Topological states and non-reciprocity in active matter Lecture 2: Non-reciprocal active solids

Anton Souslov

ICTP School on Quantum Dynamics of Matter, Light and Information
29 August 2025

Questions to ask

How do we **describe** and **classify** *active matter* based on symmetries and conservation laws?

What features of *active matter* are universal and independent of microscopic detail?

How can we design active materials with *mechanical* properties which are unusual or do not occur naturally?

Part 2.1: Active Solids: examples & applications

Biological systems: Hydra development

Active origami

Why active elasticity?

Does not refer to only the solids in which active particles are embedded, "elastic interactions."

Describes large-lengthscale, slow-timescale phenomena associated with coherent collections of active particles.

Well-developed applications across both biological systems and synthetic materials, but most questions are unexpoled.

Applications: deployable structures

Applications: Robotic swarms

Applications: Soft robotics

Applications: animate matter

Roadmap for Animate Matter. G. Volpe *et al.*

Labs: Granick, Irvine,

Part 2.2: Non-reciprocal mechanics

Pfleiderer, Fakri, Libchaber, Pallas,

Spinning Janus particles

Spinning colloids

Gyroscopic media

Starfish embryos

Rotating bacteria

Convection cells

Coulais, Huang, Mahadevan

M. Fruchart, C. Scheibner, V. Vitelli. "Odd viscosity and odd elasticity." Annual Review of Condensed Matter Physics 14, 471 (2023)

Nonpairwise interactions

Piezoelectric feedback

Robotic metamaterial

Odd micropolar metabeam

Muscle tissue

Non-reciprocal interactions lead to locomotion

Functionality: Robust locomotion

The active solid autonomously adapts its locomotion pattern.

Odd elasticity: experiment

Robotic metamaterials

Coulais lab, University of Amsterdam

Rotating colloids

Bililign et al. Nature Physics (2022)

Starfish embryos

Tan et al. Nature (2022)

Non-reciprocal interactions in active crystals lead to anomalous mechanical response

Passive elasticity: theory

Scheibner, AS, et al. *Nature Physics* (2020) Shankar et al. *Nat Rev Phys* (2022)

Anti-symmetric components of the stress-strain relation arise in materials with active springs

Scheibner, AS, et al. *Nature Physics* (2020) Shankar et al. *Nat Rev Phys* (2022)

Cycles of active springs

Path-dependent extraction of energy without introducing extra degrees of freedom

Abstraction: Elastic engine cycle

Path-dependent extraction of energy

Work extraction formula

$$W = \oint \sigma_{ij} du_{ij} = \iint d\sigma_{ij} \wedge du_{ij} = -\iint \frac{d\sigma_{ij}}{du_{kl}} du_{ij} \wedge du_{kl}$$

Only odd part of the elastic tensor contributes to active work

$$\eta \dot{u}_j = \partial_i \sigma_{ij}$$

Cycles can self-sustain

$$\eta \dot{u}_j = \partial_i \sigma_{ij}$$

Wave dispersion

Power injected (per unit area): $K^{o}q^{2}$

Power dissipated (per unit area): $\eta\omega$

Dispersion from balancing energy in and out

Scheibner, AS, et al. *Nature Physics* (2020) Shankar et al. *Nat Rev Phys* (2022)

Theory

Odd elastic waves

Starfish embryos

Energy injected at microscale can be extracted at the macroscale through work cycles

Part 2.3: Current topics: Active percolation, pattern formation

10x Real Time

Directly measure odd modulus from normal force:

$$K^o = \sigma/\epsilon$$

Non-reciprocal Active Solids

$$\tau_i = \kappa^a (\delta \theta_{i+1} - \delta \theta_{i-1})$$

10x Real Time

Directly measure odd modulus from normal force:

$$K^o = \sigma/\epsilon$$

Anomalous odd response in non-reciprocal materials

 $S_1 + iS_2$

High activity

More is less in unpercolated active solids

Generalised Le Chatelier's principle

Short definition: A system at (thermodynamic or mechanical) equilibrium shifts to counteract an external stimulus.

Broad consequence of equilibrium at potential minimum

Example: Elastic micro-macro relations

Young's modulus: Rubber, Foams etc...

Structures: truss bridges, etc...

Consequence: Increasing one spring constant increases overall stiffness

Example: Elastic micro-macro relations

Consequence: Increasing one spring constant increases overall stiffness

Potential energy:
$$V = \frac{1}{2} \epsilon_i K_{ij} \epsilon_j$$

$$K_{ij} = \begin{pmatrix} k_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & k_N \end{pmatrix} \quad \text{spring constants, } k_i > 0$$

 ϵ_i

particle displacements

Simple proof

Example: Elastic micro-macro relations

Consequence: Increasing one spring constant increases overall stiffness

Potential energy:
$$V = \frac{1}{2} \epsilon_i K_{ij} \epsilon_j = \frac{1}{2} u_a C_{ab} u_b + non-affine$$

$$K_{ij} = \begin{pmatrix} k_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & k_N \end{pmatrix} \quad \text{spring constants, } k_i > 0 \qquad \qquad C_{ab} = \begin{pmatrix} C_{11} & \cdots & C_{61} \\ \vdots & \ddots & \vdots \\ C_{16} & \cdots & C_{66} \end{pmatrix} \quad \text{elastic tensor}$$

$$\begin{pmatrix} C_{11} & \cdots & C_{61} \\ \vdots & \ddots & \vdots \end{pmatrix}$$

(minimize energy over non-affine displacements to obtain C_{ab})

particle displacements u_a ϵ_i

strains

Simple proof: Eigenvalues of C_{ab} increase monotonically in k_i

How can Le Chatelier's principle be broken?

Out of equilibrium: no longer a thermodynamic potential to minimize

Dense active lattices

Shear Strain |S|

Monotonic micro-macro in dense lattices

Active

Passive (elastic)

Binysh et al arXiv:2504.18362

Dilute lattices lose odd response

Active hexagons

$$\kappa^a/\kappa \sim 0$$

$$\kappa^a/\kappa \sim 1$$

Shear Strain $|S|$

Non-monotonic micro-macro in dilute lattices

Active

Passive (elastic)

Active percolation

Active percolation

Dilute lattices lose odd response

In disordered lattices, change the fraction p of active plaquettes to tune through an active percolation transition

Binysh et al arXiv:2504.18362

Dilute lattices lose odd response

In disordered lattices, change the fraction p of active plaquettes to tune through an active percolation transition

Anatomy of vanishing response

Binysh et al arXiv:2504.18362

Are unpercolated lattices passive?

Signatures of activity remain in the high-frequency spectrum: Localized oscillations despite overdamped dynamics

Are unpercolated lattices passive?

More is less in unpercolated active solids *arXiv:2504.18362*

Former lab members:

Guido Baardink, PhD Since: Consulting (Netherlands)

Dr Jack Binysh Since: Marie Curie fellow, **University of Amsterdam**

Collaborators:

Jonas Veenstra University of Amsterdam

Corentin Coulais University of Amsterdam

Current lab members: *University of Cambridge:*

Zory Davoyan

Dawid Dopierala

Dr Aditya Jha University of Bath:

Ian Tan

Jamie Mclauchlan

Brook Salter

References

Odd viscosity

Odd elasticity

Banerjee, AS, Abanov, and Vitelli. Nat. Commun. (2017)

Han, Fruchart, Scheibner, Vaikuntanathan, de Pablo, Vitelli. Nature Physics 17, 1260 (2021)

AS, Gromov, Vitelli. Phys. Rev. E (2020)

AS, Dasbiswas, Fruchart, Vaikuntanathan, Vitelli. Phys. Rev. Lett. (2019)

Baardink, Cassella, Neville, Milewski, AS. Phys. Rev. E (2021)

Soni*, Bililign*, Magkiriadou*,..., Irvine. Nature Physics (2019)

Scheibner, AS, et al. Nature Physics (2020)

Bililign et al. Nature Physics (2022)

Odd viscoelasticity

Fodor, AS Phys. Rev. E 104, L062602 (2021)

Banerjee, Surowka, Vitelli, Julicher Phys. Rev. Lett. 126, 138001 (2021)

Reviews

Fruchart, Scheibner, Vitelli. "Odd viscosity and odd elasticity." Annual Review of Condensed Matter Physics 14, 471 (2023)

Shankar, AS, Bowick, Marchetti, Vitelli. "Topological active matter" Nat. Rev. Phys. (2022)

About these lectures

Lecture 1. Topological active matter

Part 1.1:

Overview; Definition of active matter

Part 1.2:

Classification of active fluids

Part 1.3:

Topological active matter

Lecture 2. Non-reciprocal active solids

Part 2.1:

Introduction to active solids

Part 2.2:

Non-reciprocal mechanics and odd elasticity

Part 2.3:

Current topics: active percolation, pattern formation

Review articles on active matter:

Shankar et al <u>Topological active matter</u> Nature Reviews Physics (2022)

Fruchart, Scheibner, Vitelli. <u>Odd viscosity and odd elasticity</u>. *Annual Review of Condensed Matter Physics* 14, 471 (2023)

Marchetti et al <u>Hydrodynamics of soft active matter</u> *Reviews of Modern Physics* 85, 1143 (2013)

Background textbook:

P. M. Chaikin and T. C. Lubensky (1995) Ch. 6-10 Principles of Condensed Matter Physics

Topology:

David Mermin Rev Mod Phys (1979)

The topological theory of defects in ordered media

This lecture:

Introduction to active solids and recent work