Quantum effects in glasses

Phase diagram: two universality classes

MBL in glasses ?

On adiabatic quantum computing

Short time dynamics: spectral function of mean field models
Rotor model, Ising glass and Heisenberg glass

Long range glasses in optical cavities - localization vs glassiness
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Quantum glass phase in spin glass models (p=2)

Phase diagram

Example: transverse field Ising glass _

Expect: continuous transition for p = 2
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Many-body localization in states? of \f T
Within a state: .

No reason for non-ergodic

dynamics among the

configurations forming a state

(dimension is high, connectivity is

large, etc)
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Localization or quantum tunneling in p-spin models
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Note: this transition constitutes an energy-dependent mobility edge.
Most likely this only exists in mean field models without spatial structure!
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Annealing - A smart problem-solving idea ?

Quantum or thermal annealing?

Finding the ground state of a classical 3d spin glass is Quantum Annealing of a
an NP-complete problem! Disordered Magnet

J. Brooke," D. Bitko,” T. F. Rosenbaum,’ G. Aeppli?
If you can solve it in polynomial time, you can solve all LiHOp 44 Yo s6Fa
other NP-hard problems in polynomial time. Bp Pisordered Ferromagne!

Can we use physical annealing/relaxation to find the
ground state?
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Annealing - A smart problem-solving idea ?

If spin glasses are NP-complete:
Use classical «analogue computer» to solve complex problems:

1. Translate your complex problem into a spin glass
and build the glass with all its couplings

2. Cool the spin system down to low T
(«thermal annealing»)

3. Read out the ground state!
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Annealing - A smart problem-solving idea ?

If spin glasses are NP-complete:
Use classical «analogue computer» to solve complex problems:

1. Translate your complex problem into a spin glass
and build the glass with all its couplings

2. Cool the spin system down to low T
(«thermal annealing»)

3. Read out the ground state!

Why is this idea flawed?

The glass gets trapped in local minima, separated by extensive
barriers from the ground state — exponential relaxation times



A yet smarter problem-solving idea ?

If spin glasses are NP complete:
Use a quantum analogue computer to solve complex problems:
«Adiabatic algorithm»

1. Translate your problem into a spin glass Kadowaki and
Nishimori, 1998

2. Turn on strong quantum fluctuations (transverse field h, for

Ising spins) and cool to low T: H— Z $2J.:5% — h Z e
Start in simple paramagnetic ground state s o —~
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4. Invoke adiabatic theorem: A system stays in the ground state
if one changes parameters adiabatically

— An elegant way to find the ground state !?
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A yet smarter problem-solving idea ?

If spin glasses are NP complete:
Use a quantum analogue computer to solve complex problems:
«Adiabatic algorithm»

1. Translate your problem into a spin glass Kadowaki and
Nishimori, 1998

2. Turn on strong quantum fluctuations (transverse field h, for

Ising spins) and cool to low T: H=SN"¢J. _h e
Start in simple paramagnetic ground state %: L 2; ’

h, — h, + 0h, 3. Adiabatically reduce the transverse field A, — 0
T ‘l 4. Invoke adiabatic theorem: A system stays in the ground state  How good
if one changes parameters adiabatically is this
Problem: As bottoms of low states cross the gap becomes idea?

exponentially small (nearly no level repulsion)!



A yet smarter problem-solving idea ?
Conclusion
In the glass phase : High barriers between minima.

Thermal activation and quantum tunneling are both exponentially slow.
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 Landscape approach: Self-consistent dynamical mean field equations for
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(very complex and hard to solve)



Short time quantum dynamics

Approaches:

 Landscape approach: Self-consistent dynamical mean field equations for

my;
Xi(T) — <Sz‘ (’7'/ + T)Si (7',)> — m? G. Biroli, L. Cugliandolo 02

(very complex and hard to solve)

——> « Pathintegral over imaginary time for S; o (0 < 7 < ) e.g. A. Bray, M. Moore '80’s

Replica approach + disorder average, saddle point method
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Saddle point properties in quantum glasses

Order parameter 1

Qap (T, 7) = (Sa(1)5(7')) = < Z (Sia(T)Sin(T"))
Same replica: Time translational invariance along imaginary time ‘

Qaa(T, 7_/) = (S4(7)Sa(7")) \/: Qaa(T — 7_/)




Saddle point properties in quantum glasses

Order parameter
T Q) = SN = 1 Y B8]

)
Same replica: Time translational invariance along imaginary time

QaalT, 7_/) = (Sa(7)8a(7")) = Qua(T — T/)
Different replica: before disorder average the replica are uncoupled

Qab(T,7') L (Sa(7)){(S6(7'))




Saddle point properties in quantum glasses

Order parameter 1

Qualr. ™) = SIS = 57 3 SialM)S (7]
Same replica: Time translational invariance along imaginary time ’

QaalT, 7_/) = (Sa(7)Sa(T")) { Qaa(T — T/)
Different replica: before disorder average the replica are uncoupled

Qab(7,7) = (Sa(7))(Sb(7")) = (Sa){Ss) = Qs

Replica off-diagonal is time-independent!
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Dynamics in quantum glasses
+ Short time quantum dynamics: encoded in = Qg (7 — 7')

[see later:

Analytic continuation to real time yields dynamic susceptibility and the spectral
function = information on collective excitations ]



Dynamics in quantum glasses

« Short time quantum dynamics: encoded in () 4q (7‘ — 7")

- Edwards-Anderson parameter  lim (),q (t _ t’) = grA
signals glassy ordering t—%'—o0



Dynamics in quantum glasses

« Short time quantum dynamics: encoded in () 4q (7’ — 7'/)

- Edwards-Anderson parameter  lim (),q (t _ t’) = grA
signals glassy ordering  t—t'—00

 Physical consistency requires that the intrastate correlations (gg,) are the same as

long-time correlations (in the same state)
|

maxXq,2p(Qap) = ¢z = 1) =7 CILILI}) Qasb’ = gEA



Dynamics in quantum glasses

Short time quantum dynamics: encoded in =~ (44 (7‘ — 7")

Edwards-Anderson parameter ~ lim  (),q (t — t/) = grA
signals glassy ordering  t—t'—00

Physical consistency requires that the intrastate correlations (qgg,) are the same as

long-time correlations (in the same state)
|

maxXq,2p(Qap) = ¢z = 1) =7 CILILI}) Qasb’ = gEA

Quantum fluctuations reduce the value of qgaand eventually melt the glass (at I';)



Dynamics in quantum glasses

Short time quantum dynamics: encoded in =~ (44 (7‘ — 7")

Edwards-Anderson parameter ~ lim  (),q (t — t/) = grA
signals glassy ordering  t—t'—00

Physical consistency requires that the intrastate correlations (qgg,) are the same as

long-time correlations (in the same state)
|

maxXq,2p(Qap) = ¢z = 1) =7 CILILI}) Qasb’ = gEA

Quantum fluctuations reduce the value of qgaand eventually melt the glass (at I';)

Long time dynamics (slow floating over the landscape; aging) occurs well after
quantum coherence is lost — identical to classical dynamics

Replica symmetry breaking structure — Q,, and P(q) and landscape — : mostly
insensitive to quantum fluctuations (they just reduce the amplitude of possible q’s).
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The simplest qguantum ‘spin’ glass:
Mean field rotor model , s.cnder Read 93

Rigid rods, described by M-component unit vectors 7;

Factors of M and
2M Z L2 \/— Z Jijhi - 7 nz2 =1 Nchosen such

i<j that H~ O(MN)
P> g ] = 0 Commuting components - unlike quantum spins
L ’ 9 9 Generators of rotations in | f rotor i
iy = —1 | Ny =—— — Ny —— v -plane of rotor i
(7724 (7% an“/ (24 anzu lu’ p

g: generates quantum fluctuations

P(Ji;) ~ exp(—JZ/(2J%)) Gaussian all-to-all couplings



Self-consistent single-site problem

Path integral representation in Matsubara time.

~Q ~ b / . ab
Replicate n times, disorder average. N zi}”m(f)”w (7)) = Qap(r, 7')
Take a saddle point, assuming O(M) invariance of saddle-point Sos
— LQab(T _7_/)
M

—_—> 7= /’Dn ( (1) — 1) exp (—2%/ dr(0,1* MJ2

g

/ drdr' Q™ (r — ')Aa(f)-ﬁb(f'))



Self-consistent single-site problem

Path integral representation in Matsubara time.

~q ~b \\ __ Hab
Replicate n times, disorder average. N z@,}”m(ﬂ”w (7)) = Qap(m, )
Take a saddle point, assuming O(M) invariance of saddle-point Sos
= 2 gab(r — ')
M
—_—> 7= /’Dn ( “2(7) — 1) exp (—]2\4—9/ dr(0,n* MJ2 / drdr' Q™ (r — 7)n%(T) - ﬁb(T’)>

Saddle point (self-consistency) condition
QY (r — ') = (A(7) - 2*(7')) z



—_—> 7= /’Dn ( (1) — 1) exp (—2—/ dr (0,7

Self-consistent single-site problem

Path integral representation in Matsubara time.

~Q ~ b / . ab
Replicate n times, disorder average. N zi}”m(f)”w (7)) = Qap(r, 7')
Take a saddle point, assuming O(M) invariance of saddle-point Sos
— LQab(T _7_/)
M

M MJ2

; / drdr' Q™ (r — ')Aa(f)-ﬁb(f'))

Saddle point (self-consigtency) condition

QU —7) = (#(r) A1) z

M = oo - limit: Impose constraint by Lagrange parameter ( g) A to obtain a Gaussian action
for 1. evaluate the saddle point. In Matsubara-Fourier space:



—_—> 7= /’Dn ( (1) — 1) exp (—2—/ dr (0,7

Self-consistent single-site problem

Path integral representation in Matsubara time.

~Q ~ b / . ab
Replicate n times, disorder average. N Ei}”m(f)”w(f )) = Qap(r,T)
Take a saddle point, assuming O(M) invariance of saddle-point Sos
— LQab(T _7_/)
M

M MJ2

; / drdr' Q™ (r — ')Aa(f)-ﬁb(f'))

Saddle point (self-consistency) condition
QY (r — ') = (A(7) - 2*(7')) z

M = oo - limit: Impose constraint by Lagrange parameter ( g) A to obtain a Gaussian action
for 1. evaluate the saddle point. In Matsubara-Fourier space:

Q(iwn) = g (wg FA—g J2Q(iwn)) -1 RHS: Inverse of the replica

(n x n) matrix!
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Paramagnetic phase: Q3*? =0

2 _ 2 2 _ 2
Solve quadratic equation for Q%% (iw) : Q**(w = iw,) = wi + A = V(Wi +A)? = (297)

2g.J%
Analytically continue Q@ (1w, ) = X (iwy, ) to real frequencies w, — w/i toobtain X (w)
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Paramagnetic phase

Paramagnetic phase: Q3*? =0

2 _ 2 2 _ 2
Solve quadratic equation for Q%% (iw) : Q**(w = iw,) = wi + A = V(Wi +A)? = (297)

2g.J%
Analytically continue Q@ (1w, ) = X (iwy, ) to real frequencies w, — w/i toobtain X (w)
| NM o
Y(w) = ~ Z Z / Aty (t)ez(w—l—'m)t
i=1 a=1"0

] o [
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Insert a sum over eigenstates ¥y, . Take imaginary part and obtain the spectral function (here at T = 0)
Imfx(w)] = X' W) = 5= 2 > |l [Yo) 5w — Bm + Eo) = 6(w + Em — Eo)] = mp(w),



Paramagnetic phase

Paramagnetic phase: Q3*? =0

w2 + X — /(w2 4+ N)2 — (29J)?

Solve quadratic equation for Q%% (iw) : Q**(w = iw,) =

2g.J%
Analytically continue Q@ (1w, ) = X (iwy, ) to real frequencies w, — w/7 toobtain X (w)
| MM s
i=1 a=1"0
] o >
_ Y’ ~ t(w—+in)t
-y | @iz .azo)e

Insert a sum over eigenstates ¥y, . Take imaginary part and obtain the spectral function (here at T = 0)
Imfx(w)] = X" (@) = 5= > D |l |¢0)|* [6(w = Em + Eo) = 6(w + Em — Eo)] = mp(w),

Information about strength and energy of excitations created by acting with 7;* !
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Paramagnetic phase: Q3*? =0

w2 + X — /(w2 4+ N)2 — (29J)?
2g.J%

Analytically continue Q@ (1w, ) = X (iwy, ) to real frequencies w, — w/7 toobtain X (w)

Solve quadratic equation for Q%% (iw) : Q**(w = iw,) =

X"(w) = Im(Q™(w +1407))



Paramagnetic phase

Paramagnetic phase: Q3*? =0

w2 + X — /(w2 4+ N)2 — (29J)?
2g.J%

§ w, — w/i toobtain x(w)

Solve quadratic equation for Q%% (iw) : Q**(w = iw,) =

Analytically continue Q“* (iwy,) = X (iwy) to real frequengi

X"(w) = Im(Q™(w +1407))

[(w? = X+ 2Jg) (A +2Jg — w?)]"/?
2J2%g

X" (w) = sgn(w)
for A — 2Jg < w? < A+ 2Jg

X" =0 elsewhere
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Paramagnetic phase: Q3*? =0

w2 + X — /(w2 4+ N)2 — (29J)?
2g.J%

Analytically continue Q@ (1w, ) = X (iwy, ) to real frequencies w, — w/7 toobtain X (w)

Solve quadratic equation for Q%% (iw) : Q**(w = iw,) =

X"(w) = Im(Q™(w +1407))

[(w? = X+ 2Jg) (A +2Jg — w?)]"/?
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X" (w) = sgn(w)
for A — 2Jg < w? < A+ 2Jg

X" =0 elsewhere
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Determine A(g, T) from equal time constraint 792 =1 <> /0 %x (w)coth(Bw/2) =1



Paramagnetic phase

Paramagnetic phase: Q3*? =0

w2 + X — /(w2 4+ N)2 — (29J)?
2g.J%

Analytically continue Q@ (1w, ) = X (iwy, ) to real frequencies w, — w/7 toobtain X (w)

Solve quadratic equation for Q%% (iw) : Q**(w = iw,) =

X" (W) A

X" (w) = Im(Q*(w +1407)) /‘\
w2 — _ Ww2)]Y2 A
() = sgn(w) (W = A+2Jg)(A+2Jg — w?)] s

2J2%g

Spectral gap:
A=+/A=2Jg>0

for A — 2Jg < w? < A+ 2Jg

X" =0 elsewhere

o d 1
Determine A(g, T) from equal time constraint 792 =1 <> /0 %x (w)coth(Bw/2) =1
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Phase diagram

J. Ye, S. Sachdev, and N. Read, PRL 1993

1.5
Thermal Mean field quantum rotor model
. fluctuations with M = oo components.
_ PARAMAGNET |, (w)
0.5+
GLASS Quantum > W
fluctuati —
00 . : I A — 0 quantum glass transition!
g/J  gapless

What happens in the glass phase?



Glass phase

Glass phase: Q3*? = gz,  Find: off-diagonal is constant (replica symmetric, no RSB)
(peculiarity of large M limit — similar to p = 2 spherical spins)
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In Matsubara space:
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Glass phase: Q3*? = gz,  Find: off-diagonal is constant (replica symmetric, no RSB)
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Glass phase

Glass phase: Q3*? = gz,  Find: off-diagonal is constant (replica symmetric, no RSB)
(peculiarity of large M limit — similar to p = 2 spherical spins)

In Matsubara space:

Q% (wn) = BeEAGw, .0 + 6% Qreg(wn)

Qreg atfinite frequency satisfies the same equation as Q@ in the paramagnetic phase

w2 — W2 1/2
() = sgn(w) (W = A+2Jg9)(A+2Jg — w7)]

ith di |
ros 272 but now with different A!

+  Self-consistency of replica — off-diagonal part imposes__> A — \/ \—2Jg L 0
marginal stability — spectral gap remains closed!

+ Equaltime constraint 72 =1 <> qEA+ /OO d—w)(”(w)coth(ﬁw/Q) =1
0

T “reg



Marginality condition from replica saddle point

1 0 .. 0 1 1 .. 1
Qab:A_ 0 1 0 —|—B 1 1 1
O 0 .. 1 1 1 .. 1

Q% (iwy, =0) = QY A= Qreg(itn = 0) = Qreg 0
B = Bqra
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Marginality condition from replica saddle point

1 0 .. 0 1 1 .. 1
ov—a. |01 0 g LT
0 0 .. 1 1 1 .. 1

General replica matrix algebra: (

— —_ =
— —_ =
\—/
no

Il

3
-~
=
) =
—_ ==
~_

(=)

Q% (iwy, =0) = QY A= Qreg(itn = 0) = Qreg 0
B = Bqra
Saddle point (matrix equation!) :  f(Qg) = Qo(A — gJ*Qo) — g =0
7 Qreg,0 is a double zero of f(Qy) (— criticall

Nt : - -
— f(Qreg,o) — f,(Qreg,O) —( - Q.reg(w =0 ). immediately has imaginary part
— finite spectral weight — gapless state



Phase diagram

J. Ye, S. Sachdev, and N. Read, PRL 1993

Mean field quantum rotor model
with M = oo components.

/ )

1.5
Thermal
fluctuations
1..
PARAMAGNET
T/J
0.5
GLASS Quantum
fluctuati
0 T T
0 3 9
g/J  gapless

A — 0 Quantum glass transition!

What happens in the glass phase?
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Phase diagram

J. Ye, S. Sachdev, and N. Read, PRL 1993

1.5
Thermal Mean field quantum rotor model
. fluctuations with M = oo components.
PARAMAGNET
T/J Glass freezes more
and more
0.5
Quantum — >
uations
0 r , A =0
0 3 6 9
g/J

Glass remains gapless : Reflects marginal stability of replica saddle point and landscape.
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Solved mean field models:

. . Difference:
 Transverse field Ising glass (SK model)
xr 1 zZ = ' . .
Hising = =T’ Z s; + N ; Jij5i 5] Ising: all interaction terms commute
7 1<
Heisenberg: interactions do not
commute

* Heisenberg glass:
1

i<j

How much does this matter?



Beyond rotors: real spins?

Solved mean field models:

. . Difference:
 Transverse field Ising glass (SK model)
xr 1 zZ = ' . .
Hising = =T’ Z s; + N ; Jij5i 5] Ising: all interaction terms commute
7 1<
Heisenberg: interactions do not
commute

» Heisenberg glass:
1
Hyy, = \/—N ZJijSz' ) Sj

1<J

How much does this matter?

Numerics suggested a significant difference



TFSK model, N =17 (exact diagonalization)

Spectral function at T= 0

‘
04 + PM
0.8 | 303
=o2|
06 0.1

X" (@)

0.0

00 w4 08 12
SG
0.4 ®
gapless \

X' (w) xw 0.2

Y (w) o< w/J?

0.0

0.0 0.2 0.4 0.6 0.8
®

FIG. 1. The dynamical response y”(w) of the RITF model at
I' = 0.2 for N = 17. The spectral function shows a §(w) part
plus a regular contribution at finite frequencies with a maximum
at o = I'. Inset: gapped y”(w) in the paramagnetic phase at

'r=08>T..
L. Arrachea and M. J. Rozenberg 01



Heisenberg model, N =16 (exact diagonalization)

Spectral function at T=0
Unclear!

Finite-size broadened O (cu )
blurs low frequency behavior

0.2

Z t,]PcchaP-i-— Z JiiS; -8,

l#l z< j=1
0.30 4 0.020 N
‘ N Large-N
0.015 -
0.2 .
‘ =/0.010 =355 8
= \:\:;; SN
—~ 0.20 <2 0.005 4 R
= SN

= 0.000
0.0

L. Arrachea and M. J. Rozenberg 01

0.0 0.5 1.0 15 2.0

// : :
X (w ) X Slgn(w) ??asin SYK 77 Shackleton, Wietek, Georges, Sachdev 21




Beyond rotors: real spins?

Solved mean field models:

 Transverse field Ising glass (SK model) Difference:

Ising: all interaction terms commute
Heisenberg: interactions do not
commute

* Heisenberg glass: How much does this matter?

Numerics suggested a significant difference
but the truth is different!



Beyond rotors: real spins?

A. Andreanov, MM ‘11
A. Kiss, G.Zarand, I. Lovas, ‘24

Solved mean field models:

5 hlJ=0.4
R 04] g —— hi/J=0.6
— — hylJ=1
. . \344 05 1 15 2 25 — ZTZ:]];
 Transverse field Ising glass (SK model) c ; — =16
= — hilJ=1.8
2/ T1J=0.1 =2
(a)
Same universality class as rotors in the A —> 1 limit s
But: full continuous RSB:
Many states, all marginal, gapless /! (w) ~ 0.5 W
XIsing ~ Y-



Beyond rotors: real spins?

Solved mean field models:

« Heisenberg glass: - SUM > 1) “spins” (Sachdev,Ye ‘93; Parcollet Georges ‘00)
- SU(2) spins (Kavokine, MM, Parcollet Georges, ‘24)

1 . -
H = J::S;-S,;  Solvability in the limit M — oco'!
~=2_JiSi-S, Y

1<g

SY-pre-K model(s)
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Beyond rotors: real spins?

Solved mean field models:

« Heisenberg glass: - SUM > 1) “spins” (Sachdev,Ye ‘93; Parcollet Georges ‘00)
- SU(2) spins (Kavokine, MM, Parcollet Georges, ‘24)

H=——%"J;8;-s;  Solvabilityin the limit M — oo

vVNM i<j
Different representations of SU(M) = different models / loc Hilbert space
Schwinger bosons Abrikosov fermions
S,s=blbs—S6, S o=f!
B B B s ap=tof B
+ Constraint: Sbib,=SM (0<S) Eafzfa=q0M(O<qO<1)

High T: Famous SY(-K) physics (partons are no quasiparticles) X” (w) X Sign(w)



Beyond rotors: real spins?

Solved mean field models:

« Heisenberg glass: - SUM > 1) “spins” (Sachdev,Ye ‘93; Parcollet Georges ‘00)
- SU(2) spins (Kavokine, MM, Parcollet Georges, ‘24)

1 o -
H = J::S;-S,;  Solvability in the limit M — oco'!
/—NM = J J
Different representations of SU(M) = different models / loc Hilbert space
Schwinger bosons Abrikosov fermions
S bbb, 8o =fT
af a” B af e Sa,B faf,B
+ Constraint: Sbib,=SM (0<S) Eafzfa=q0M(O<qO<1)

Low T: Bosons condense discontinuously, like p=4 spins (structural-glass like),
in threshold states: Y (w) o w/J?



Beyond rotors: real spins?

Solved mean field models:

« Heisenberg glass: - SUM > 1) “spins” (Sachdev,Ye ‘93; Parcollet Georges ‘00)
- SU(2) spins (Kavokine, MM, Parcollet Georges, ‘24)

1 o -
H = J::S;-S,;  Solvability in the limit M — oco'!
/—NM = J J
Different representations of SU(M) = different models / loc Hilbert space
Schwinger bosons Abrikosov fermions
S bbb, 8o =fT
af a” B af e Sa,B faf,B
+ Constraint: Sbib,=SM (0<S) Eafzfa=q0M(O<qO<1)

Low T: Fermions require finite M to order: continuous spin-glass transition Zg ~ exp[—cV/ M|
FUlRSB - butagain:  x"(w) oc w/J?



Beyond rotors: real spins?

Solved mean field models:

« Heisenberg glass: - SU(M > 1) “spins” (Sachdev,Ye ‘93; Parcollet Georges ‘00)
- SU(2) spins (Kavokine, MM, Parcollet Georges, 24)

H=-) Ji;Si-S;
2
RSB solution + continuous time QMC



Beyond rotors: real spins?

Solved mean field models:

« Heisenberg glass: - SU(M > 1) “spins” (Sachdev,Ye ‘93; Parcollet Georges ‘00)
- SU(2) spins (Kavokine, MM, Parcollet Georges, 24)

H=-) J;Si-S;
2
RSB solution + continuous time QMC
Again:

W
Xt (W) & 3.5ﬁ



Beyond rotors: real spins?

Solved mean field models:

« Heisenberg glass: - SU(M > 1) “spins” (Sachdev,Ye ‘93; Parcollet Georges ‘00)
- SU(2) spins (Kavokine, MM, Parcollet Georges, 24)

H=-) J;Si-S;

1<J

RSB solution + continuous time QMC
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L. Cugliandolo, MM °23 (Review

Quantum SK mOdel on Quantum glasses)

Physical interpretation: [applies to ALL insulating meanfield glasses]

Marginally stable energy landscape G'({m;})

. . . 52
Minima: gapless semicircular spectrum of Hessian H ;; = G
5m15m]
VAI'
pA) ~ —

> Collective harmonic oscillators of mass M ~ T~ ! w=Ji/M

o (@2) = (Mw) ™!

— p(w) ~ T2

Gapless spectral function
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A. Andreanov, MM “11

L. Cugliandolo, MM °23 (Review
Quantum SK model :

on Quantum glasses)

Physical interpretation: [applies to ALL insulating meanfield glasses]

Marginally stable energy landscape G'({m; }) ,
L . : 0°G
Minima: gapless semicircular spectrum of Hessian H ;; =

om;om;
VAT !
> Collective harmonic oscillators of mass M ~ Tt w=4/M
w2 2 1
N ~— z.) = (Mw
. 2 p(w) 72 (xs,) = ( )

=

STISITSTS
[ag i itk e

oo ok

Gapless spectral function Non-trivial check:

,]?” 9 " Independent of
R X' (w) ~ z2 p(w) ~ ST ~ — transverse field T’

IR
T N2 nsoo

T -]
=
N
/ N N
/
>
IIIIIT I
| i i



Quantum glasses beyond mean field?

L. Vitteriti, ..., G. Carleo, A. Scardicchio,
arXiv:2507.05073

Promising prospect: Numerics on Heisenberg glass (spin 1/2) in 2d



Quantum glasses beyond mean field?

L. Vitteriti, ..., G. Carleo, A. Scardicchio,
arXiv:2507.05073

Promising prospect: Numerics on Heisenberg glass (spin 1/2) in 2d

Neural network variational wavefunctions that are adapted to arbitrary disorder
— Efficient numerics

Results:
» Thereis a glass at T = 0, despite strong quantum fluctuations: Random ordering of spins

 Large S analysis allows to study low frequency spectrum and spatial mode properties
(localization of spin waves)



Back to mean field: Metallic glasses

s there any escape from the super-universal spectral function? x"' (w) o< w/J?



Back to mean field: Metallic glasses

s there any escape from the super-universal spectral function? x"' (w) o< w/J?

Yes: If the spins interact with a gapless bath (e.g. conduction electrons)
— The collective oscillators (landscape normal modes) are overdamped

— yet slower modes y o
— more spectral weight at low frequency, X (w) X W a = 0.5

Sengupta, Georges; Read, Sachdev; Coupling to an Ohmic bath

or even a=10_0
Kavokine et al., Sachdev et al Glass in a doped Mott insulator



Interplay of glassiness and localization



RRRRRRRRRRRRRRRRRRRR

[({={J= Long range frustrated quantum glasses?

Infinite range quantum glasses = a theorists’ toy fantasy?



PAUL SCHERRER INSTITUT

=)= Interesting case: Long range glass with short range

hopping: the quantum Fermi glass in optical cavities
MM, P. Strack, S. Sachdev ‘12

Lattice fermions in laser cavity

§ Pump Three building blocks:
1) Fermionic atoms in optical lattice
2) Laser cavity with multiple photon modes

3) Classical pump laser, driving transitions between
fermion ground and excited state (sufficiently off
resonance)
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PAUL SCHERRER INSTITUT

RS Interesting case: Long range glass with short range

hopping: the quantum Fermi glass in optical cavities
MM, P. Strack, S. Sachdev ‘12

Lattice fermions in laser cavity

Three building blocks:
Fermionic atoms in optical lattice
Laser cavity with multiple photon modes

Classical pump laser, driving transitions between
fermion ground and excited state (sufficiently off

resonance)

Integrating out pump and cavity photons:

— —>
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PAUL SCHERRER INSTITUT

RS Interesting case: Long range glass with short range

hopping: the quantum Fermi glass in optical cavities
MM, P. Strack, S. Sachdev ‘12

Lattice fermions in laser cavity

Three building blocks:
1) Fermionic atoms in optical lattice
2) Laser cavity with multiple photon modes

3) Classical pump laser, driving transitions between
fermion ground and excited state (sufficiently off
resonance)

Random couplings

Integrating out pump and cavity photons: |:I

— —>

Page 4



PAUL SCHERRER INSTITUT

= Interesting case: Long range glass with short range

hopping: the quantum Fermi glass in optical cavities
MM, P. Strack, S. Sachdev ‘12

Pumped optical cavities create mean field quantum Fermi glasses

N
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RS Interesting case: Long range glass with short range

hopping: the quantum Fermi glass in optical cavities
MM, P. Strack, S. Sachdev ‘12

Pumped optical cavities create mean field quantum Fermi glasses

N

Integrating out the cavity photons:

:

Long range, frustrated interactions +
short range hopping!
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RS Interesting case: Long range glass with short range

hopping: the quantum Fermi glass in optical cavities
MM, P. Strack, S. Sachdev ‘12

Basic mechanisms: can be made weak

Short range hopping <= Long range interaction



PAUL SCHERRER INSTITUT

RS Interesting case: Long range glass with short range

hopping: the quantum Fermi glass in optical cavities
MM, P. Strack, S. Sachdev ‘12

. Basic mechanisms: can be made weak

Glassy density order — effective, selfgenerated disorder potential
— possibly Anderson localization of single fermion modes




PAUL SCHERRER INSTITUT

RS Interesting case: Long range glass with short range

hopping: the quantum Fermi glass in optical cavities
MM, P. Strack, S. Sachdev ‘12

Basic mechanisms: can be made weak

Glassy density order — effective, selfgenerated disorder potential
— possibly Anderson localization of single fermion modes

n
v Non-glassy
@ metal | |
Phase ] Glassy localized insulator
o
diagram: g 1| Fermi (SK model)
" 6 2| liquid
£
L
0 ~
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S

Interesting case: Long range glass with short range

hopping: the quantum Fermi glass in optical cavities

Basic mechanisms:

can be made weak

MM, P. Strack, S. Sachdev ‘12

Glassy density order — effective, selfgenerated disorder potential
— possibly Anderson localization of single fermion modes

n

Phase
diagram:

Fermions per site
DO |

Non-glassy
metal

| Fermi

liquid

-

Glassy lo

calized insulator

. |(SK model)
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RS Interesting case: Long range glass with short range

hopping: the quantum Fermi glass in optical cavities
MM, P. Strack, S. Sachdev ‘12

Basic mechanisms: can be made weak

Glassy density order — effective, selfgenerated disorder potential
— possibly Anderson localization of single fermion modes

e
) Non-glassy 20
@ metal » |
Phase g Glassy localized insulator
diagram: g 1| Fermi . |(SK model)
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PAUL SCHERRER INSTITUT

S

Interesting case: Long range glass with short range

hopping: the quantum Fermi glass in optical cavities

Basic mechanisms:

can be made weak

MM, P. Strack, S. Sachdev ‘12

n~7’ — Intermediate phase: both glassy & delocalized!

Phase
diagram:

Fermions per site

Non-glassy

metal
Fermi Metallic
liquid glass

Glass

localisation

calized insulator

instability

Page 13



PAUL SCHERRER INSTITUT

RS Interesting case: Long range glass with short range

hopping: the quantum Fermi glass in optical cavities
MM, P. Strack, S. Sachdev ‘12

Basic mechanisms: can be made weak

n— 0,1 — Instabilities cross: — 1st order transition, metastability!

n
@ Non-glassy
@ metal . .
Phase = calized insulator
o
diagram: g ! | Femmi
o 2 liquid
£
()]
L
0 Glass localisation ‘Ia%\

instability V/t
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PAUL SCHERRER INSTITUT

RS Interesting case: Long range glass with short range

hopping: the quantum Fermi glass in optical cavities
MM, P. Strack, S. Sachdev ‘12

Basic mechanisms: can be made weak

n— 0,1 — Instabilities cross: — 1st order transition, metastability!
Dynamics across the transition? Nucleation of delocalised phase?

n
@ Non-glassy
@ metal . .
Phase = calized insulator
o
diagram: g ! | Femmi
o 2 liquid
£
()]
L
0 Glass localisation '13%\

instability V/t
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PAUL SCHERRER INSTITUT

(=)= Adding on-site disorder: Perturbing the Anderson transition
Dobrosavijevic, Tanaskovic, Pastor ‘03

Analogous phase diagram proposed in electron glasses (d=2,3)

within mean field

T

t/U

Mott-Anderson
Glass

(gapless)

Mott M
Insulator
(incompressible)

N

N
Heg = - IZ (C:-er + hC) + Z (&i — ) n; — % Z Vijninj

{,j) i=1 ij=1




