Spin glass universality classes

Two different types of (mean field) spin glasses

SK-model
$$H = \sum_{i < j} J_{ij} s_i s_j$$

Continuous transition

$$q_{EA} = \frac{1}{N} \sum_{i} \left\langle s_i \right\rangle^2 \underset{T \to T_g}{\longrightarrow} 0$$

- All minima are marginal
- & have the same free energy density

MF-Model for real spin glasses

$$\begin{array}{ll} \text{p-spin models} & H = -\sum_{i_1 < \ldots < i_p} J_{i_1 \ldots i_p} s_{i_1} \cdots s_{i_p} \\ & p \geq 3 \end{array}$$

Discontinuous transition

$$q_{EA} \xrightarrow[T \to T_g]{} q_c > 0$$

- Only threshold states are marginal
- States in extensive free energy window
- Separate dynamic (clustering) and thermodynamic (freezing) transitions

MF-analogon for structural glasses

Signatures of two different glass transitions

AC-susceptibility in Cu-0.9%Mn

(Mulder et al., 1981, 1982)

$$\langle s_i \rangle = 0, \ T > T_g, \text{ (paramagnet)}$$

$$\langle s_i \rangle \neq 0, \ T > T_g, \text{ (spin glass)}$$

$$q_{EA} \equiv \frac{1}{N} \sum_{i} \langle s_i \rangle^2$$

$$\chi = \frac{T}{N} \sum_{i} \left(\left\langle s_i^2 \right\rangle - \left\langle s_i \right\rangle^2 \right)$$

$$\chi_{nl} = \frac{\beta^2}{N} \sum_{i,j} \left\langle s_i s_j \right\rangle^2 \xrightarrow{T \to T_g} \infty$$

Becomes critical, long ranged!

AC-susceptibility in Cu-0.9%Mn

(Mulder et al., 1981, 1982)

Becomes critical, long ranged!

Genuine thermodynamic transition! Clear order parameter q_{EA} .

$$\langle s_i \rangle = 0, \ T > T_g, \text{ (paramagnet)}$$

$$\langle s_i \rangle \neq 0, \ T > T_g, \text{ (spin glass)}$$

$$q_{EA} \equiv \frac{1}{N} \sum_{i} \langle s_i \rangle^2$$

$$\chi = \frac{T}{N} \sum_{i} \left(\left\langle s_i^2 \right\rangle - \left\langle s_i \right\rangle^2 \right)$$

$$\chi_{nl} = \frac{\beta^2}{N} \sum_{i,j} \left\langle s_i s_j \right\rangle^2 \xrightarrow{T \to T_g} \infty$$

AC-susceptibility in Cu-0.9%Mn

(Mulder et al., 1981, 1982)

Extreme slowing down!

Probing the finite d version of interstate transitions

$$\langle s_i \rangle = 0, \ T > T_g, \text{ (paramagnet)}$$

$$\langle s_i \rangle \neq 0, \ T > T_g, \text{ (spin glass)}$$

$$q_{EA} \equiv \frac{1}{N} \sum_{i} \langle s_i \rangle^2$$

$$\chi = \frac{T}{N} \sum_{i} \left(\langle s_i^2 \rangle - \langle s_i \rangle^2 \right)$$

$$\chi_{nl} = \frac{\beta^2}{N} \sum_{i,j} \langle s_i s_j \rangle^2 \xrightarrow{T \to T_g} \infty$$

AC-susceptibility in Cu-0.9%M

(Mulder et al., 1981, 1982)

(Nagata et al., 1979)

$$\chi = \lim_{B \to 0} \frac{M}{B}$$

$$\chi = \lim_{B \to 0} \frac{M}{B}$$

ZFC

- B=0 at T > T_c
- Cool to $T < T_c$
- Apply finite B

$$\chi = \lim_{B \to 0} \frac{M}{B}$$

FC

- B=0 at $T > T_c$
- Apply finite B
- Cool to $T < T_c$

ZFC

- B=0 at T > T_c
- Cool to $T < T_c$
- Apply finite B

$$\chi = \lim_{B \to 0} \frac{M}{B}$$

- B=0 at $T > T_c$ Apply finite B
- Cool to $T < T_c$

ZFC

- B=0 at T > T_c
- Cool to $T < T_c$
- Apply finite B

Final state's M depends on protocol! → Out of equilibrium, ergodicity is broken!

$$\chi = \lim_{B \to 0} \frac{M}{B}$$

FC

- B=0 at $T > T_c$ Apply finite B
- Cool to $T < T_c$

ZFC

- B=0 at T > T_c
- Cool to $T < T_c$
- Apply finite B

Final state's M depends on protocol! → Out of equilibrium, ergodicity is broken! Interesting: System remembers the past! → Store information!

Structural Glass transition: Viscosity

Supercooled liquids: (similar to p-spin models)

Liquids that fail to crystallize, and thus remain amorphous and non-rigid but get very viscous and slow

Structural Glass transition: Viscosity

Supercooled liquids: (similar to p-spin models)

Liquids that fail to crystallize, and thus remain amorphous and non-rigid

but get very viscous and slow

Empiric definition of T_g:

$$\eta(T_g) = 10^{14} \text{ Poise } \leftrightarrow \tau_{rel} \approx 10^2 - 10^3 \text{ sec}$$

"Glass transition": rather a crossover in finite d!

Mean field $T_d \leftrightarrow$ crossover to activated behavior

From C. A. Angell, Science, 1995

Structural Glass transition: Viscosity

Supercooled liquids: (similar to p-spin models)

Liquids that fail to crystallize, and thus remain amorphous and non-rigid

but get very viscous and slow

Empiric definition of T_g:

$$\eta(T_g) = 10^{14} \text{ Poise } \leftrightarrow \tau_{rel} \approx 10^2 - 10^3 \text{ sec}$$

"Glass transition": rather a crossover in finite d!

Mean field $T_d \leftrightarrow$ crossover to activated behavior $T_{VF} \leftrightarrow T_K$?

From C. A. Angell, Science, 1995

Protocol:

- Apply a field B at high T.
- cool to $9K = T < T_c = 10.4K$ at t = 0
- Wait for t_w
- Switch off B
- Measure the decay of M

Protocol:

- Apply a field B at high T.
- cool to $9K = T < T_c = 10.4K$ at t = 0
- Wait for t_w
- Switch off B
- Measure the decay of magnetization M

$$M(\tau) = M_{fast}(\tau) + M_{slow}(\tau)$$

$$M_{fast}(t) = A \left(\frac{t_0}{\tau}\right)^a$$

$$M_{slow}(t) = f \left(\frac{\tau}{tw}\right)$$

Dynamic time scale grows with t_w : the older the slower \rightarrow the sample is not at equilibrium!

Protocol:

- Apply a field B at high T.
- cool to $9K = T < T_c = 10.4K$ at t = 0
- Wait for t_w
- Switch off B
- Measure the decay of magnetization M

$$M(\tau) = M_{fast}(\tau) + M_{slow}(\tau)$$

$$M_{fast}(t) = A \left(\frac{t_0}{\tau}\right)^a$$

$$M_{slow}(t) = f \left(\frac{\tau}{t_w}\right)$$

Different states dynamical escape hindered by free energy barriers

In structural glasses: At T_d escape time distribution becomes heavy-tailed, with diverging expectation

$$\langle t_{\rm esc} \rangle \propto \langle \exp(\Delta F/T) \rangle \to \infty$$

Waiting time determines the typical time scale of dynamics and response!

Spin glass universality classes

Two different types of (mean field) spin glasses

How are they reflected in a standard mean field saddle point analysis?

- 1. Spherical p-spin (details)
- 2. SK model (sketch)

The spherical p-spin solved with replica

Aims:

- Compute the number of pure states at given free energy density f the "complexity" $\Sigma(f)$
- Replica technique to average over disorder
- Replica symmetry breaking and its physics

Computing the complexity from cloning

Anticipate:
Many pure states in a range of free energy densities f

Computing the complexity from cloning

together to fall into the same state

Clone method: couple m copies
$$Z_N^{(m)} = \int df e^{N\Sigma(f)} e^{-m\beta fN} \equiv e^{-\beta m\phi(m)N}$$

$$-m\beta\phi(m) = \max_{f|\Sigma(f)\geq 0} \left[\Sigma(f) - m\beta f\right]$$

Anticipate: Many pure states in a range of free energy densities f

Computing the complexity from cloning

Clone method: together to fall into the same state

Clone method: couple m copies
$$Z_N^{(m)} = \int df e^{N\Sigma(f)} e^{-m\beta fN} \equiv e^{-\beta m\phi(m)N}$$
 together to fall

$$-m\beta\phi(m) = \max_{f|\Sigma(f)\geq 0} \left[\Sigma(f) - m\beta f\right]$$

Anticipate: Many pure states in a range of free energy densities f

Strategy: 1. compute Z^(m) –

2. obtain $\Sigma(f)$ from Legendre transform of $\log(Z^{(m)})$: reproduce quantitatively the result of landscape method

$$Z^{(m)} = \exp(-\beta N\Phi(m)) = ? \qquad \Phi(m) \equiv m\phi(m) = ?$$

$$H = H_J[\sigma_1] + \dots + H_J[\sigma_m] - \epsilon \sum_{a,b}^{1,m} \sum_{i=1}^{N} \sigma_i^a \sigma_i^b \qquad \text{Clone forming attraction}$$

$$(\text{dropped in the end})$$

$$Z^{(m)}=\exp(-\beta N\Phi(m))=? \qquad \Phi(m)\equiv m\phi(m)=?$$

$$H=H_J[\sigma_1]+\cdots+H_J[\sigma_m]-\epsilon\sum_{a,b}^{1,m}\sum_{i=1}^N\sigma_i^a\sigma_i^b$$
 Clone-forming attraction (dropped in the end)

The disorder average of a partition function Z is often dominated by rare disorder.

To obtain the information of typical samples: Average the free energy, or log(Z)!

$$\overline{\log[Z^{(m)}]} = -\beta N\Phi(m)$$

$$Z^{(m)}=\exp(-eta N\Phi(m))=?$$
 $\Phi(m)\equiv m\phi(m)=?$ $H=H_J[\sigma_1]+\cdots+H_J[\sigma_m]-\epsilon\sum_{a,b}^{1,m}\sum_{i=1}^N\sigma_i^a\sigma_i^b$ Clone-forming attraction sorder average? (dropped in the end)

Disorder average?

The disorder average of a partition function Z is often dominated by rare disorder.

To obtain the information of typical samples: Average the free energy, or log(Z)!

$$\overline{\log[Z^{(m)}]} = -\beta N\Phi(m)$$

$$\overline{\log[Z^{(m)}]} = -\beta N\Phi(m) \quad \Phi(m) \equiv m\phi(m) = ?$$

$$H = H_J[\sigma_1] + \cdots + H_J[\sigma_m] - \epsilon \sum_{a,b}^{1,m} \sum_{i=1}^N \sigma_i^a \sigma_i^b$$
 Clone-forming attraction

Disorder average?

(dropped in the end)

The disorder average of a partition function Z is often dominated by rare disorder.

To obtain the information of typical samples: Average the free energy, or log(Z)!

$$\overline{\log[Z^{(m)}]} = -\beta N\Phi(m)$$

$$\frac{\text{In practice computed as}}{\log[Z^{(m)}]} = \lim_{n \to 0} \frac{\overline{(Z^{(m)})^n} - 1}{n} = \lim_{n \to 0} \left[\partial_n \overline{(Z^{(m)})^n} \right]$$

Idea: Averages of powers are easier to compute!

$$\overline{\log[Z^{(m)}]} = -\beta N\Phi(m) \quad \Phi(m) \equiv m\phi(m) = ?$$

$$H = H_J[\sigma_1] + \dots + H_J[\sigma_m] - \epsilon \sum_{a,b}^{1,m} \sum_{i=1}^N \sigma_i^a \sigma_i^b$$
 Clone forming attraction

Quenched average:

(dropped in the end)

$$\Phi(m,T) = \overline{-\frac{T}{N}\log Z_m} = \overline{-\frac{T}{N}\log\int D\sigma_1 \cdots D\sigma_m e^{-\beta(H_J[\sigma_1] + \cdots + H_J[\sigma_m]) + \beta\epsilon \sum_{a,b}^{1,m} \sum_{i=1}^N \sigma_i^a \sigma_i^b}}$$

$$D\sigma = (\prod_i d\sigma_i) \, \delta(\sum_i \sigma_i^2 = N)$$

$$\overline{\log[Z^{(m)}]} = -\beta N\Phi(m) \quad \Phi(m) \equiv m\phi(m) = ?$$

$$H = H_J[\sigma_1] + \dots + H_J[\sigma_m] - \epsilon \sum_{a,b}^{1,m} \sum_{i=1}^N \sigma_i^a \sigma_i^b$$
 Clone forming attraction

Quenched average:

(dropped in the end)

$$\Phi(m,T) = \overline{-\frac{T}{N}\log Z_m} = \overline{-\frac{T}{N}\log\int D\sigma_1 \cdots D\sigma_m e^{-\beta(H_J[\sigma_1] + \cdots + H_J[\sigma_m]) + \beta\epsilon \sum_{a,b}^{1,m} \sum_{i=1}^N \sigma_i^a \sigma_i^b}} \ .$$

$$D\sigma = (\prod_i d\sigma_i) \, \delta(\sum_i \sigma_i^2 = N)$$

Replica trick to express the log-average:

$$\Phi(m,T) = -rac{T}{N}\lim_{n o 0}\partial_n\overline{(Z_m)^n}$$

$$\overline{\log[Z^{(m)}]} = -\beta N\Phi(m) \quad \Phi(m) \equiv m\phi(m) = ?$$

$$H = H_J[\sigma_1] + \dots + H_J[\sigma_m] - \epsilon \sum_{a,b}^{1,m} \sum_{i=1}^N \sigma_i^a \sigma_i^b$$
 Clone forming attraction

Quenched average:

(dropped in the end)

$$\Phi(m,T) = \overline{-\frac{T}{N}\log Z_m} = \overline{-\frac{T}{N}\log\int D\sigma_1 \cdots D\sigma_m e^{-\beta(H_J[\sigma_1] + \cdots + H_J[\sigma_m]) + \beta\epsilon \sum_{a,b}^{1,m} \sum_{i=1}^N \sigma_i^a \sigma_i^b}}$$

$$D\sigma = (\prod_i d\sigma_i) \, \delta(\sum_i \sigma_i^2 = N)$$

Replica trick to express the log-average:

$$\Phi(m,T) = -\frac{T}{N} \lim_{n \to 0} \partial_n \overline{(Z_m)^n}$$

For integer n:

$$\overline{(Z_m)^n} = \overline{\int D\sigma_1 \cdots D\sigma_{nm} e^{-\beta(H_J[\sigma_1] + \cdots + H_J[\sigma_{nm}])}}$$

n x m copies!

$$\overline{(Z_m)^n} \propto \int D\sigma_i^a \prod_{i_1 < \dots < i_p} \int dJ_{i_1 \dots i_p} \exp \left[-J_{i_1 \dots i_p}^2 \frac{N^{p-1}}{p!} + \beta J_{i_1 \dots i_p} \sum_{a=1}^{mn} \sigma_{i_1}^a \dots \sigma_{i_p}^a \right]$$

Product over all p-tuples (clone attraction is now not explicitly written)

$$\begin{split} &a=1,...,nm\\ &\overline{(Z_m)^n} \propto \int D\sigma_i^a \prod_{i_1 < \cdots < i_p} \int dJ_{i_1 \cdots i_p} \exp \left[-J_{i_1 \cdots i_p}^2 \frac{N^{p-1}}{p!} + \beta J_{i_1 \cdots i_p} \sum_{a=1}^{mn} \sigma_{i_1}^a \cdots \sigma_{i_p}^a \right] \\ &\propto \int D\sigma_i^a \prod_{i_1 < \cdots < i_p} \exp \left[\frac{\beta^2 p!}{4N^{p-1}} \sum_{a,b}^{1,mn} \sigma_{i_1}^a \sigma_{i_1}^b \cdots \sigma_{i_p}^a \sigma_{i_p}^b \right] \end{split} \quad \text{Gaussian average over independent couplings Get rid of disorder!}$$

$$\overline{(Z_m)^n} \propto \int D\sigma_i^a \prod_{i_1 < \dots < i_p} \int dJ_{i_1 \dots i_p} \, \exp \left[-J_{i_1 \dots i_p}^2 \frac{N^{p-1}}{p!} + \beta J_{i_1 \dots i_p} \sum_{a=1}^{mn} \sigma_{i_1}^a \dots \sigma_{i_p}^a \right]$$
 Gaussian average over independent couplings
$$\propto \int D\sigma_i^a \prod_{i_1 < \dots < i_p} \exp \left[\frac{\beta^2 p!}{4N^{p-1}} \sum_{a,b}^{1,mn} \sigma_{i_1}^a \sigma_{i_1}^b \dots \sigma_{i_p}^a \sigma_{i_p}^b \right]$$
 Get rid of disorder!

Now the replica are coupled attractively!

Why: The information of low energy configurations (depending on J's) now hides in the attraction of replica among each other:

A low energy configuration of one copy attracts other replicas to the same configuration.

$$\overline{(Z_m)^n} \propto \int D\sigma_i^a \prod_{i_1 < \dots < i_p} \int dJ_{i_1 \dots i_p} \exp \left[-J_{i_1 \dots i_p}^2 \frac{N^{p-1}}{p!} + \beta J_{i_1 \dots i_p} \sum_{a=1}^{mn} \sigma_{i_1}^a \dots \sigma_{i_p}^a \right]$$

$$\propto \int D\sigma_i^a \prod_{i_1 < \dots < i_p} \exp \left[\frac{\beta^2 p!}{4N^{p-1}} \sum_{a,b}^{1,mn} \sigma_{i_1}^a \sigma_{i_1}^b \dots \sigma_{i_p}^a \sigma_{i_p}^b \right]$$

$$= \int D\sigma_i^a \exp \left[\frac{\beta^2}{4N^{p-1}} \sum_{a,b}^{1,mn} \left(\sum_i^N \sigma_i^a \sigma_i^b \right)^p \right] = \int D\sigma_i^a \exp \left[N \frac{\beta^2}{4} \sum_{a,b}^{1,mn} \left(\frac{1}{N} \sum_i \sigma_i^a \sigma_i^b \right)^p \right]$$

Overlap (global similarity) between replica a and b :

$$Q(\sigma^a, \sigma^b) = \frac{1}{N} \sum_i \sigma_i^a \sigma_i^b$$

$$\begin{split} \overline{(Z_m)^n} &\propto \int D\sigma_i^a \prod_{i_1 < \dots < i_p} \int dJ_{i_1 \dots i_p} \exp \left[-J_{i_1 \dots i_p}^2 \frac{N^{p-1}}{p!} + \beta J_{i_1 \dots i_p} \sum_{a=1}^{mn} \sigma_{i_1}^a \dots \sigma_{i_p}^a \right] \\ &\propto \int D\sigma_i^a \prod_{i_1 < \dots < i_p} \exp \left[\frac{\beta^2 p!}{4N^{p-1}} \sum_{a,b}^{1,mn} \sigma_{i_1}^a \sigma_{i_1}^b \dots \sigma_{i_p}^a \sigma_{i_p}^b \right] \\ &= \int D\sigma_i^a \exp \left[\frac{\beta^2}{4N^{p-1}} \sum_{a,b}^{1,mn} \left(\sum_i^N \sigma_i^a \sigma_i^b \right)^p \right] = \int D\sigma_i^a \exp \left[N \frac{\beta^2}{4} \sum_{a,b}^{1,mn} \left(\frac{1}{N} \sum_i \sigma_i^a \sigma_i^b \right)^p \right] \\ &\overline{(Z_m)^n} \propto \int D\sigma_i^a \int \prod_{a < b}^{1,mn} \left\{ dQ_{ab} \, \delta \left(Q_{ab} - \frac{1}{N} \sum_i \sigma_i^a \sigma_i^b \right) \right\} \exp \left[N \frac{\beta^2}{4} \sum_{a,b}^{1,mn} Q_{ab}^p \right] \end{split}$$

Hubbard-Stratonovich

$$\begin{split} \overline{(Z_m)^n} &\propto \int D\sigma_i^a \prod_{i_1 < \dots < i_p} \int dJ_{i_1 \dots i_p} \, \exp\left[-J_{i_1 \dots i_p}^2 \frac{N^{p-1}}{p!} + \beta J_{i_1 \dots i_p} \sum_{a=1}^{mn} \sigma_{i_1}^a \dots \sigma_{i_p}^a \right] \\ &\propto \int D\sigma_i^a \prod_{i_1 < \dots < i_p} \exp\left[\frac{\beta^2 p!}{4N^{p-1}} \sum_{a,b}^{1,mn} \sigma_{i_1}^a \sigma_{i_1}^b \dots \sigma_{i_p}^a \sigma_{i_p}^b \right] \\ &= \int D\sigma_i^a \, \exp\left[\frac{\beta^2}{4N^{p-1}} \sum_{a,b}^{1,mn} \left(\sum_i^N \sigma_i^a \sigma_i^b \right)^p \right] = \int D\sigma_i^a \, \exp\left[N \frac{\beta^2}{4} \sum_{a,b}^{1,mn} \left(\frac{1}{N} \sum_i \sigma_i^a \sigma_i^b \right)^p \right] \\ &\overline{(Z_m)^n} \propto \int D\sigma_i^a \int \prod_{a < b}^{1,mn} \left\{ dQ_{ab} \, \delta \left(Q_{ab} - \frac{1}{N} \sum_i \sigma_i^a \sigma_i^b \right) \right\} \, \exp\left[N \frac{\beta^2}{4} \sum_{a,b}^{1,mn} Q_{ab}^p \right] \\ &= \int dQ \, \exp\left[N \frac{\beta^2}{4} \sum_{a,b}^{1,mn} Q_{ab}^p \right] \int d\sigma_i^a \prod_{a \le b}^{1,mn} \delta \left(NQ_{ab} - \sum_i \sigma_i^a \sigma_i^b \right) \\ dQ &= \prod_{a < b} dQ_{ab} \quad \text{and} \quad Q_{aa}^a = 1 \end{split}$$

$$\begin{split} \overline{(Z_m)^n} &\propto \int D\sigma_i^a \prod_{i_1 < \dots < i_p} \int dJ_{i_1 \dots i_p} \, \exp \left[-J_{i_1 \dots i_p}^2 \frac{N^{p-1}}{p!} + \beta J_{i_1 \dots i_p} \sum_{a=1}^{mn} \sigma_{i_1}^a \dots \sigma_{i_p}^a \right] \\ &\propto \int D\sigma_i^a \prod_{i_1 < \dots < i_p} \exp \left[\frac{\beta^2 p!}{4N^{p-1}} \sum_{a,b}^{1,mn} \sigma_{i_1}^a \sigma_{i_1}^b \dots \sigma_{i_p}^a \sigma_{i_p}^b \right] \\ &= \int D\sigma_i^a \, \exp \left[\frac{\beta^2}{4N^{p-1}} \sum_{a,b}^{1,mn} \left(\sum_i^N \sigma_i^a \sigma_i^b \right)^p \right] = \int D\sigma_i^a \, \exp \left[N \frac{\beta^2}{4} \sum_{a,b}^{1,mn} \left(\frac{1}{N} \sum_i \sigma_i^a \sigma_i^b \right)^p \right] \\ &\overline{(Z_m)^n} \propto \int D\sigma_i^a \int \prod_{a < b}^{1,mn} \left\{ dQ_{ab} \, \delta \left(Q_{ab} - \frac{1}{N} \sum_i \sigma_i^a \sigma_i^b \right) \right\} \exp \left[N \frac{\beta^2}{4} \sum_{a,b}^{1,mn} Q_{ab}^p \right] \\ &= \int dQ \, \exp \left[N \frac{\beta^2}{4} \sum_{a,b}^{1,mn} Q_{ab}^p \right] \int d\sigma_i^a \prod_{a \le b}^{1,mn} \delta \left(NQ_{ab} - \sum_i \sigma_i^a \sigma_i^b \right) = \int dQ \, \exp \left[N \frac{\beta^2}{4} \sum_{a,b}^{1,mn} Q_{ab}^p \right] J(Q) \\ dQ &= \prod_{a < b} dQ_{ab} \quad \text{and} \quad Q_{aa} = 1 \end{split}$$

Jacobian J(Q)

$$J(Q) = \int d\sigma_i^a \prod_{a \le b}^{1,mn} \delta \left(NQ_{ab} - \sum_i \sigma_i^a \sigma_i^b \right)$$

$$J(Q) = \int d\lambda_{a \le b} \int d\sigma \exp\left(\sum_{a \le b} N\lambda_{ab} Q_{ab} - \sum_{a \le b} \lambda_{ab} \sum_{i=1}^{N} \sigma_i^a \sigma_i^b\right)$$

Important:

Different sites have been decoupled by Hubbard-Stratonovich in this effective partition function!

Only single-site interactions between the replica $\sigma_i^{a=1,...,mn}$

Jacobian J(Q)

$$J(Q) = \int d\sigma_i^a \prod_{a \le b}^{1,mn} \delta \left(NQ_{ab} - \sum_i \sigma_i^a \sigma_i^b \right)$$

$$J(Q) = \int d\lambda_{a \le b} \int d\sigma \exp\left(\sum_{a \le b} N\lambda_{ab} Q_{ab} - \sum_{a \le b} \lambda_{ab} \sum_{i=1}^{N} \sigma_i^a \sigma_i^b\right)$$

Saddle point wrt $\lambda_{ab} \longrightarrow Q_{ab} = (\lambda_*^{-1})_{ab}$

$$J(Q) = const \cdot \int d\sigma \exp\left(nmN - \sum_{a \le b} Q_{ab}^{-1} \sum_{i=1}^{N} \sigma_i^a \sigma_i^b\right) = const \cdot [\det Q]^{N/2}$$

$$\overline{(Z_m)^n} \propto \int dQ_{ab} \ e^{NX(Q)} \ ,$$
 $X(Q) = rac{eta^2}{4} \sum_{ab} Q^p_{ab} + rac{1}{2} \log \det Q$

Due to mean field structure:

Final integral over global replica overlaps Q_{ab} , with an action $\propto N$

Saddle point over the "order parameter" Q_{ab}!?

$$\overline{(Z_m)^n} \propto \int dQ_{ab} \ e^{NX(Q)} \ ,$$
 $X(Q) = rac{eta^2}{4} \sum_{ab} Q^p_{ab} + rac{1}{2} \log \det Q$

Due to mean field structure:

Final integral over global replica overlaps Q_{ab} , with an action $\propto N$

Saddle point over the "order parameter" Q_{ab}!?

But recall:
$$\Phi(m,T) = -T \lim_{N \to \infty} \frac{1}{N} \lim_{n \to 0} \partial_n \int dQ_{ab} \; \exp\left[NX(Q)\right]$$

$$\overline{(Z_m)^n} \propto \int dQ_{ab} \ e^{NX(Q)} \ ,$$
 $X(Q) = rac{eta^2}{4} \sum_{ab} Q^p_{ab} + rac{1}{2} \log \det Q$

Due to mean field structure:

Final integral over global replica overlaps Q_{ab} , with an action $\propto N$

Saddle point over the "order parameter" Q_{ab}!?

But recall:
$$\Phi(m,T) = -T \lim_{N \to \infty} \frac{1}{N} \lim_{n \to 0} \partial_n \int dQ_{ab} \; \exp\left[NX(Q)\right]$$

Saddle point requires the exchange of limits to $\;n o 0, \quad N o \infty$!

$$\overline{(Z_m)^n} \propto \int dQ_{ab} \ e^{NX(Q)} \ ,$$
 $X(Q) = rac{eta^2}{4} \sum_{ab} Q^p_{ab} + rac{1}{2} \log \det Q$

Due to mean field structure:

Final integral over global replica overlaps Q_{ab} , with an action $\propto N$

Saddle point over the "order parameter" Q_{ab}!?

But recall:
$$\Phi(m,T) = -T \lim_{N \to \infty} \frac{1}{N} \lim_{n \to 0} \partial_n \int dQ_{ab} \; \exp\left[NX(Q)\right]$$

Saddle point requires the exchange of limits to $\ n \to 0, \quad N \to \infty$!

Press on as a brave physicist and find a saddle point Q*_{ab} for any m, n!

$$\overline{(Z_m)^n} \propto \int dQ_{ab} \ e^{NX(Q)} \ ,$$

Recall clone coupling in blocks (B) of m spins:

$$X(Q) = \frac{\beta^2}{4} \sum_{ab} Q_{ab}^p + \frac{1}{2} \log \det Q + \beta \epsilon \sum_{B} \sum_{ab \in B} Q_{ab}$$

Saddle point equation for Q_{ab} is complicated: no general solution

Recall clone coupling in blocks (B) of m spins:

$$\overline{(Z_m)^n} \propto \int dQ_{ab} \ e^{NX(Q)} \ ,$$

$$X(Q) = \frac{\beta^2}{4} \sum_{ab} Q_{ab}^p + \frac{1}{2} \log \det Q \vdash \beta \epsilon \sum_{B} \sum_{ab \in B} Q_{ab}$$

Saddle point equation for Q_{ab} is complicated: no general solution

But: Physical guess of a sensible structure (confirmed by exact solution):

$$Q_{aa} = 1$$

- Replicas of the same block are coupled in the same valley ightarrow finite overlap $\,Q_{a
 eq b} = q\,$
- a and b in different blocks: uncorrelated $Q_{ab}=0$

"One-step replica symmetry breaking structure":

$$Q = \begin{pmatrix} \begin{pmatrix} 1 & q & q \\ q & 1 & q \\ q & q & 1 \end{pmatrix} & 0 \\ 0 & \begin{pmatrix} 1 & q & q \\ q & 1 & q \\ q & q & 1 \end{pmatrix} & \text{n=3 (clones)}$$
 m=3 (clones) \rightarrow 0 eventually

$$\overline{(Z_m)^n} \propto \int dQ_{ab} \ e^{NX(Q)}$$
,

$$X(Q) = rac{eta^2}{4} \sum_{ab} Q^p_{ab} + rac{1}{2} \log \det Q$$
 .

Evaluate with this ansatz

$$X(Q) = -\beta nm \phi_{1RSB}(m, q, T)$$

$$\phi_{1\text{RSB}}(m, q, T) = -\frac{1}{2\beta} \left\{ \frac{\beta^2}{2} \left[1 + (m-1)q^p \right] + \frac{m-1}{m} \log(1-q) + \frac{1}{m} \log\left[1 + (m-1)q \right] \right\}$$

$$\overline{(Z_m)^n} \propto \int dQ_{ab} \ e^{NX(Q)}$$
,

$$X(Q) = rac{eta^2}{4} \sum_{ab} Q^p_{ab} + rac{1}{2} \log \det Q$$
 .

Evaluate with this ansatz

$$X(Q) = -\beta nm \phi_{1RSB}(m, q, T)$$

$$\phi_{1\text{RSB}}(m, q, T) = -\frac{1}{2\beta} \left\{ \frac{\beta^2}{2} \left[1 + (m-1)q^p \right] + \frac{m-1}{m} \log(1-q) + \frac{1}{m} \log\left[1 + (m-1)q \right] \right\}$$

+ continuation to $n \to 0$ and real m

$$\overline{(Z_m)^n} \propto \int dQ_{ab} \ e^{NX(Q)}$$
,

$$X(Q) = rac{eta^2}{4} \sum_{ab} Q^p_{ab} + rac{1}{2} \log \det Q$$

Evaluate with this ansatz

$$X(Q) = -\beta nm \phi_{1RSB}(m, q, T)$$

$$\phi_{1\text{RSB}}(m, q, T) = -\frac{1}{2\beta} \left\{ \frac{\beta^2}{2} \left[1 + (m-1)q^p \right] + \frac{m-1}{m} \log(1-q) + \frac{1}{m} \log\left[1 + (m-1)q \right] \right\}$$

+ continuation to $n \to 0$ and real m

Extremize over $q \rightarrow q^*$

$$\Phi(m,T) = -T\partial_n X(Q^*) = m\phi_{1RSB}(m,q^*,T)$$

From $\Phi(m,T)$:

Obtain the spectrum of metastable states by Legendre transform!

Confirm the structure of the landscape approach, compute $\Sigma(f)$ quantitatively!

Note: Clone attraction explicitly breaks permutation symmetry among nm replica.

But what about computing for a single copy (with no cloning) directly?

Note: Clone attraction explicitly breaks permutation symmetry among nm replica.

But what about computing for a single copy (with no cloning) directly?

Same structure of calculation with $v = nm \rightarrow 0$ replica.

Only difference: no clone structure suggesting the block ansatz with definite *m*

$$Q = \left(\begin{array}{ccc} \begin{pmatrix} 1 & q & q \\ q & 1 & q \\ q & q & 1 \end{pmatrix} & & 0 \\ & & & \begin{pmatrix} 1 & q & q \\ q & 1 & q \\ q & q & 1 \end{pmatrix}\right)$$

Note: Clone attraction explicitly breaks permutation symmetry among nm replica.

But what about computing for a single copy (with no cloning) directly?

Same structure of calculation with $v = nm \rightarrow 0$ replica.

Only difference: no clone structure suggesting the block ansatz with definite *m*

Parisi's equilibrium recipe: Regard *m* and *q* as variational; find stationary point!

$$f_{eq}(T) = \max_{q,0 \le m \le 1} \phi_{1RSB}(m,q)$$

Note: Clone attraction explicitly breaks permutation symmetry among nm replica.

But what about computing for a single copy (with no cloning) directly?

Same structure of calculation with $v = nm \rightarrow 0$ replica.

Only difference: no clone structure suggesting the block ansatz with definite m

$$Q = \begin{pmatrix} \begin{pmatrix} 1 & q & q \\ q & 1 & q \\ q & q & 1 \end{pmatrix} & & 0 \\ & & & \begin{pmatrix} 1 & q & q \\ q & 1 & q \\ q & q & 1 \end{pmatrix} \end{pmatrix}$$

 $Q = \begin{pmatrix} \begin{pmatrix} 1 & q & q \\ q & 1 & q \\ q & q & 1 \end{pmatrix} & 0 \\ 0 & \begin{pmatrix} 1 & q & q \\ q & q & 1 \end{pmatrix} & \text{three constraints} \\ 0 & \begin{pmatrix} 1 & q & q \\ q & 1 & q \\ q & q & 1 \end{pmatrix} \end{pmatrix} \qquad \begin{array}{l} \text{If } m^* < 1 \text{ (for } T < T_K) \text{ : Saddle point chooses a multi-block structure} \\ \text{spontaneously !} \\ \text{Replica symmetry breaking - "RSB"} \\ \end{array}$

Parisi's equilibrium recipe: Regard *m* and *q* as variational; find stationary point!

$$f_{eq}(T) = \max_{q,0 \le m \le 1} \phi_{1RSB}(m,q)$$

Note: Clone attraction explicitly breaks permutation symmetry among nm replica.

But what about computing for a single copy (with no cloning) directly?

Same structure of calculation with $v = nm \rightarrow 0$ replica. Only difference: no clone structure suggesting the block ansatz with definite m

Parisi's equilibrium recipe: Regard *m* and *q* as variational; find stationary point!

$$f_{eq}(T) = \max_{q,0 \le m \le 1} \phi_{1RSB}(m,q)$$

Meaning of the spontaneous block structure in equilibrium?

Different replica will lie in the lowest available minima of $G(\{m_i\})$

Meaning of the spontaneous block structure in equilibrium?

Different replica will lie in the lowest available minima of G({m_i})

 $Q = \begin{pmatrix} \begin{pmatrix} 1 & q & q \\ q & 1 & q \\ q & q & 1 \end{pmatrix} & 0 \\ 0 & \begin{pmatrix} 1 & q & q \\ q & q & 1 \\ q & q & 1 \end{pmatrix} \end{pmatrix}$ sum over inequivalent saddle poly saddle poly sum over inequivalent saddle poly sum over inequivalent saddle poly Two different replica (1,2) may lie in the same minimum (and have overlap $Q_{12} = q$) sum over inequivalent saddle points

$$Q = \left(\begin{array}{ccc} \left(\begin{array}{ccc} 1 & q & q \\ q & 1 & q \\ q & q & 1 \end{array} \right) & & & 0 \\ & & & & & \\ & & 0 & & \left(\begin{array}{ccc} 1 & q & q \\ q & 1 & q \\ q & q & 1 \end{array} \right) \end{array} \right)$$

$$P(Q_{12}) \equiv \overline{\delta(Q_{12} - \frac{1}{N} \sum_{i} \sigma_i^1 \sigma_i^2)} = \lim_{\nu \to 0} \frac{1}{\nu - 1} \sum_{b \neq 1} \delta(Q_{12} - Q_{1b})$$

Meaning of the spontaneous block structure in equilibrium?

Different replica will lie in the lowest available minima of G({m_i})

Two different replica (1,2) may lie in the same minimum (and have overlap $Q_{12} = q$) or in different valleys (overlap $Q_{12} = 0$): sum over inequivalent saddle points

$$Q = \left(\begin{array}{ccc} \left(\begin{array}{ccc} 1 & q & q \\ q & 1 & q \\ q & q & 1 \end{array} \right) & & & 0 \\ & & & & & \\ & 0 & & & \left(\begin{array}{ccc} 1 & q & q \\ q & 1 & q \\ q & q & 1 \end{array} \right) \end{array} \right)$$

$$Q = \begin{pmatrix} \begin{pmatrix} 1 & q & q \\ q & 1 & q \\ q & q & 1 \end{pmatrix} & 0 \\ 0 & \begin{pmatrix} 1 & q & q \\ q & 1 & q \\ q & q & 1 \end{pmatrix} \end{pmatrix}$$

$$= \lim_{\nu \to 0} \frac{1}{N} \sum_{i} \sigma_{i}^{1} \sigma_{i}^{2} = \lim_{\nu \to 0} \frac{1}{\nu - 1} \sum_{b \neq 1} \delta(Q_{12} - Q_{1b})$$

$$= \lim_{\nu \to 0} \frac{(m - 1)\delta(Q_{12} - q) + (\nu - m)\delta(Q_{12} - 0)}{\nu - 1}$$

$$= (1 - m)\delta(Q_{12} - q) + m\delta(Q_{12})$$

Meaning of the spontaneous block structure in equilibrium?

Different replica will lie in the lowest available minima of G({m_i})

Two different replica (1,2) may lie in the same minimum (and have overlap $Q_{12} = q$) or in different valleys (overlap $Q_{12} = 0$): sum over inequivalent saddle points

$$Q = \begin{pmatrix} \begin{pmatrix} 1 & q & q \\ q & 1 & q \\ q & q & 1 \end{pmatrix} & & 0 \\ & & & \begin{pmatrix} 1 & q & q \\ q & 1 & q \\ q & q & 1 \end{pmatrix} \end{pmatrix}$$

$$Q = \begin{pmatrix} \begin{pmatrix} 1 & q & q \\ q & 1 & q \\ q & q & 1 \end{pmatrix} & 0 \\ 0 & \begin{pmatrix} 1 & q & q \\ q & 1 & q \\ q & q & 1 \end{pmatrix} \end{pmatrix}$$

$$= \lim_{\nu \to 0} \frac{1}{N} \sum_{i} \sigma_{i}^{1} \sigma_{i}^{2} = \lim_{\nu \to 0} \frac{1}{\nu - 1} \sum_{b \neq 1} \delta(Q_{12} - Q_{1b})$$

$$= \lim_{\nu \to 0} \frac{(m - 1)\delta(Q_{12} - q) + (\nu - m)\delta(Q_{12} - 0)}{\nu - 1}$$

$$= (1 - m)\delta(Q_{12} - q) + m\delta(Q_{12})$$

Non-trivial if $m_{eq} < 1$: a non-exponential number of different minima dominate Gibbs!

Meaning of the spontaneous block structure in equilibrium?

Different replica will lie in the lowest available minima of G({m_i})

Two different replica (1,2) may lie in the same minimum (and have overlap $Q_{12} = q$) or in different valleys (overlap $Q_{12} = 0$):

$$Q = \begin{pmatrix} \begin{pmatrix} 1 & q & q \\ q & 1 & q \\ q & q & 1 \end{pmatrix} & 0 \\ 0 & \begin{pmatrix} 1 & q & q \\ q & 1 & q \\ q & q & 1 \end{pmatrix} \end{pmatrix}$$

$$= \lim_{\nu \to 0} \frac{1}{N} \sum_{i} \sigma_{i}^{1} \sigma_{i}^{2} = \lim_{\nu \to 0} \frac{1}{\nu - 1} \sum_{b \neq 1} \delta(Q_{12} - Q_{1b})$$

$$= \lim_{\nu \to 0} \frac{(m - 1)\delta(Q_{12} - q) + (\nu - m)\delta(Q_{12} - 0)}{\nu - 1}$$

$$= (1 - m)\delta(Q_{12} - q) + m\delta(Q_{12})$$

RSB reflects different pure states that contribute O(1) to the Gibbs ensemble. In high dimensions, RSB happens even with no symmetry present (e.g. no Ising symmetry)!

Non-trivial if $m_{eq} < 1$: a non-exponential number of **different minima** dominate Gibbs!

What about the other universality class: spin glasses?

How is their different physics reflected in the RSB structure of the SK spin glass?

Technical steps? (no complexity anticipated: no clones)

Technical steps?

- Write partition function
- Replicate *n* times
- Disorder average
- Hubbard-Stratonovich decouple different sites by introducing an integral over the overlap Q
- Obtain effective action of *N* decoupled sites: extensive
- Seek saddle point Q^* (close your eyes and take large-N limit before $n \rightarrow 0$)
- Make Parisi's block ansatz for Q_{ab}
- Compute physical quantities and check whether they make sense.

In SK case: 1step ansatz yields a low T entropy that becomes negative!

In SK case: 1step ansatz yields a low T entropy that becomes negative!

How to do better?

In SK case: 1step ansatz yields a low T entropy that becomes negative!

How to do better?

Try blocks in blocks! == "2-step RSB":

$$Q = \begin{pmatrix} 1 & q_2 & q_1 & q_1 & q_0 & q_0 & q_0 & q_0 \\ q_2 & 1 & q_1 & q_1 & q_0 & q_0 & q_0 & q_0 \\ q_1 & q_1 & 1 & q_2 & q_0 & q_0 & q_0 & q_0 \\ q_1 & q_1 & q_2 & 1 & q_0 & q_0 & q_0 & q_0 \\ q_0 & q_0 & q_0 & q_0 & 1 & q_2 & q_1 & q_1 \\ q_0 & q_0 & q_0 & q_0 & q_2 & 1 & q_1 & q_1 \\ q_0 & q_0 & q_0 & q_0 & q_1 & q_1 & 1 & q_2 \\ q_0 & q_0 & q_0 & q_0 & q_1 & q_1 & q_2 & 1 \end{pmatrix}$$

$$\begin{matrix} & & & & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ &$$

A priori

$$1 < m_2 < m_1 < n$$

But as $n \rightarrow 0$

$$1 > m_2 > m_1 > n \to 0$$

2step ansatz : low T entropy is less negative, but still negative!

How to do better?

2step ansatz : low T entropy is less negative, but still negative!

How to do better?

Infinite hierarchy of blocks! == "continuous RSB"!

Parametrized by a limiting function q(1>x>0)

2step ansatz : low T entropy is less negative, but still negative!

How to do better?

Infinite hierarchy of blocks! == "continuous RSB"!

Recall: overlap $Q^{ab} = \frac{1}{N} \sum_{i} s_i^a s_i^b$

Hierarchical substructure:

clusters of states with overlap q2,

clustering into larger clusters of smaller overlap q_1 , forming global cluster of overlap q_0

2step ansatz : low T entropy is less negative, but still negative!

How to do better?

Infinite hierarchy of blocks! == "continuous RSB"!

Entropy remains positive! ZFC/FC susceptibility sim. to experiment

2step ansatz : low T entropy is less negative, but still negative!

How to do better?

Infinite hierarchy of blocks! == "continuous RSB"!

- Entropy remains positive! ZFC/FC susceptibility sim. to experiment
- No finite complexity: always less than exponentially many relevant states!
- The action at the saddle point Q* is only a marginal maximum (like for threshold states in the p-spin model)