phase driven by nearest-neighbour anisotropic exchange20). Deter-
mining the nature of the QSL phase is a theoretical challenge, with 
proposals ranging from gapped ℤ

2

 and gapless U(1) Dirac to chiral13–19, 
with no clear consensus within the community. To discern among pos-
sible QSL states, experiments are necessitated.

In the last decade, Yb3+-based materials have become popular 
as QSL candidates because of the Yb3+ effective S = 1/2 state. Most 
recently, a class of delafossite materials have been proposed as rela-
tively disorder-free QSL candidates, including NaYbO2 (refs. 21–23), 
NaYbS2 (refs. 24,25), NaYbSe2 (refs. 26,27) and CsYbSe2 (ref. 28). Each of 
these materials shows diffuse excitations and no long-range magnetic 
order down to 0.4 K or lower, but because neither are unique to the QSL 
states (both are also caused by spin glass29, random singlet phases30 or 
2D magnetic order only in the zero-temperature limit), they remain 
QSL candidates only.

Here we investigate a new member of the Yb3+ delafossite fam-
ily: KYbSe2, which forms a layered triangular lattice of magnetic Yb3+ 
ions (Fig. 1a). This material shows no long-range order above 400 mK 
(ref. 31), and finite-field ordered phases similar to NaYbO2 (ref. 22) 
and NaYbS2 (ref. 25). Thus, it appears promising as a QSL candidate. 
We successfully apply entanglement witnesses, namely, one tangle, 
two tangle and quantum Fisher information (QFI), to KYbSe2 (ref. 32)  
and detect the presence of quantum entanglement at low temper-
atures. Using a combination of density functional theory (DFT), 
Onsager reaction field (ORF) theory, Schwinger bosons (SBs) and 
tensor network approach to model KYbSe2, we find that its physics is 
well captured by a microscopic spin-1/2 Hamiltonian with nearest- and 
next-nearest-neighbour Heisenberg interactions on the triangular 
lattice in proximity to the QSL phase (Fig. 1b). Finally, the neutron 
spectrum displays signatures of quantum criticality and fractional-
ized spinon quasiparticles. Together, these results show KYbSe2 to 
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Fig. 1 | Crystal structure and phase diagram of KYbSe2. a, Crystal structure 
with a side view of the stacked triangular layers and the top view showing the 
Yb3+ triangular lattice mediated by Se2− ions. b, Schematic of the phase diagram 
of the triangular-lattice Heisenberg antiferromagnet as a function of second-

neighbour exchange strength J2. This includes a zero-temperature 120° ordered 
phase for J2/J1 ≲ 0.06, a zero-temperature-stripe ordered phase for J2/J1 ≳ 0.16 and 
an intermediate QSL phase13–19. Near the quantum critical points, we expect the 
quantum critical regime extending at a finite temperature.
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all of these indicate that KYbSe2 excitations are fractionalized spinons 
of a QSL phase. Thus, despite the existence of magnetic order at the 
lowest temperature, we propose KYbSe2 as a model for triangular-lattice 
QSL physics at finite energies and temperatures (exactly like many 1D 
spin chains such as KCuF3 (ref. 62)).

These results have implications beyond just this material. As 
noted earlier, triangular-lattice CsYbSe2 and NaYbSe2 also show fea-
tures of a QSL phase: with CsYbSe2 possibly more towards the J2 = 0 
limit28 and NaYbSe2 J2/J1 possibly within the QSL phase (independent 
of the Yb site disorder)27. This suggests that the periodic table can 
be used to ‘tune’ J2/J1 such that the delafossite lattice can be brought 
into and out of a QSL phase depending on the A-site element. This 
gives a remarkably controlled way to study QSL materials. Another 
possible way to ‘tune’ J2/J1 could be through hydrostatic pressure—
there are even reports of superconductivity in NaYbSe2 under pres-
sure70,71, which suggests that pressure does more than just shift the 
magnetic-exchange constants.

The family of Yb3+ delafossites are a remarkable platform for 2D 
triangular-lattice Heisenberg systems. By controlling J2/J1, we are able 
to systematically approach a QSL from the 120° ordered phase, which 
gives a clear pathway towards an experimentally verifiable QSL state. 
The scaling behaviour in !ω/kBT with a non-trivial exponent, that is, a 
value inconsistent with gapless spin-wave excitations, is observed in 
the spin correlations down to the lowest temperature measured (0.3 K), 
with a correlation length of at least ten unit cells.

Although a weakly first-order transition with a long correlation 
length is possible, the natural interpretation of the results in this 
work is that the phase transition from 120° to a QSL is of the second 
order, which combines with previous theoretical work to strongly 
constrain the nature of the QSL. One of the frontiers in quantum 
condensed-matter physics is to understand the possible phase tran-
sitions between topological and broken-symmetry phases, and the 

combined experimental and theoretical analyses of KYbSe2 helps 
clarify one piece of this frontier.
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FIG. 2. Neutron scattering data on NaYbSe2. Panel a shows the triangular crystal structure and reciprocal space vectors, with hh vertical.
Panels b and c show neutron scattering in the hh` scattering plane, integrated over ` < 4.5 reciprocal lattice units (rlu) with incident neutron
energies Ei = 3.32 meV and 1.55 meV respectively. 12 K data have been subtracted as a background, see supplemental materials. Panel d
shows the scattering at K= (1/3, 1/3, 0) as a function of energy with Ei = 1.0 meV and 1.55 meV. To an energy resolution of 50 µeV, the
spectrum is gapless. Panel e shows the temperature-subtracted scattering at M= (1/2, 1/2, 0) with Ei = 3.32 meV, and it is unclear whether
the spectrum is gapped or gapless at M. Panels f-i show MPS simulated scattering of NaYbSe2 with varying levels of anisotropy. Note the
broadened signal due to finite size e↵ects.

FIG. 3. NaYbSe2 specific heat. Panel a shows ambient pressure specific heat, measured with both a 3He PPMS insert and the dilution
refrigerator (DR). In grey are the data from previous studies [25, 27, 33]. Panel b shows pressure dependent heat capacity. The low-temperature
upturn is an artifact of measuring in a pressure medium with finite thermal conductivity, but no pressure-induced magnetic ordering transition
is visible in the data. Panel c shows the magnetic specific heat of NaYbSe2 compared to KYbSe2 [28], with the temperature axis scaled by
kBJ1 for each compound. Panel d shows the theoretical calculated specific heat from TPQ (see text) as a function of J2 in units of J1. The
theoretical trend confirms that NaYbSe2 is closer to the QSL. Panel e shows the integrated entropy, revealing that both compounds converge
close to R ln(2).

magnetism still has a continuous rotation symmetry and simi-
lar physics is preserved.

However, the most important feature in susceptibility is the
low-field drop in susceptibility at 23 mK, shown in Fig 4b
and e. This drop occurs in both the B k a and B k c data.
Observing such a feature at such low temperatures is prima

facie evidence of high crystalline quality: any magnetic ran-
domness or disorder in the material must involve an energy
smaller than ⇠ kBT = 2.2 µeV, or else such a feature would be
suppressed. Furthermore, there is no detectable frequency de-
pendence in either direction, shown in Fig. 4c and f, indicating
that it is not a spin-freezing transition. Rather, this indicates
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FIG. 12. Temperature-dependent NaYbSe2 ac susceptibilities at zero
dc magnetic field with the ac field along (a) the a-axis and (b) the
c-axis up to 500 mK. Above 25 mK, the susceptibility shows a grad-
ual decrease with increasing temperature, indicative of paramagnetic
behavior.
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B. TPQ specific heat calculations

We numerically calculated the magnetic specific heat Cm
for the S = 1/2 AFM J1-J2 Hamiltonian

H = J1

X

hi, ji

Si · S j + J2

X

hhi, jii

Si · S j (1)

on a 27-site cluster (shown in Fig. 16) with periodic bound-
ary conditions using the microcanonical thermal pure quan-
tum state (TPQ) [60] method and the H� library [61, 62],
version 3.5.2. In this typicality-based approach, a thermal
quantum state is iteratively constructed starting from a ran-
domized initial vector, and associated with a temperature es-
timated from the internal energy. To reduce statistical er-
rors, we averaged over 15 initial vectors. Finite-size errors
are expected to mainly a↵ect the results at low temperatures
[63, 64], but not to change the trend with J2/J1 highlighted
here.
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perature. (c) A magnetic phase diagram of NaYbSe2 field-dependent
transitions with the field along the a-axis. The data points were
taken from AC susceptibility measurements. The arrows represent
a schematic of the spin structure for each phase.
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FIG. 7. NaYbSe2 elastic scattering with Ei = 1.55 meV at 0.1 K (a), 12 K (b), and 0.1 K � 12 K (c), with an energy window ±0.04 meV.
No static spin correlations are visible in the temperature-subtracted data, suggesting an absence of long-range magnetic order. Note that in the
unsubtracted data, there are arcs of suppressed intensity from when the vertical plates of the sample holder are along the incident and scattered
beams respectively, and absorption is much larger.

FIG. 8. Constant energy slices of NaYbSe2 with Ei = 3.32 meV. The top row (a)-(g) shows the 0.1 K data, the middle row (h)-(n) shows the
12 K background, and the bottom row (o)-(u) shows the background subtracted data. Note the vertical streaks in the top and bottom row which
reveals spin correlations independent of `, meaning the magnetic excitations are two-dimensional and have no correlations between triangular
lattice planes.

the two NaYbSe2 crystals). Note the absence of a gap feature
in the data, which follows a 1/T divergence to the lowest tem-
peratures. Note also that the ordering transition is not visible
in the data (which is admittedly somewhat noisy), again evi-
dencing that the 23 mK downturn in NaYbSe2 is not from a
magnetic ordering transition.

V. THEORETICAL SIMULATIONS

A. MPS calculations

We performed MPS simulations on the J2/J1 model with
varying values of XXZ anisotropy � [12, 16, 18, 53].

H = J1

X

hi, ji

(S x
i S x

j+S y
i S y

j+�S z
i S

z
j)+J2

X

hhi, jii

(S x
i S x

j+S y
i S y

j+�S z
i S

z
j)

Simulations are done on a cylinder geometry with circumfer-
ence C = 6 and length L = 36 with XC boundary conditions
[45] on the triangular lattice, at a maximum bond dimension
of � = 512 using the ITensor library [54]. The ground state
|⌦i of the model is found using the density matrix renormal-
ization group (DMRG). The spin-spin correlation function is
determined with time evolution using the time-dependent vari-
ational principle (TDVP) with a time step of dt = 0.1 [18, 55–
59].

G(x, t) = h⌦|Sx(t) · Sc(0)|⌦i

where the subscript c represents the central site on the cylin-
der. The dynamical spin spectral function is then computed as
the Fourier transform of the correlation function.

S (x, t) = 1
N

X

x

Z
1

0

dt
2⇡

ei(q·x�!t)G(x, t)
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quantum state is iteratively constructed starting from a ran-
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FIG. 1. Triangular lattice quantum spin liquid (QSL). Panel a shows
the NaYbSe2 crystal structure. Panel b shows the conceptual phase
diagram of CsYbSe2, KYbSe2, and NaYbSe2 as a function of fitted
J2/J1 values [30]. The theoretical boundary to the quantum spin liq-
uid phase for the isotropic model is detected by neural quantum state
(NQS) simulations at J2/J1 . 0.063 ± 0.001 (see Supplemental Ma-
terials) locating NaYbSe2 well within the QSL phase. Panel c shows
schematics for potential gapped phases on the triangular lattice: the
gapped Z2 QSL as resonating valence bond (left), a chiral QSL (cen-
ter), and a particular ordering pattern [14] for a 12-site valence bond
solid (right). Note: overlapping ovals represent resonating singlet
bonds.

disorder (as in the ill-fated Yb3+ QSL candidates YbMgGaO4
[31] and Yb2Ti2O7 [32]). To further clarify NaYbSe2, we
measured the inelastic neutron spectra, AC calorimetry, and
AC susceptibility with high quality samples. We observe co-
herent excitations, lack of magnetic order, and evidence in
bulk susceptibility of a 2.1 µeV gap at low temperature. This
is strong evidence for a QSL ground state in NaYbSe2 and a
gapped QSL on the triangular lattice.

The neutron spectra at 100 mK, shown in Fig. 5, show a
highly dispersive continuum of excitations with a well-defined
lower bound, similar to KYbSe2 [28] (see supplemental ma-
terials for experimental details). This is qualitatively di↵erent
from the spectra measured by Dai et al [27] on the 3% Yb/Na
site-mixed sample which in contrast showed smeared our con-
tinua in k-space and di↵use spectra extending to low energies
in many regions of reciprocal space. (Later in the text, we will
explain why we believe our samples are free from mixing dis-
order.) Here, the only region of reciprocal space which has ap-
preciable intensity down to low energies is (1/3, 1/3, 0), corre-
sponding to the 120� magnetic order seen in sister compounds
KYbSe2 [28] and CsYbSe2 [29]. Down to 50 µeV (the limit
before the incoherent scattering on the elastic line obscures
the scattering energy for the incident energy of Ei = 1 meV),
no gap in the spectrum is resolved.

For comparison we also show matrix product state (MPS)
calculated spectra in 5f-i with J2/J1 = 0.071 (this value de-

rived from finite field non-linear spin wave fits [30]), at vary-
ing levels of exchange anisotropy � (see Supplemental Ma-
terials). The boundary to the quantum spin liquid phase for
the isotropic model is at J2/J1 = 0.063 calculated using neu-
ral quantum states (see Supplemental Materials) locating the
material in the theoretically predicted QSL phase for weak
anisotropies. Because of finite size lattice e↵ects the calcu-
lated spectra are gapped, and it is di�cult to make quantitative
comparisons between theory and neutron experiments. Never-
theless, the calculated spectra are consistent with the observed
spectra, corroborating the idea that a J2/J1 model with easy-
plane anisotropy is an appropriate model for NaYbSe2.

Despite intensity concentrated at (1/3, 1/3, 0) and similar
spectra to CsYbSe2 and KYbSe2, we observe no static mag-
netic order in NaYbSe2 in neutron scattering measurements
down to 100 mK. No magnetic ordering features are visible
in heat capacity down to 100 mK either, as shown in Fig. 3.
(Note also that our sample has similar low-temperature spe-
cific heat to those reported in Refs. [25, 33]. If the C/T max-
imum at 800 mK is an indication of sample quality, our sam-
ple is free from the site mixing reported in Ref. [27].) To test
whether applied hydrostatic pressure can induce order—as in
KYbSe2 wherein pressure enhanced TN [30]—we also mea-
sured AC calorimetry under pressure (see Supplemental Mate-
rials) shown in Fig. 3b. Up to 2.0 GPa, no sharp feature as ex-
pected for an ordering transition is seen in the data (pressure-
dependent thermalization issues cause the low-T specific heat
to increase at low T , but this is a known artifact and would not
mask a sharp ordering transition).

Also in Fig. 3c we compare NaYbSe2 heat capacity to
KYbSe2, with the temperature axis rescaled by the fitted J1
[30]. This shows not only a lack of ordering transition, but
also a smaller kBT/J1 ⇡ 0.2 maximum heat capacity and
greater low-temperature heat capacity in NaYbSe2 relative
to KYbSe2. Comparing this to thermal pure quantum state
(TPQ) simulations of the 27-site 2D triangular lattice in Fig.
3d, these trends are beautifully explained with a larger J2/J1
in NaYbSe2: the low-temperature heat capacity is largest
when J2/J1 ⇡ 0.07 and the kBT/J1 = 0.2 bump is suppressed
with larger J2. Because the TPQ simulations are of a finite
size cluster which induces an artificial energy gap, the low-
est temperature trends are not quantitatively accurate. How-
ever, on a qualitative level, this is remarkable confirmation
that NaYbSe2 is indeed closer to or inside the triangular QSL
phase.

To investigate the magnetic state to lower temperatures, we
measured AC susceptibility down to 20 mK with AC and DC
field applied along the a and c directions on NaYbSe2 (see
Supplemental Materials). In this case we observe a clear
magnetization plateau in the B k a direction at 5 T, but not
for B k c (note these data were collected simultaneously on
two separate crystals mounted on two separate susceptome-
ters mounted on the same dilution refrigerator). This agrees
with previous measurements [25], and indicates an easy-plane
exchange anisotropy in NaYbSe2: in the perfectly isotropic
triangular model, 1/3 magnetization plateaux appear both in-
plane and out-of-plane, but the out-of-plane plateau is sup-
pressed by planar anisotropy [34–36], although the in-plane
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