Spin glass universality classes

Two different types of (mean field) spin glasses
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Signatures of two different glass transitions



Signatures of the spin glass transition
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Signatures of the spin glass transition
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AC-susceptibility in Cu-0.9%Mn

(Mulder et al., 1981, 1982) -
Becomes critical, long ranged!

Genuine thermodynamic transition! Clear order parameter gg,.



Signatures of the spin glass transition
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Extreme slowing down!

Probing the finite d version of interstate transitions



Signatures of the spin glass transition
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Spin glasses: protocol dependence of susceptibility y
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Spin glasses: protocol dependence of susceptibility y
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Spin glasses: protocol dependence of susceptibility y

FC

e B=0atT>T,
* Apply finite B
e CooltoT<T,

Tl

x = limp_,

M

B

Zero field cooled (ZFC)

50
T (K)

60

70

80

90

ZFC

e B=0atT>T,
e CooltoT<T,
« Apply finite B




Spin glasses: protocol dependence of susceptibility y
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Final state’s M depends on protocol! — Out of equilibrium, ergodicity is broken!



Spin glasses: protocol dependence of susceptibility y

_ M
x = limp_,g B
FC 1.4
- B=0atT>T, | 7/
* Apply finite B | ;L
e CooltoT<T.| &L ZFC
iy - B=0atT>T,
07 .~ Zero field cooled (ZFC) * Coolto T<T;
T * Apply finite B
20 30 40 50 60 70 80 90

T (K)

Final state’s M depends on protocol! — Out of equilibrium, ergodicity is broken!
Interesting: System remembers the past! — Store information!



Structural Glass transition: Viscosity

Supercooled liquids: (similar to p-spin models)

Liquids that fail to crystallize, and thus remain amorphous and non-rigid
but get very viscous and slow



Structural Glass transition: Viscosity

Supercooled liquids: (similar to p-spin models)

Liquids that fail to crystallize, and thus remain amorphous and non-rigid
but get very viscous and slow

Vogel-Fulcher law

="M, eXp(—

Empiric definition of Ty:

Log (viscosity in Paes)

n(Tg)= 10" Poise <> 7., ~10° —10"sec

Log (viscosity in poise)

“Glass transition”; rather a crossover in finite d!

Mean field T4 <> crossover to activated behavior ™~ °2  °% o8 o5 o
From C. A. Angell, Science, 1995



Structural Glass transition: Viscosity

Supercooled liquids: (similar to p-spin models)

Liquids that fail to crystallize, and thus remain amorphous and non-rigid
but get very viscous and slow

Vogel-Fulcher law

="M, eXPL—

Empiric definition of Ty:

Log (viscosity in Paes)

n(Tg)= 10" Poise <> 7., ~10° —10"sec

Log (viscosity in poise)

“Glass transition”; rather a crossover in finite d!

o8 1.0

Mean field T, <> crossover to activated behavior
TVF N TK ? From C. A. Angell, Science, 1995



Spin glasses: Aging - Dynamics gets slower with ‘age’

Protocol:

Apply a field B at high T.

coolto 9K =T < T.=10.4K
att=0

Wait for t,,

Switch off B

Measure the decay of M



Spin glasses: Aging - Dynamics gets slower with ‘age’
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Protocol:

 Apply afield B at high T.

coolto 9K =T < T.=10.4K
att=0

Wait for t,,

Switch off B

Measure the decay of
magnetization M
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T/t M(t) = Mfast(T) + Miow (T)
to\ ¢
Mfast(t) = A (?)

Msiow(t) = f (L)

tw



Spin glasses: Aging - Dynamics gets slower with ‘age’

Protocol:

010 * Apply a field B at high T.
© R - e coolto 9K =T < T, =10.4K
o008 att=0

_ < 0,06 « Wait for tW
Msiow(t) =, + Switch off B
= 0047 » Measure the decay of
; 0,02 | magnetization M
10° 10* 10° 102 107" 10° 10" 107
T/t M(t) = Mfast(T) + Miow (T)
a
Dynamic time scale grows with £, the older the slower Mot (t) = A (t_o)
T

— the sample is not at equilibrium! .

Msiow(t) = f (_)

tw



Spin glasses: Aging - Dynamics gets slower with ‘age’

e ¢ Different states

(\ / dynamical escape hindered by free energy barriers

In structural glasses: At T, escape time distribution
becomes heavy-tailed, with diverging expectation

(tosc) < (exp(AF/T)) — o

wﬁm -



Spin glasses: Aging - Dynamics gets slower with ‘age’

e ¢ Different states

(\ / dynamical escape hindered by free energy barriers

In structural glasses: At T, escape time distribution
becomes heavy-tailed, with diverging expectation

Slower and slower  (fesc) X (exp(AF/T)) — oo
dynamics as time
progresses

“ﬁ@:; -

Waiting time determines the typical time scale of dynamics and response!




Spin glass universality classes

Two different types of (mean field) spin glasses

How are they reflected in a standard mean field saddle point analysis?

1. Spherical p-spin (details)
2. SK model (sketch)



The spherical p-spin solved with replica

Aims:

« Compute the number of pure states at given free energy
density f - the “complexity” Z(f)

 Replica technique to average over disorder

» Replica symmetry breaking and its physics



Computing the complexity from cloning

Anticipate:

Many pure states in a
range of free energy
densities f

fmin fth f



Computing the complexity from cloning

couple m copies N
.together to fall
into the same _mﬁ¢(m) — maXf|E(f)ZO [Z(f) _ mﬁf]

state

Clone method: Z(m) _ /dfeNz(f)e—meN Ee—ﬁmﬁb(m)N

A
Anticipate: >

Many pure states in a
range of free energy
densities f

fmin fth f



Computing the complexity from cloning

couple m copies N
.together to fall
into the same _mﬁ¢(m) — maXf|E(f)ZO [Z(f) _ mﬁf]

state

Clone method: Z(m):/dfeNz(f)e_mﬁfNE —Bme(m)N

A
Anticipate: > |
Many pure states in a '
range of free energy :
densities f |
—
fmin fth f

Strategy: 1. compute Z(M —
2. obtain X(f) from Legendre transform of log(Z(™):
reproduce quantitatively the result of landscape method



Cloned free energy of spherical p-spins with replicas

ZM = exp(—=N®(m)) =7  D®(m) = me(m) =7

1lm N

H=Hjlo1]+ -+ Hj[om] — ¢

Clone forming attraction
(dropped in the end)



Cloned free energy of spherical p-spins with replicas
ZM = exp(=N®(m)) =7  DP(m) = mo(m) =7

1
H=Hilo1]+ -+ Hylom] — e olol

ab i=1 Clone-forming attraction
Disorder average? (dropped in the end)

The disorder average of a partition function Z is often dominated by rare disorder.

To obtain the information of typical samples : Average the free energy, or log(Z)!

log[Z(™)] = —BN®(m)
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Cloned free energy of spherical p-spins with replicas
log|Z(m)] = —BN®(m) ®(m)=me(m)="7

1lm N

H:H(][Ul]—i—"'—f—H(][O'm]—EZZU,?O'? . .
ab i=1 Clone-forming attraction

(dropped in the end)

Disorder average?

The disorder average of a partition function Z is often dominated by rare disorder.

To obtain the information of typical samples : Average the free energy, or log(Z)!
log[Z(™)] = —BN®(m)
In practice

. (Ztm)n —1
computed as 10g[Z (m)] = lim

n—0 n n—0

|dea:
Averages of

= lim [&n (Z(m) )n] powers are easier

to compute!




Cloned free energy of spherical p-spins with replicas

RN ©0v) = o)

1m N

Clone forming attraction
Quenched average: (dropped in the end)

D, T) = 1108 7o = — 2108 [ Do+ Digge Ut lonl) 50 £ 2

Do = (I], do+) 6(%, 0% = N)



Cloned free energy of spherical p-spins with replicas

RN o) = o) —

1m N

Clone forming attraction
Quenched average: (dropped in the end)

®(m, T) = — 1 log Z,, = — - log / Doy - - Dope=PUHs o4+ Hilon)+e SLY DL, ofo!

Do = (I]; dos) (32, 07 = N)
Replica trick to express the log-average:

T
B(m,T) = - lim 0(Zm)"




Cloned free energy of spherical p-spins with replicas

RN ©0v) = o)

1m N
H =Hjlo1]|+ -+ Hjlom] — € afaf
ab i=1 Clone forming attraction

Quenched average: (dropped in the end)

D, T) = 1108 7o = — 2108 [ Do -+ Digge Ut lonl) 166 E13 2

Do = (I], do+) 6(%, 0% = N)

o AT
Replica trick to express the log-average: - ® o0
ve
B(m, T) = — — lim 8 (Zy)" ® o
N n—0 .. ..
. ® 9
For integer n:

(Zm)" = | Doy -+ Dopyme—BEHs[o1]++Hslonm]) n x m copies!



Cloned free energy of spherical p-spins with replicas

a=1,...nm

\ Np_l mn
(Zm)ncx/Dag 11 /sz-l...ip exp |—JZ. i —— +BJir.i, ) 0% - 0f

i1 < <ip P

a=1

Product over all p-tuples
(clone attraction is now not explicitly written)



Cloned free energy of spherical p-spins with replicas

a=1,...nm

\ Np_l mn
(Zm)n X /DO’,? H /dJil---ip exp _Jizl---z'p p' + /BJil---ip Zo‘qu - O'qu
’ a=1

i1<...<ip

Gaussian average over
1,mn
] Get rid of disorder!

a B2p' a b . b I i
x / Do¢ [ exp [4Np_1 S o2t .02t | independent couplings
) a,b



Cloned free energy of spherical p-spins with replicas

a=1 ...,nm

/Do- H /d‘]’bl ‘ip exp[ Ji sz; 1 +,6Jz1 zngzl zp]

11 < <ip
] Gau53|an average over

iIndependent couplings
Get rid of disorder!

b
oc/Da,f‘ H exp 4NP ; Zo’h Z]...gfpoip

i1 < <ip a,b

\

Now the replica are coupled attractively!

Why: The information of low energy configurations (depending on J’s)
now hides in the attraction of replica among each other:
A low energy configuration of one copy attracts other replicas to the same configuration.



Cloned free energy of spherical p-spins with replicas

a=1,...nm

\ Np_l mn
(Zm)ncx/Dag 11 /sz-l...ip exp |—JZ. i —— +BJir.i, ) 0% - 0f

i1 < <ip P

a=1

B2p! = b b
oc/Daf H eXP | p—1 Z 0504, " 0 0
a,b

1< <ip

52 1,mn N 2
:/Da;1 exp [4NP1 Z (ZG?GS) ]

a,b )
\ Crossterms with identical
indices are subleading by
O(1/N)




Cloned free energy of spherical p-spins with replicas

a=1 ...,nm

/Da H /szl s expl I T +5Ji1...ip20?1 -..afp]
a=1

7'1< <7/p
1,mn
20l )
a Bp a _b a _b
oc/Dai H eXp | T E 03,04, ** " 04,04,
'Ll<<71p

2 1,mn
— /Da;1 exp [4]@01 ( ) l /Da exp

Overlap (global similarity) & gy A a3
between replicaaand b : Q%) = oo



Cloned free energy of spherical p-spins with replicas

Np_l mn
(Zm)n X /DO‘? H /dJil---ip exp [_Jizl"'ip p' -+ /BJil---ip Zo‘zq’l " .ggp]
’ a=1

i1<...<ip
1,mn
Bp! < b b
X /Daf H exp [4NP—1 Z 0504, " 0 0
'Ll<<71p G.,b
62 1,mn N 2 2 1,mn 1
b b
:/Dag1 exXp | o Z ( Gfoz) :/Dag‘ exp | N— Z (NZO';LO'Z
a,b 3 a,b ()

(Zm)n X /DO‘?/ 11) {anb(S (Qab — %ZG?O‘?)} exp
Hubbard-Stratonovich



Cloned free energy of spherical p-spins with replicas

Np_l mn
(Zm)n X /DO‘? H /dJil---ip exp [_Jizl"'ip p' -+ /BJil---ip Zo‘zq’l " .ggp]
’ a=1

i1<...<ip
1,mn
5219! ’ b b
oc/Daf H eXp | T Z 0504, " 0 0
1< - <ip a,b
62 1,mn N 2 2 1,mn 1
— /Dag1 exXp | o Z ( 0?02) = /Daf‘ exp | N— Z (NZUfo
a,b i a,b i
1,mn 1 /82 1,mn
(Zom)™ /Dag/ 1:[b {anb(s (Qab - Nzafaf)} exp | N—- Zb Q7,

IB2 1,mn 1,mn
= /dQ exp NZ Z Q. /daf H ) (NQab — Zafaf)
/ a,b a<b 7

dQ =11,39Qas and . Que =1



Cloned free energy of spherical p-spins with replicas

Np 1 mn
/ Do ] / dJi,..q, exp[ T2, T 5Ji1...ip20fl---afp]
a=1

7'1< <7/p

B*p! = b b
oc/Do,? H eXP | p—1 Z 0504, * * g 0

1< <ip

- oot o 55 (et | = [ e[S (3 2ett)

1,mn /82 1,mn
/Ib {anba(Qab—Za )} exp | N7 Y2 }
1,mn 1,mn 21
:/dQexp NIB2ZQ]/dU H(s(NQab ZU ) /dQexp[Nﬁ ZQ ]
a<b

dQ =11,39Qas and . Que =1 J(Q) = /da H 5 (NQ b— Za ot ) /d&aa(NQab—a“ -5



Jacobian J(Q)

1,mn

J(Q) = / dof ] 6 (NQab - Zgg(,g)

a<b

N
J(Q) = /d)\agb/da exp (Z NAapQup — Z Aub ZJZ@LJ?)

a<b a<b i=1

Important:

Different sites have been decoupled by Hubbard-Stratonovich
in this effective partition function!

Only single-site interactions between the replica Jf’:l”'"m”



Jacobian J(Q)

1,mn

J(Q) = /daf H ) (NQab—Zafaf)

a<b

N
J(Q) = /d)\agb/da exp (Z NAapQup — Z Aub ZJ?JS)

a<b a<b =1

Saddle pointwrt  Agp —> Qab:()\_l)ab

*

N
J(Q) = const - /da exp (nmN — Z Q. Z gg‘gf) — const - [det Q]N/?
i=1

a<b



Cloned free energy of spherical p-spins with replicas
)" o [ dQu ¥ @

X(@="-3"Q8 + £ logdet @
ab

Due to mean field structure:
Final integral over global replica overlaps Q,,, with an action < N

——> Saddle point over the “order parameter” Q,,! ?



Cloned free energy of spherical p-spins with replicas
)" o [ dQu ¥ @

X(@="-3"Q8 + £ logdet @
ab

Due to mean field structure:
Final integral over global replica overlaps Q,,, with an action < N

——> Saddle point over the “order parameter” Q,,! ?
xnN
But recall ®(m,T)=-T lim — hm On | dQap exp [NX(Q)]

N —o00 N n—0



Cloned free energy of spherical p-spins with replicas
)" o [ dQu ¥ @

X(@="-3"Q8 + £ logdet @
ab

Due to mean field structure:
Final integral over global replica overlaps Q,,, with an action < N

——> Saddle point over the “order parameter” Q,,! ?

xnN

.
But recall: &(m,T) = —T lim 2 fm On [ dQab exp [NX(Q)]

N —o00 N n—0

Saddle point requires the exchange of limitsto 7 — 0, N — o0 ! &



Cloned free energy of spherical p-spins with replicas
)" o [ dQu ¥ @

X(@="-3"Q8 + £ logdet @
ab

Due to mean field structure:
Final integral over global replica overlaps Q,,, with an action < N

——> Saddle point over the “order parameter” Q,,! ?

xnN

.
But recall: ®(m,T) = ~T lim — lim 9, [ dQa» exp[NX(Q)]

N —o00 N n—0

Saddle point requires the exchange of limitsto 7 — 0, N — o0 ! &

Press on as a brave physicist and find a saddle point Q*,, for any m, n!



Cloned free energy of spherical p-spins with replicas

% (Zo)™ o6 /anb e X(Q) ;

Recall clone coupling 32 1
in blocks (B) of m spins: X@ =7 Zb: op + 5 lopdet @+ &23: bXG:B o

Saddle point equation for Q,, is complicated: no general solution



Cloned free energy of spherical p-spins with replicas

e (Zp)" x /anb VIl |
Recall clone coupling 5 g
in blocks (B) of m spins: X(@ =" ;Qib + 5 logdet QF e Y Qu

B abeB

Saddle point equation for Q,, is complicated: no general solution

But: Physical guess of a sensible structure (confirmed by exact solution): ()., = 1
 Replicas of the same block are coupled in the same valley — finite overlap Qa;,gb = q

- aand b in different blocks: uncorrelated () ,p = O

“One-step replica symmetry ( (

qq \
1 0 _ o0
breaking structure” ; i’) m=3 (clones) o0

® o
e 1l qgq
0 <q 1 q) n=2 (blocks of replica clones) — 0 eventually
\ qq1l )




Cloned free energy of spherical p-spins with replicas

Zm)" [ dQus e¥X@

2
(@)= %ZQ&,—I— %logdetQ-
Evaluate with this ansatz “
—> X(Q) = —pBnmeirss(m, q,T)

mm ! log(1 —q) + %log [1 + (m — l)q]}

1 (8=
¢1rsB(m,q,T) = ~25 {7 [1+ (m—1)¢?] +



Cloned free energy of spherical p-spins with replicas

Za)" o /dQ eNX(@Q)

X(O) = ﬂ ZQ + - logdetQ
Evaluate with this ansatz
E— X(Q) = —pBnmeirss(m, q,T)

{'82[1+(m—1)qp]

— 1
bumsn(m,q,T) = + P Slog(1— ) + - log L+ (m — 1]}

28

+ continuation to n — 0 and real m



Cloned free energy of spherical p-spins with replicas

Zm)" [ dQus e¥X@

2
(@)= %Zsz+ %logdetQ-
Evaluate with this ansatz “
—> X(Q) = —pBnmeirss(m, q,T)

2 —
s (m,a,T) = =5 { 5 [1+ 0m = 0)¢7] + "= log(1 — ) + - log [1 + (m — 1)g] }

+ continuation to n — 0 and real m

Extremize overq — q*

®(m,T) = -T0,X(Q*) = m¢irss(m,q*,T)



Cloned free energy of spherical p-spins with replicas

From ®(m,T)

Obtain the spectrum of metastable states by Legendre transform!

>

Tx T; Trop T f

Confirm the structure of the landscape approach, compute Z(f) quantitatively!



Spontaneous replica symmetry breaking

Note: Clone attraction explicitly breaks permutation symmetry among nm replica.

But what about computing for a single copy (with no cloning) directly?
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Only difference: no clone structure suggesting the block ansatz with definite m




Spontaneous replica symmetry breaking

Note: Clone attraction explicitly breaks permutation symmetry among nm replica.
But what about computing for a single copy (with no cloning) directly?

Same structure of calculation with v = nm — 0 replica.
Only difference: no clone structure suggesting the block ansatz with definite m

MiGHEN
\0()/

Parisi’s equilibrium recipe: Regard m and g as variational; find stationary point!

o =
K =R
R

K =
K =RQ
QR

feq(T) — man,O§m§1¢1RSB (ma Q)



Spontaneous replica symmetry breaking

Note: Clone attraction explicitly breaks permutation symmetry among nm replica.
But what about computing for a single copy (with no cloning) directly?

Same structure of calculation with v = nm — 0 replica.
Only difference: no clone structure suggesting the block ansatz with definite m

MIGHE.
\O()/

Parisi’s equilibrium recipe: Regard m and g as variational; find stationary point!

QK -
K =R
R

QK -
Q=R
= RQ

feq(T) = max, o<m<191r5B(M, q)



Spontaneous replica symmetry breaking

Note: Clone attraction explicitly breaks permutation symmetry among nm replica.
But what about computing for a single copy (with no cloning) directly?

Same structure of calculation with v = nm — 0 replica.
Only difference: no clone structure suggesting the block ansatz with definite m

Parisi’s equilibrium recipe: Regard m and g as variational; find stationary point!

feq(T) = max, o<m<191r5B(M, q)



Meaning of replica symmetry breaking

Meaning of the spontaneous block structure in equilibrium?

Different replica will lie in the lowest available minima of G({m})



Meaning of replica symmetry breaking

Meaning of the spontaneous block structure in equilibrium?
Different replica will lie in the lowest available minima of G({m})

Two different replica (1,2) may lie in the same minimum (and have overlap Qq, = q)

or in different valleys (overlap Q4, = 0): sum over inequivalent saddle points
1 1
1qq P =0 — — Y 0i0?) = lim 0 —
((qlq) : \ (Q12) = 0(Qu2 N; :07) u—>0y—1; (Qi2 — Qup)
g q 1
0 g 1lg
\ 1a1) )




Meaning of replica symmetry breaking

Meaning of the spontaneous block structure in equilibrium?
Different replica will lie in the lowest available minima of G({m})

Two different replica (1,2) may lie in the same minimum (and have overlap Qq, = q)

or in different valleys (overlap Q4, = 0): sum over inequivalent saddle points
1 1

1 — _ = 152) = I _
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Meaning of the spontaneous block structure in equilibrium?
Different replica will lie in the lowest available minima of G({m})

Two different replica (1,2) may lie in the same minimum (and have overlap Q4, = q)

or in different valleys (overlap Q4, = 0): sum over inequivalent saddle points
1 1
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_ qq1l
@= 1 qgq ~ lim (m —1)0(Q12 — q) + (v —m)d(Q12 — 0)
0 qg1gq 150 v—1
\ aq1) )

= (1 =m)d(Q12 — q) + mI(Q12)

Non-trivial if meq <12 a non-exponential
number of different minima dominate Gibbs!




What about the other universality class:
spin glasses?

How is their different physics reflected in the
RSB structure of the SK spin glass?

W <> L .‘Q.-'

SK p-spin

T e ——



RSB structure of the SK model

Technical steps? (no complexity anticipated: no clones)



RSB structure of the SK model

Technical steps?

Write partition function

Replicate n times

Disorder average

Hubbard-Stratonovich - decouple different sites by introducing an integral
over the overlap Q

Obtain effective action of N decoupled sites: extensive

Seek saddle point Q* (close your eyes and take large-N limit before n—0)
Make Parisi’s block ansatz for Qg

Compute physical quantities and check whether they make sense.
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In SK case: 1step ansatz yields a low T entropy that becomes negative!
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RSB structure of the SK model

In SK case: 1step ansatz yields a low T entropy that becomes negative!

How to do better?

Try blocks in blocks! ==

( 1
q2
g1
_ q1

Q= q0

qo

q0

\QO

“2-step RSB”:

q2
1
q1
q1
qo0
qo
qo
qo

q1
q1
1
q2
qo
qo
qo
qo

q1
q1
q2
1
qo
q0
qo
qo

qo
do
do
qo

1
q2
q1
q1

dgo 4o 9o
do 9o 9o
go 9o 9o
do 9o 9o
q2 41 q1
1 g1 ¢

q1

g1 g2 1

A priori
1 <mo <mp <n

Butasn -0

1>mo>m;y>n—0



RSB structure of the SK model

3 IV .

How to do better?
Q —

( 1
q2
q1
q1

q0
q0

q0

\QO

q2

1
q1
q1
qo
qo
q0
qo

q1
q1
1
q2
q0
g0
g0
qo

q1
q1
g2
1
q0
qo
qo
qo

qo0
go
q0
q0

g2
q1
q1

q0
qo
qo0
qo
q2

g1
q1

q0
qo
q0
q0
q1
q1

q2

do
qo0
do
q0
g1
qi
q2




RSB structure of the SK model

2step ansatz : low T entropy is less negative, but still negative!-/

How to do better? Q=

Infinite hierarchy of blocks! == “continuous RSB” !

Parametrized by a limiting function q(1 > & > 0)

1 ¢
g2 1
q1 q1
q1 q1
90 9o
g0 9o
90 9o

\QO qo

q1 q1
91 q1
1 ¢
g2 1
90 9o
g0 4o
q0 9o
qo 9o

q0
go
q0
q0

g2
q1
q1

q0
qo
qo0
qo
q2

g1
q1

q0
qo
q0
q0
q1
q1

[E—

q2

do
qo0
do
q0
g1
qi
q2

1




RSB structure of the SK model

2step ansatz : low T entropy is less negative, but still negative! (1

q2
How to do better? Q- Zi
qo
q0
Infinite hierarchy of blocks! == “continuous RSB”! \ .
A
W

Hierarchical substructure:
clusters of states with overlap qs,
clustering into larger clusters of smaller overlap qy,

forming global cluster of overlap qq

q2

1
q1
q1
q0
qo
q0
qo

q1
q1
1
q2
q0
g0
q0
qo

q1
q1
g2
1
q0
qo
q0
qo

do
do
do
do

g2
q1
qi1

qo0
qo
qo0
qo0
g2

q1
q1

q0
qo
q0
qo
q1
q1

q2

Recall: overlap  Q*° = %Z 595

do
qo0
do
qo0
g1
a1
g2




RSB structure of the SK model

2step ansatz : low T entropy is less negative, but still negative!
How to do better? Q=

Infinite hierarchy of blocks! == “continuous RSB” !

 Entropy remains positive! ZFC/FC susceptibility sim. to experiment

1.4

1 3 =l lalo s oo —

I Field cooled i

1.1 - —

M [a.u]

| 9 | ,..*v 7

0.7 - Zero field cooled (ZFC)

06 L. | \ \ \ \ \

20 30 40 50,60 70 80 90
T (K)

(

\

1

q2
q1
q1
q0
qo
q0
qo

q2

1
q1
q1
q0
qo
q0
qo

q1
q1
1
q2
q0
g0
q0
qo

q1
q1
g2
1
q0
qo
q0
qo

qo0
go
q0
qo

g2
q1
qi1

qo0
qo
qo0
qo
q2

q1
q1

q0
qo
q0
qo
q1
q1

q2

do
qo0
do
q0
g1
qi
g2




RSB structure of the SK model

2step ansatz : low T entropy is less negative, but still negative!
How to do better? Q=
Infinite hierarchy of blocks! == “continuous RSB”!

 Entropy remains positive! ZFC/FC susceptibility sim. to experiment

(

\

1
q2
q1
q1
q0
qo
q0
qo

q2

1
q1
q1
q0
q0
q0
qo

q1
q1
1
q2
q0
g0
q0
qo

q1
q1
q2
1
q0
q0
q0
qo

do
do
do
do

g2
q1
qi1

q0
qo
qo
qo0
g2

q1
q1

 No finite complexity: always less than exponentially many relevant states!

q0
qo
qo
qo
q1

1
q2

 The action at the saddle point Q* is only a marginal maximum (like for threshold

states in the p-spin model)

< the physical minima have marginal stability: shallow, with flat directions;

the whole glass phase is critical!

q0
qo0
q0
qo0
g1
a1
q2

)



