Quantum effects in glasses

- Phase diagram: two universality classes
- MBL in glasses?
- On adiabatic quantum computing
- Short time dynamics: spectral function of mean field models
- Rotor model, Ising glass and Heisenberg glass
- Long range glasses in optical cavities localization vs glassiness

$$H_p = -\sum_{(i_1...i_p)} J_{i_1...i_p} \hat{\sigma}_{i_1}^z \cdots \hat{\sigma}_{i_p}^z - \Gamma \sum_{i=1}^N \hat{\sigma}_{i}^x$$

Adding a transverse field Γ

Phase diagram?

Phase diagram

Recall: At dynamical transition at T_d sudden jump in ordering: $m_i = O(1)$

$$p > 2, m \ll 1$$

Energy gain: $O(m^p)$ \ll Entropic cost: $O(m^2)$

Breakup of paramagnet into ordered states

Phase diagram

Recall: At dynamical transition at T_d sudden jump in ordering: $m_i = O(1)$

$$p > 2$$
, $m \ll 1$

Energy gain: $O(m^p)$ << Entropic cost: $O(m^2)$

Breakup of paramagnet into ordered states

What about ground state at T = 0?

Can expectation value m_i emerge smoothly?

Phase diagram

Recall: At dynamical transition at T_d sudden jump in ordering: $m_i = O(1)$

$$p > 2, m \ll 1$$

Energy gain: $O(m^p)$ << Entropic cost: $O(m^2)$

Breakup of paramagnet into ordered states

What about ground state at T = 0?

Can expectation value m_i emerge smoothly?

$$p > 2, m \ll 1$$

Energy gain: $O(m^p) \ll \text{Loss in energy from } \Gamma: O(m^2)$

Phase diagram

Recall: At dynamical transition at T_d sudden jump in ordering: $m_i = O(1)$

$$p > 2, m \ll 1$$

Energy gain: $O(m^p)$ << Entropic cost: $O(m^2)$

Breakup of paramagnet into ordered states

What about ground state at T = 0?

Can expectation value m_i emerge smoothly?

$$p > 2, m \ll 1$$

Energy gain: $O(m^p) \ll \text{Loss in energy from } \Gamma : O(m^2)$

But here: unique ground state; no fracturing into exponential number of states

→ genuine first order transition

Phase diagram

Recall: At dynamical transition at T_d sudden jump in ordering: $m_i = O(1)$

$$p > 2, m \ll 1$$

Energy gain: $O(m^p)$ << Entropic cost: $O(m^2)$

Breakup of paramagnet into ordered states

What about ground state at T = 0?

Can expectation value m_i emerge smoothly?

$$p > 2, m \ll 1$$

Energy gain: $O(m^p) \ll \text{Loss in energy from } \Gamma : O(m^2)$

But here: unique ground state; no fracturing into exponential number of states

→ genuine first order transition

Phase diagram

Example: transverse field Ising glass

$$H = -\Gamma \sum_{i} s_i^x - \sum_{i,j} J_{i,j} s_i^z s_j^z$$

Phase diagram

Example: transverse field Ising glass

$$H = -\Gamma \sum_{i} s_i^x - \sum_{i,j} J_{i,j} s_i^z s_j^z$$

Expect: continuous transition for p = 2

Phase diagram

Example: transverse field Ising glass

$$H = -\Gamma \sum_{i} s_i^x - \sum_{i,j} J_{i,j} s_i^z s_j^z$$

Expect: continuous transition for p = 2

Phase diagram

Example: transverse field Ising glass

$$H = -\Gamma \sum_{i} s_i^x - \sum_{i,j} J_{i,j} s_i^z s_j^z$$

Expect: continuous transition for p = 2

Confirmed (see below):

- Rotor model
- SK model

Many-body localization in states?

Many-body localization in states?

Within a state:

No reason for non-ergodic dynamics *among* the configurations forming a state (dimension is high, connectivity is large, etc)

Many-body localization between states? Tunneling between two stable minima of energy E

Many-body localization between states?

Tunneling between two stable minima of energy E

Many-body localization between states?

Tunneling between two stable minima of energy E

Note: this transition constitutes an energy-dependent mobility edge.

Most likely this only exists in mean field models without spatial structure!

Finding the ground state of a classical 3d spin glass is an NP-complete problem!

If you can solve it in polynomial time, you can solve all other NP-hard problems in polynomial time.

Finding the ground state of a classical 3d spin glass is an NP-complete problem!

If you can solve it in polynomial time, you can solve all other NP-hard problems in polynomial time.

Can we use physical annealing/relaxation to find the ground state?

Quantum or thermal annealing?

Finding the ground state of a classical 3d spin glass is an NP-complete problem!

If you can solve it in polynomial time, you can solve all other NP-hard problems in polynomial time.

Can we use physical annealing/relaxation to find the ground state?

Quantum Annealing of a Disordered Magnet

J. Brooke, D. Bitko, T. F. Rosenbaum, * G. Aeppli

If spin glasses are NP-complete:
Use classical «analogue computer» to solve complex problems:

- Translate your complex problem into a spin glass and build the glass with all its couplings
 - 2. Cool the spin system down to low T («thermal annealing»)
 - 3. Read out the ground state!

If spin glasses are NP-complete:
Use classical «analogue computer» to solve complex problems:

- 1. Translate your complex problem into a spin glass and build the glass with all its couplings
 - 2. Cool the spin system down to low T («thermal annealing»)
 - 3. Read out the ground state!

Why is this idea flawed?

If spin glasses are NP-complete:
Use classical «analogue computer» to solve complex problems:

- Translate your complex problem into a spin glass and build the glass with all its couplings
 - 2. Cool the spin system down to low T («thermal annealing»)
 - 3. Read out the ground state!

Why is this idea flawed?

The glass gets trapped in local minima, separated by extensive barriers from the ground state → exponential relaxation times

If spin glasses are NP complete:
Use a quantum analogue computer to solve complex problems:

1. Translate your problem into a spin glass

«Adiabatic algorithm» Kadowaki and Nishimori, 1998

2. Turn on strong quantum fluctuations (transverse field h_x for Ising spins) and cool to low T: $H = \sum_{ij} s_i^z J_{ij} s_j^z - h_x \sum_i s_i^x$ Start in simple paramagnetic ground state

If spin glasses are NP complete:
Use a quantum analogue computer to solve complex problems:

1. Translate your problem into a spin glass

«Adiabatic algorithm» Kadowaki and Nishimori, 1998

- 2. Turn on strong quantum fluctuations (transverse field h_x for Ising spins) and cool to low T: $H = \sum_{ij} s_i^z J_{ij} s_j^z h_x \sum_i s_i^x$ Start in simple paramagnetic ground state
 - 3. Adiabatically reduce the transverse field $h_x o 0$
- 4. Invoke adiabatic theorem: A system stays in the ground state if one changes parameters adiabatically
 - → An elegant way to find the ground state !?

If spin glasses are NP complete:
Use a quantum analogue computer to solve complex problems:

1. Translate your problem into a spin glass

«Adiabatic algorithm» Kadowaki and Nishimori, 1998

- 2. Turn on strong quantum fluctuations (transverse field h_x for Ising spins) and cool to low T: $H = \sum_{ij} s_i^z J_{ij} s_j^z h_x \sum_i s_i^x$ Start in simple paramagnetic ground state
 - 3. Adiabatically reduce the transverse field $h_x o 0$
- 4. Invoke adiabatic theorem: A system stays in the ground state if one changes parameters adiabatically

→ An elegant way to find the ground state !?

How good is this idea?

If spin glasses are NP complete:
Use a quantum analogue computer to solve complex problems:

1. Translate your problem into a spin glass

«Adiabatic algorithm» Kadowaki and Nishimori, 1998

2. Turn on strong quantum fluctuations (transverse field h_x for Ising spins) and cool to low T: $H = \sum_{ij} s_i^z J_{ij} s_j^z - h_x \sum_i s_i^x$ Start in simple paramagnetic ground state

$$h_x \to h_x + \delta h_x$$

3. Adiabatically reduce the transverse field $h_x o 0$

4. Invoke adiabatic theorem: A system stays in the ground state if one changes parameters adiabatically

Problem: As bottoms of low states cross the gap becomes exponentially small (nearly no level repulsion)!

How good is this idea?

Conclusion

In the glass phase: High barriers between minima.

Thermal activation and quantum tunneling are both exponentially slow.

Short time quantum dynamics

Short time quantum dynamics

Approaches:

Landscape approach: Self-consistent dynamical mean field equations for

$$m_i$$

$$\chi_i(au) = \langle S_i(au'+ au) S_i(au')
angle - m_i^2$$
 G. Biroli, L. Cugliandolo '02

(very complex and hard to solve)

Short time quantum dynamics

Approaches:

• Landscape approach: Self-consistent $\mathit{dynamical}$ mean field equations for m_i

$$\chi_i(au) = \langle S_i(au'+ au) S_i(au')
angle - m_i^2$$
 G. Biroli, L. Cugliandolo '02

(very complex and hard to solve)

• Path integral over imaginary time for $S_{i,a}(0 \le \tau \le \beta)$ e.g. A. Bray, M. Moore '80's Replica approach + disorder average, saddle point method

Saddle point properties in quantum glasses

Order parameter $Q_{ab}(\tau, \tau') = \overline{\langle S_a(\tau) S_b(\tau') \rangle} = \frac{1}{N} \sum_{\cdot} \overline{\langle S_{ia}(\tau) S_{ib}(\tau') \rangle}$

Saddle point properties in quantum glasses

Order parameter

$$Q_{ab}(\tau, \tau') = \overline{\langle S_a(\tau) S_b(\tau') \rangle} = \frac{1}{N} \sum_{i} \overline{\langle S_{ia}(\tau) S_{ib}(\tau') \rangle}$$

Same replica: Time translational invariance along imaginary time

$$Q_{aa}(\tau, \tau') = \overline{\langle S_a(\tau) S_a(\tau') \rangle} = Q_{aa}(\tau - \tau')$$

Saddle point properties in quantum glasses

Order parameter

$$Q_{ab}(\tau, \tau') = \overline{\langle S_a(\tau) S_b(\tau') \rangle} = \frac{1}{N} \sum_{i} \overline{\langle S_{ia}(\tau) S_{ib}(\tau') \rangle}$$

Same replica: Time translational invariance along imaginary time

$$Q_{aa}(\tau,\tau') = \overline{\langle S_a(\tau)S_a(\tau')\rangle} = Q_{aa}(\tau-\tau')$$

Different replica: before disorder average the replica are uncoupled

$$Q_{ab}(\tau, \tau') \stackrel{\checkmark}{=} \overline{\langle S_a(\tau) \rangle \langle S_b(\tau') \rangle}$$

Saddle point properties in quantum glasses

Order parameter

$$Q_{ab}(\tau, \tau') = \overline{\langle S_a(\tau) S_b(\tau') \rangle} = \frac{1}{N} \sum_{i} \overline{\langle S_{ia}(\tau) S_{ib}(\tau') \rangle}$$

Same replica: Time translational invariance along imaginary time

$$Q_{aa}(\tau, \tau') = \overline{\langle S_a(\tau) S_a(\tau') \rangle} \neq Q_{aa}(\tau - \tau')$$

Different replica: before disorder average the replica are uncoupled

$$Q_{ab}(\tau, \tau') = \overline{\langle S_a(\tau) \rangle \langle S_b(\tau') \rangle} = \overline{\langle S_a \rangle \langle S_b \rangle} = Q_{ab}$$

Replica off-diagonal is time-independent!

• Short time quantum dynamics: encoded in $Q_{aa}(au- au')$

$$Q_{aa}(\tau-\tau')$$

• Short time quantum dynamics: encoded in $Q_{aa}(au- au')$

$$Q_{aa}(\tau - \tau')$$

[see later:

Analytic continuation to real time yields dynamic susceptibility and the spectral function = information on collective excitations]

• Short time quantum dynamics: encoded in $Q_{aa}(au- au')$

$$Q_{aa}(\tau-\tau')$$

• Edwards-Anderson parameter signals glassy ordering

$$\lim_{t-t'\to\infty} Q_{aa}(t-t') = q_{\rm EA}$$

• Short time quantum dynamics: encoded in $Q_{aa}(au- au')$

$$Q_{aa}(\tau-\tau')$$

Edwards-Anderson parameter signals glassy ordering

$$\lim_{t-t'\to\infty} Q_{aa}(t-t') = q_{\rm EA}$$

Physical consistency requires that the intrastate correlations (q_{EA}) are the same as long-time correlations (in the same state)

$$\max_{a \neq b} (Q_{ab}) = q(x \to 1) = \lim_{a \to b} Q_{a \to b} = q_{EA}$$

- Short time quantum dynamics: encoded in $Q_{aa}(au- au')$
- Edwards-Anderson parameter signals glassy ordering $\lim_{t-t' \to \infty} Q_{aa}(t-t') = q_{\rm EA}$
- Physical consistency requires that the intrastate correlations (q_{EA}) are the same as long-time correlations (in the same state)

$$\max_{a \neq b} (Q_{ab}) = q(x \to 1) = \lim_{a \to b} Q_{a \to b} = q_{EA}$$

• Quantum fluctuations reduce the value of q_{EA} and eventually melt the glass (at Γ_c)

- Short time quantum dynamics: encoded in $Q_{aa}(au- au')$
- Edwards-Anderson parameter signals glassy ordering $\lim_{t-t' \to \infty} Q_{aa}(t-t') = q_{\rm EA}$
- Physical consistency requires that the intrastate correlations (q_{EA}) are the same as long-time correlations (in the same state)

$$\max_{a \neq b} (Q_{ab}) = q(x \to 1) = \lim_{a \to b} Q_{a \to b} = q_{EA}$$

- Quantum fluctuations reduce the value of q_{EA} and eventually melt the glass (at Γ_c)
- Long time dynamics (slow floating over the landscape; aging) occurs well after quantum coherence is lost → identical to classical dynamics
- Replica symmetry breaking structure Q_{ab} and P(q) and landscape : mostly insensitive to quantum fluctuations (they just reduce the amplitude of possible q's).

The simplest quantum 'spin' glass: Mean field rotor model Ye, Sachdev, Read '93

Rigid rods, described by *M*-component unit vectors \hat{n}_i

The simplest quantum 'spin' glass: Mean field rotor model

Ye, Sachdev, Read '93

Rigid rods, described by *M*-component unit vectors \hat{n}_i

$$H=rac{g}{2M}\sum_i \hat{L}^2+rac{M}{\sqrt{N}}\sum_{i< j}J_{ij}\hat{n}_i\cdot\hat{n}_j \qquad \hat{n}_i^2=1 \qquad egin{array}{ll} ext{Factors of M and N chosen such that $H\sim O(MN)$} \ \end{array}$$

$$\hat{n}_i^2 = 1$$
 Factors of \emph{M} and \emph{N} chosen such that $\emph{H} \sim \emph{O(MN)}$

$$[n_{i\mu}, n_{j\nu}] = 0$$

Commuting components - unlike quantum spins

$$P(J_{ij}) \sim \exp(-J_{ij}^2/(2J^2))$$

Gaussian all-to-all couplings

The simplest quantum 'spin' glass: Mean field rotor model Ye, Sachdev, Read '93

Rigid rods, described by *M*-component unit vectors \hat{n}_i

$$H=rac{g}{2M}\sum_i \hat{L}^2+rac{M}{\sqrt{N}}\sum_{i< j}J_{ij}\hat{n}_i\cdot\hat{n}_j \qquad \hat{n}_i^2=1 \qquad egin{array}{ll} ext{Factors of M and } N ext{ chosen such that $H\sim O(MN)$} \end{cases}$$

$$\hat{n}_i^2 = 1$$
 Factors of M and N chosen such that H ~ O(MN)

$$[n_{i\mu}, n_{j\nu}] = 0$$

$$L_{i\mu\nu} = -i \left(n_{i\mu} \frac{\partial}{\partial n_{i\nu}} - n_{i\nu} \frac{\partial}{\partial n_{i\mu}} \right)$$

$$1 < \mu < \nu < M$$

$$P(J_{ij}) \sim \exp(-J_{ij}^2/(2J^2))$$

Commuting components - unlike quantum spins

Generators of rotations in $\mu\nu$ -plane of rotor ig: generates quantum fluctuations

Gaussian all-to-all couplings

Path integral representation in Matsubara time.

Replicate *n* times, disorder average.

Take a saddle point, assuming O(M) invariance of saddle-point

$$\frac{1}{N} \sum_{i} \langle \hat{n}_{i\alpha}^{a}(\tau) \hat{n}_{i\beta}^{b}(\tau') \rangle = Q_{\alpha\beta}^{ab}(\tau, \tau')$$
$$= \frac{\delta_{\alpha\beta}}{M} Q^{ab}(\tau - \tau')$$

$$Z_0 = \int \mathcal{D}\hat{n}^a(\tau)\delta\left(\hat{n}^{a2}(\tau) - 1\right)\exp\left(-\frac{M}{2g}\int_0^\beta d\tau (\partial_\tau \hat{n}^a)^2 + \frac{MJ^2}{2}\int_0^\beta d\tau d\tau' Q^{ab}(\tau - \tau')\hat{n}^a(\tau) \cdot \hat{n}^b(\tau')\right)$$

Path integral representation in Matsubara time.

Replicate *n* times, disorder average.

Take a saddle point, assuming O(M) invariance of saddle-point

$$\frac{1}{N} \sum_{i} \langle \hat{n}_{i\alpha}^{a}(\tau) \hat{n}_{i\beta}^{b}(\tau') \rangle = Q_{\alpha\beta}^{ab}(\tau, \tau')$$
$$= \frac{\delta_{\alpha\beta}}{M} Q^{ab}(\tau - \tau')$$

$$Z_0 = \int \mathcal{D}\hat{n}^a(\tau)\delta\left(\hat{n}^{a2}(\tau) - 1\right)\exp\left(-\frac{M}{2g}\int_0^\beta d\tau(\partial_\tau\hat{n}^a)^2 + \frac{MJ^2}{2}\int_0^\beta d\tau d\tau' Q^{ab}(\tau - \tau')\hat{n}^a(\tau) \cdot \hat{n}^b(\tau')\right)$$

Saddle point (self-consistency) condition

$$Q^{ab}(\tau - \tau') = \langle \hat{n}^a(\tau) \cdot \hat{n}^b(\tau') \rangle_{Z_0}$$

Path integral representation in Matsubara time.

Replicate *n* times, disorder average.

Take a saddle point, assuming O(M) invariance of saddle-point

$$\frac{1}{N} \sum_{i} \langle \hat{n}_{i\alpha}^{a}(\tau) \hat{n}_{i\beta}^{b}(\tau') \rangle = Q_{\alpha\beta}^{ab}(\tau, \tau')$$
$$= \frac{\delta_{\alpha\beta}}{M} Q^{ab}(\tau - \tau')$$

$$\longrightarrow$$

$$Z_0 = \int \mathcal{D}\hat{n}^a(\tau)\delta\left(\hat{n}^{a2}(\tau) - 1\right)\exp\left(-\frac{M}{2g}\int_0^\beta d\tau(\partial_\tau\hat{n}^a)^2 + \frac{MJ^2}{2}\int_0^\beta d\tau d\tau' Q^{ab}(\tau - \tau')\hat{n}^a(\tau) \cdot \hat{n}^b(\tau')\right)$$

Saddle point (self-consistency) condition

$$Q^{ab}(\tau - \tau') = \langle \hat{n}^a(\tau) \cdot \hat{n}^b(\tau') \rangle_{Z_0}$$

 $M=\infty$ - limit: Impose constraint by Lagrange parameter $\left(\frac{M}{2g}\right)\lambda$ to obtain a Gaussian action for \hat{n}^a , evaluate the saddle point. In Matsubara-Fourier space:

Path integral representation in Matsubara time.

Replicate *n* times, disorder average.

Take a saddle point, assuming O(M) invariance of saddle-point

$$\frac{1}{N} \sum_{i} \langle \hat{n}_{i\alpha}^{a}(\tau) \hat{n}_{i\beta}^{b}(\tau') \rangle = Q_{\alpha\beta}^{ab}(\tau, \tau')$$
$$= \frac{\delta_{\alpha\beta}}{M} Q^{ab}(\tau - \tau')$$

$$Z_0 = \int \mathcal{D}\hat{n}^a(\tau)\delta\left(\hat{n}^{a2}(\tau) - 1\right)\exp\left(-\frac{M}{2g}\int_0^\beta d\tau(\partial_\tau\hat{n}^a)^2 + \frac{MJ^2}{2}\int_0^\beta d\tau d\tau' Q^{ab}(\tau - \tau')\hat{n}^a(\tau) \cdot \hat{n}^b(\tau')\right)$$

Saddle point (self-consistency) condition

$$Q^{ab}(\tau - \tau') = \langle \hat{n}^a(\tau) \cdot \hat{n}^b(\tau') \rangle_{Z_0}$$

 $M=\infty$ - limit: Impose constraint by Lagrange parameter $\left(\frac{M}{2g}\right)\lambda$ to obtain a Gaussian action for \hat{n}^a , evaluate the saddle point. In Matsubara-Fourier space:

$$Q(i\omega_n) = g\left(\omega_n^2 + \lambda - gJ^2Q(i\omega_n)\right)^{-1}$$

RHS: Inverse of the replica (n x n) matrix!

Paramagnetic phase: $Q^{a \neq b} = 0$

Solve quadratic equation for
$$Q^{aa}(i\omega)$$
: $Q^{aa}(\omega=i\omega_n)=\frac{\omega_n^2+\lambda-\sqrt{(\omega_n^2+\lambda)^2-(2gJ)^2}}{2gJ^2}$

Paramagnetic phase: $Q^{a \neq b} = 0$

Solve quadratic equation for
$$Q^{\rm aa}(i\omega)$$
: $Q^{aa}(\omega=i\omega_n)=\frac{\omega_n^2+\lambda-\sqrt{(\omega_n^2+\lambda)^2-(2gJ)^2}}{2gJ^2}$

Analytically continue $Q^{aa}(i\omega_n)=\chi(i\omega_n)$ to real frequencies $\omega_n\to\omega/i$ to obtain $\chi(\omega)$

$$\chi(\omega) = \frac{1}{N} \sum_{i=1}^{N} \sum_{\alpha=1}^{M} \int_{0}^{\infty} dt \chi_{ii}^{\alpha\alpha}(t) e^{i(\omega+i\eta)t}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \sum_{\alpha=1}^{M} \int_{0}^{\infty} dt \langle -i[\hat{n}_{i}^{\alpha}(t), \hat{n}_{i}^{\alpha}(0)] \rangle e^{i(\omega+i\eta)t}$$

Paramagnetic phase: $Q^{a \neq b} = 0$

Solve quadratic equation for $Q^{\rm aa}(i\omega)$: $Q^{aa}(\omega=i\omega_n)=\frac{\omega_n^2+\lambda-\sqrt{(\omega_n^2+\lambda)^2-(2gJ)^2}}{2gJ^2}$

Analytically continue $Q^{aa}(i\omega_n)=\chi(i\omega_n)$ to real frequencies $\omega_n\to\omega/i$ to obtain $\chi(\omega)$

$$\chi(\omega) = \frac{1}{N} \sum_{i=1}^{N} \sum_{\alpha=1}^{M} \int_{0}^{\infty} dt \chi_{ii}^{\alpha\alpha}(t) e^{i(\omega+i\eta)t}$$
$$= \frac{1}{N} \sum_{i=1}^{N} \sum_{\alpha=1}^{M} \int_{0}^{\infty} dt \langle -i[\hat{n}_{i}^{\alpha}(t), \hat{n}_{i}^{\alpha}(0)] \rangle e^{i(\omega+i\eta)t}$$

Insert a sum over eigenstates ψ_m . Take imaginary part and obtain the spectral function (here at T = 0)

$$\operatorname{Im}[\chi(\omega)] \equiv \chi''(\omega) = \frac{\pi}{N} \sum_{i} \sum_{m} |\langle \psi_m | \hat{n}_i^{\alpha} | \psi_0 \rangle|^2 \left[\delta(\omega - E_m + E_0) - \delta(\omega + E_m - E_0) \right] = \pi \rho(\omega),$$

Paramagnetic phase: $Q^{a \neq b} = 0$

Solve quadratic equation for
$$Q^{\rm aa}(i\omega)$$
: $Q^{aa}(\omega=i\omega_n)=\frac{\omega_n^2+\lambda-\sqrt{(\omega_n^2+\lambda)^2-(2gJ)^2}}{2gJ^2}$

Analytically continue $Q^{aa}(i\omega_n)=\chi(i\omega_n)$ to real frequencies $\omega_n\to\omega/i$ to obtain $\chi(\omega)$

$$\chi(\omega) = \frac{1}{N} \sum_{i=1}^{N} \sum_{\alpha=1}^{M} \int_{0}^{\infty} dt \chi_{ii}^{\alpha\alpha}(t) e^{i(\omega+i\eta)t}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \sum_{\alpha=1}^{M} \int_{0}^{\infty} dt \langle -i[\hat{n}_{i}^{\alpha}(t), \hat{n}_{i}^{\alpha}(0)] \rangle e^{i(\omega+i\eta)t}$$

Insert a sum over eigenstates ψ_m . Take imaginary part and obtain the spectral function (here at T = 0)

$$\operatorname{Im}[\chi(\omega)] \equiv \chi''(\omega) = \frac{\pi}{N} \sum_{i} \sum_{m} |\langle \psi_m | \hat{n}_i^{\alpha} | \psi_0 \rangle|^2 \left[\delta(\omega - E_m + E_0) - \delta(\omega + E_m - E_0) \right] = \pi \rho(\omega),$$

Information about strength and energy of excitations created by acting with \hat{n}_i^{lpha} !

Paramagnetic phase: $Q^{a \neq b} = 0$

Solve quadratic equation for
$$Q^{\rm aa}(i\omega)$$
: $Q^{aa}(\omega=i\omega_n)=\frac{\omega_n^2+\lambda-\sqrt{(\omega_n^2+\lambda)^2-(2gJ)^2}}{2gJ^2}$

Analytically continue $Q^{aa}(i\omega_n)=\chi(i\omega_n)$ to real frequencies $\,\omega_n\to\omega/i\,$ to obtain $\,\chi(\omega)$

$$\chi''(\omega) = \operatorname{Im}(Q^{aa}(\omega + i0^+))$$

Paramagnetic phase: $Q^{a \neq b} = 0$

Solve quadratic equation for
$$Q^{aa}(i\omega)$$
: $Q^{aa}(\omega=i\omega_n)=\frac{\omega_n^2+\lambda-\sqrt{(\omega_n^2+\lambda)^2-(2gJ)^2}}{2gJ^2}$ Analytically continue $Q^{aa}(i\omega_n)=\chi(i\omega_n)$ to real frequencies $\omega_n\to\omega/i$ to obtain $\chi(\omega)$

$$\chi''(\omega) = \operatorname{Im}(Q^{aa}(\omega + i0^+))$$

$$\chi''(\omega) = \operatorname{sgn}(\omega) \frac{\left[(\omega^2 - \lambda + 2Jg)(\lambda + 2Jg - \omega^2) \right]^{1/2}}{2J^2g}$$

for
$$\lambda - 2Jg < \omega^2 < \lambda + 2Jg$$

$$\chi'' = 0$$
 elsewhere

Paramagnetic phase: $Q^{a \neq b} = 0$

Solve quadratic equation for
$$Q^{aa}(i\omega)$$
: $Q^{aa}(\omega=i\omega_n)=rac{\omega_n^2+\lambda-\sqrt{(\omega_n^2+\lambda)^2-(2gJ)^2}}{2gJ^2}$

Analytically continue $Q^{aa}(i\omega_n)=\chi(i\omega_n)$ to real frequencies $\omega_n\to\omega/i$ to obtain $\chi(\omega)$

$$\chi''(\omega) = \operatorname{Im}(Q^{aa}(\omega + i0^+))$$

$$\chi''(\omega) = \operatorname{sgn}(\omega) \frac{\left[(\omega^2 - \lambda + 2Jg)(\lambda + 2Jg - \omega^2) \right]^{1/2}}{2J^2g}$$

for
$$\lambda - 2Jg < \omega^2 < \lambda + 2Jg$$

$$\chi'' = 0$$
 elsewhere

Determine $\lambda(g,T)$ from equal time constraint $\hat{n}^{a2}=1$ \longleftrightarrow $\int_0^\infty \frac{d\omega}{\pi} \chi''(\omega) \coth(\beta\omega/2)=1$

Paramagnetic phase: $Q^{a \neq b} = 0$

Solve quadratic equation for
$$Q^{\rm aa}(i\omega)$$
: $Q^{aa}(\omega=i\omega_n)=\frac{\omega_n^2+\lambda-\sqrt{(\omega_n^2+\lambda)^2-(2gJ)^2}}{2gJ^2}$

Analytically continue $Q^{aa}(i\omega_n)=\chi(i\omega_n)$ to real frequencies $\omega_n\to\omega/i$ to obtain $\chi(\omega)$

$$\chi''(\omega) = \operatorname{Im}(Q^{aa}(\omega + i0^+))$$

$$\chi''(\omega) = \operatorname{sgn}(\omega) \frac{\left[(\omega^2 - \lambda + 2Jg)(\lambda + 2Jg - \omega^2) \right]^{1/2}}{2J^2g}$$

for
$$\lambda - 2Jg < \omega^2 < \lambda + 2Jg$$

$$\chi'' = 0$$
 elsewhere

Spectral gap:

$$\Delta = \sqrt{\lambda - 2Jg} \ge 0$$

Determine
$$\lambda(g,T)$$
 from equal time constraint $\hat{n}^{a2}=1$ \longleftrightarrow $\int_0^\infty \frac{d\omega}{\pi} \chi''(\omega) \coth(\beta\omega/2)=1$

Phase diagram

J. Ye, S. Sachdev, and N. Read, PRL 1993

Phase diagram

J. Ye, S. Sachdev, and N. Read, PRL 1993

Phase diagram

J. Ye, S. Sachdev, and N. Read, PRL 1993

Glass phase: $Q^{a \neq b} = q_{EA}$

Find: off-diagonal is constant (replica symmetric, no RSB) (peculiarity of large M limit – similar to p = 2 spherical spins)

Glass phase: $Q^{a \neq b} = q_{EA}$

Find: off-diagonal is constant (replica symmetric, no RSB) (peculiarity of large M limit – similar to p = 2 spherical spins)

In Matsubara space:

$$Q^{ab}(\omega_n) = \beta q_{\rm EA} \delta_{\omega_n,0} + \delta^{ab} Q_{\rm reg}(\omega_n)$$

Glass phase: $Q^{a \neq b} = q_{EA}$

Find: off-diagonal is constant (replica symmetric, no RSB) (peculiarity of large M limit – similar to p = 2 spherical spins)

In Matsubara space:

$$Q^{ab}(\omega_n) = \beta q_{\rm EA} \delta_{\omega_n,0} + \delta^{ab} Q_{\rm reg}(\omega_n)$$

 Q_{reg} at finite frequency satisfies the same equation as Q^{aa} in the paramagnetic phase

$$\chi_{\text{reg}}''(\omega) = \text{sgn}(\omega) \frac{\left[(\omega^2 - \lambda + 2Jg)(\lambda + 2Jg - \omega^2) \right]^{1/2}}{2J^2g}$$

but now with different λ !

Glass phase: $Q^{a \neq b} = q_{EA}$

Find: off-diagonal is constant (replica symmetric, no RSB) (peculiarity of large M limit – similar to p = 2 spherical spins)

In Matsubara space:

$$Q^{ab}(\omega_n) = \beta q_{\rm EA} \delta_{\omega_n,0} + \delta^{ab} Q_{\rm reg}(\omega_n)$$

 Q_{reg} at finite frequency satisfies the same equation as Q^{aa} in the paramagnetic phase

$$\chi''_{\text{reg}}(\omega) = \text{sgn}(\omega) \frac{\left[(\omega^2 - \lambda + 2Jg)(\lambda + 2Jg - \omega^2)\right]^{1/2}}{2J^2g} \qquad \text{but now with different } \lambda!$$

+ Self-consistency of replica – off-diagonal part imposes $\Delta = \sqrt{\lambda - 2Jg} \stackrel{!}{=} 0$ marginal stability \rightarrow spectral gap remains closed!

Glass phase: $Q^{a \neq b} = q_{EA}$

Find: off-diagonal is constant (replica symmetric, no RSB) (peculiarity of large M limit – similar to p = 2 spherical spins)

In Matsubara space:

$$Q^{ab}(\omega_n) = \beta q_{\rm EA} \delta_{\omega_n,0} + \delta^{ab} Q_{\rm reg}(\omega_n)$$

 $Q_{
m reg}$ at finite frequency satisfies the same equation as Q^{aa} in the paramagnetic phase

$$\chi''_{\text{reg}}(\omega) = \text{sgn}(\omega) \frac{\left[(\omega^2 - \lambda + 2Jg)(\lambda + 2Jg - \omega^2)\right]^{1/2}}{2J^2g} \qquad \text{but now with different } \lambda!$$

- + Self-consistency of replica off-diagonal part imposes $\Delta = \sqrt{\lambda 2Jg} \stackrel{!}{=} 0$ marginal stability \rightarrow spectral gap remains closed!
- + Equal time constraint $\hat{n}^{a2}=1$ \longleftrightarrow $q_{\rm EA}+\int_0^\infty \frac{d\omega}{\pi}\chi''_{\rm reg}(\omega) \coth(\beta\omega/2)=1$

$$Q^{ab} = A \cdot \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix} + B \cdot \begin{pmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \\ \dots & \dots & \dots & \dots \\ 1 & 1 & \dots & 1 \end{pmatrix}$$

$$Q^{ab}(i\omega_n = 0) \equiv Q_0^{ab}$$
 $A = Q_{\text{reg}}(i\omega_n = 0) \equiv Q_{\text{reg},0}$
 $B = \beta q_{\text{EA}}$

$$Q^{ab} = A \cdot \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix} + B \cdot \begin{pmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \\ \dots & \dots & \dots & \dots \\ 1 & 1 & \dots & 1 \end{pmatrix}$$

$$Q^{ab}(i\omega_n = 0) \equiv Q_0^{ab}$$
 $A = Q_{\text{reg}}(i\omega_n = 0) \equiv Q_{\text{reg},0}$
 $B = \beta q_{\text{EA}}$

Saddle point (matrix equation!) : $f(Q_0) \equiv Q_0(\lambda - gJ^2Q_0) - g = 0$

$$Q^{ab} = A \cdot \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix} + B \cdot \begin{pmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \\ \dots & \dots & \dots & \dots \\ 1 & 1 & \dots & 1 \end{pmatrix}$$

General replica matrix algebra: $\begin{pmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \\ \dots & \dots & \dots & \dots \\ 1 & 1 & \dots & 1 \end{pmatrix}^2 = n \begin{pmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \\ \dots & \dots & \dots & \dots \\ 1 & 1 & \dots & 1 \end{pmatrix} \to 0$

$$f(Q) = f(A) \cdot \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix} + f'(A)B \cdot \begin{pmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \\ \dots & \dots & \dots & \dots \\ 1 & 1 & \dots & 1 \end{pmatrix} + O(n)$$

$$Q^{ab}(i\omega_n = 0) \equiv Q_0^{ab}$$
 $A = Q_{\text{reg}}(i\omega_n = 0) \equiv Q_{\text{reg},0}$
 $B = \beta q_{\text{EA}}$

Saddle point (matrix equation!) : $f(Q_0) \equiv Q_0(\lambda - gJ^2Q_0) - g = 0$

$$Q^{ab} = A \cdot \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix} + B \cdot \begin{pmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \\ \dots & \dots & \dots & \dots \\ 1 & 1 & \dots & 1 \end{pmatrix}$$

General replica matrix algebra: $\begin{pmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \\ \dots & \dots & \dots & \dots \\ \frac{1}{1} & 1 & \dots & 1 \end{pmatrix} = n \begin{pmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \\ \dots & \dots & \dots & \dots \\ 1 & 1 & \dots & 1 \end{pmatrix} \to 0$

$$f(Q) = f(A) \cdot \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix} + f'(A)B \cdot \begin{pmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \\ \dots & \dots & \dots & \dots \\ 1 & 1 & \dots & 1 \end{pmatrix} + O(n)$$

$$Q^{ab}(i\omega_n=0)\equiv Q_0^{ab} \qquad A=Q_{\rm reg}(i\omega_n=0)\equiv Q_{\rm reg,0}$$

$$B=\beta q_{\rm EA}$$
 Saddle point (matrix equation!) :
$$f(Q_0)\equiv Q_0(\lambda-gJ^2Q_0)-g=0$$

$$\to f(Q_{\text{reg},0}) = f'(Q_{\text{reg},0}) = 0$$

$$Q^{ab} = A \cdot \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix} + B \cdot \begin{pmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \\ \dots & \dots & \dots & \dots \\ 1 & 1 & \dots & 1 \end{pmatrix}$$

General replica matrix algebra:
$$\begin{pmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \\ \dots & \dots & \dots & \dots \\ 1 & 1 & \dots & 1 \end{pmatrix}^2 = n \begin{pmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \\ \dots & \dots & \dots & \dots \\ 1 & 1 & \dots & 1 \end{pmatrix} \to 0$$

$$f(Q) = f(A) \cdot \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix} + f'(A)B \cdot \begin{pmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \\ \dots & \dots & \dots & \dots \\ 1 & 1 & \dots & 1 \end{pmatrix} + O(n)$$

$$Q^{ab}(i\omega_n = 0) \equiv Q_0^{ab}$$

$$Q^{ab}(i\omega_n = 0) \equiv Q_0^{ab}$$
 $A = Q_{\text{reg}}(i\omega_n = 0) \equiv Q_{\text{reg},0}$
 $B = \beta q_{\text{EA}}$

Saddle point (matrix equation!):

$$f(Q_0) \equiv Q_0(\lambda - gJ^2Q_0) - g = 0$$

$$Q_{\mathrm{reg},0} \text{ is a double zero of } \mathit{f}(Q_0) \ (\rightarrow \text{ critical!})$$

$$\to \mathit{f}(Q_{\mathrm{reg},0}) = \mathit{f}'(Q_{\mathrm{reg},0}) = 0 \qquad \to Q_{\mathrm{reg}}(\omega = 0^+) \text{ immediately has imaginary part}$$

→ finite spectral weight → gapless state

J. Ye, S. Sachdev, and N. Read, PRL 1993

J. Ye, S. Sachdev, and N. Read, PRL 1993

Glass remains gapless: Marginal stability!

J. Ye, S. Sachdev, and N. Read, PRL 1993

Glass remains gapless: Marginal stability!

J. Ye, S. Sachdev, and N. Read, PRL 1993

Glass remains gapless: Reflects marginal stability of replica saddle point and landscape.

Solved mean field models:

Transverse field Ising glass (SK model)

$$H_{\text{Ising}} = -\Gamma \sum_{i} s_i^x + \frac{1}{\sqrt{N}} \sum_{i < j} J_{ij} s_i^z s_j^z$$

Heisenberg glass:

$$H_{\rm Hb} = \frac{1}{\sqrt{N}} \sum_{i < j} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j$$

Difference:

Ising: all interaction terms commute

Heisenberg: interactions do not commute

How much does this matter?

Solved mean field models:

Transverse field Ising glass (SK model)

$$H_{\text{Ising}} = -\Gamma \sum_{i} s_i^x + \frac{1}{\sqrt{N}} \sum_{i < j} J_{ij} s_i^z s_j^z$$

Heisenberg glass:

$$H_{\rm Hb} = \frac{1}{\sqrt{N}} \sum_{i < j} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j$$

Difference:

Ising: all interaction terms commute

Heisenberg: interactions do not commute

How much does this matter?

Numerics suggested a significant difference

TFSK model, N = 17 (exact diagonalization)

Spectral function at T = 0

$$\chi''(\omega) \propto \omega/J^2$$

FIG. 1. The dynamical response $\chi''(\omega)$ of the RITF model at $\Gamma = 0.2$ for N = 17. The spectral function shows a $\delta(\omega)$ part plus a regular contribution at finite frequencies with a maximum at $\omega \approx \Gamma$. Inset: gapped $\chi''(\omega)$ in the paramagnetic phase at $\Gamma = 0.8 > \Gamma_c$.

L. Arrachea and M. J. Rozenberg '01

Heisenberg model, N = 16 (exact diagonalization)

Spectral function at T = 0

L. Arrachea and M. J. Rozenberg '01

$$\chi''(\omega) \propto {\rm sign}(\omega)$$
 ?? as in SYK ??

Unclear! Finite-size broadened $\delta(\omega)$ blurs low frequency behavior

$$H = rac{1}{\sqrt{N}} \sum_{i
eq j=1}^{N} t_{ij} P c_{ilpha}^{\dagger} c_{jlpha} P + rac{1}{\sqrt{N}} \sum_{i < j=1}^{N} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j$$

Shackleton, Wietek, Georges, Sachdev '21

Solved mean field models:

Transverse field Ising glass (SK model)

Difference:

Ising: all interaction terms commute

Heisenberg: interactions do not

commute

• Heisenberg glass:

How much does this matter?

Numerics suggested a significant difference but the truth is different!

Solved mean field models:

Transverse field Ising glass (SK model)

Same universality class as rotors in the $M \to 1$ limit But: full continuous RSB:

Many states, all marginal, gapless

A. Andreanov, MM '11
A. Kiss, G.Zarand, I. Lovas, '24

Solved mean field models:

Heisenberg glass: - SU(M >> 1) "spins" (Sachdev,Ye '93; Parcollet Georges '00)
 - SU(2) spins (Kavokine, MM, Parcollet Georges, '24)

$$H = \frac{1}{\sqrt{NM}} \sum_{i < j} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j$$
 Solvability in the limit $M \to \infty$!

SY-pre-K model(s)

Solved mean field models:

 Heisenberg glass: - SU(M >> 1) "spins" (Sachdev,Ye '93; Parcollet Georges '00) - SU(2) spins (Kavokine, MM, Parcollet Georges, '24)

$$H = \frac{1}{\sqrt{NM}} \sum_{i < j} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j$$
 Solvability in the limit $M \to \infty$!

Different representations of SU(M) = different models / loc Hilbert space

Schwinger bosons

$$\leftrightarrow$$

$$S_{\alpha\beta} = f_{\alpha}^{\dagger} f_{\beta}$$

+ Constraint:

$$\Sigma_{\alpha}b_{\alpha}^{\dagger}b_{\alpha}=SM \ (0 \leq S)$$

$$S_{\alpha\beta} = b_{\alpha}^{\dagger} b_{\beta} - S \delta_{\alpha\beta} \qquad \longleftrightarrow \qquad S_{\alpha\beta} = f_{\alpha}^{\dagger} f_{\beta}$$

$$\Sigma_{\alpha} b_{\alpha}^{\dagger} b_{\alpha} = SM \quad (0 \leq S) \qquad \qquad \Sigma_{\alpha} f_{\alpha}^{\dagger} f_{\alpha} = q_{0} M \quad (0 \leq q_{0} \leq 1)$$

Solved mean field models:

 Heisenberg glass: - SU(M >> 1) "spins" (Sachdev,Ye '93; Parcollet Georges '00) - SU(2) spins (Kavokine, MM, Parcollet Georges, '24)

$$H = \frac{1}{\sqrt{NM}} \sum_{i < j} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j$$
 Solvability in the limit $M \to \infty$!

Different representations of SU(M) = different models / loc Hilbert space

Schwinger bosons

Abrikosov fermions

$$S_{aa} = b^{\dagger} b_{a} - S \delta_{aa}$$

$$\leftrightarrow$$

$$S_{\alpha\beta} = f_{\alpha}^{\dagger} f_{\beta}$$

+ Constraint:

$$\Sigma_{\alpha}b_{\alpha}^{\dagger}b_{\alpha}=SM \ (0 \leq S)$$

$$S_{\alpha\beta} = b_{\alpha}^{\dagger} b_{\beta} - S \delta_{\alpha\beta} \qquad \longleftrightarrow \qquad S_{\alpha\beta} = f_{\alpha}^{\dagger} f_{\beta}$$

$$\Sigma_{\alpha} b_{\alpha}^{\dagger} b_{\alpha} = SM \quad (0 \leq S) \qquad \qquad \Sigma_{\alpha} f_{\alpha}^{\dagger} f_{\alpha} = q_{0} M \quad (0 \leq q_{0} \leq 1)$$

High T: Famous SY(-K) physics (partons are no quasiparticles) $\chi''(\omega) \propto {
m sign}(\omega)$

Solved mean field models:

 Heisenberg glass: - SU(M >> 1) "spins" (Sachdev,Ye '93; Parcollet Georges '00) - SU(2) spins (Kavokine, MM, Parcollet Georges, '24)

$$H = \frac{1}{\sqrt{NM}} \sum_{i < j} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j$$
 Solvability in the limit $M \to \infty$!

Different representations of SU(M) = different models / loc Hilbert space

Schwinger bosons

$$S_{\alpha\beta} = b_{\alpha}^{\dagger} b_{\beta} - S \delta_{\alpha\beta} \qquad \longleftrightarrow \qquad S_{\alpha\beta} = f_{\alpha}^{\dagger} f_{\beta}$$

$$\leftrightarrow$$

$$S_{\alpha\beta} = f_{\alpha}^{\dagger} f_{\beta}$$

+ Constraint:

$$\Sigma_{\alpha}b_{\alpha}^{\dagger}b_{\alpha}=SM \ (0 \leq S)$$

$$\Sigma_{\alpha} b_{\alpha}^{\dagger} b_{\alpha} = SM \quad (0 \leq S) \qquad \qquad \Sigma_{\alpha} f_{\alpha}^{\dagger} f_{\alpha} = q_0 M \quad (0 \leq q_0 \leq 1)$$

Low T: Bosons condense discontinuously, like p=4 spins (structural-glass like), in threshold states: $\chi''(\omega) \propto \omega/J^2$

Solved mean field models:

 Heisenberg glass: - SU(M >> 1) "spins" (Sachdev,Ye '93; Parcollet Georges '00) - SU(2) spins (Kavokine, MM, Parcollet Georges, '24)

$$H = \frac{1}{\sqrt{NM}} \sum_{i < j} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j$$
 Solvability in the limit $M \to \infty$!

Different representations of SU(M) = different models / loc Hilbert space

Schwinger bosons

$$S_{\alpha\beta} = b_{\alpha}^{\dagger} b_{\beta} - S \delta_{\alpha\beta} \qquad \longleftrightarrow \qquad S_{\alpha\beta} = f_{\alpha}^{\dagger} f_{\beta}$$

$$\leftrightarrow$$

$$S_{\alpha\beta} = f_{\alpha}^{\dagger} f_{\beta}$$

+ Constraint:

$$\Sigma_{\alpha}b_{\alpha}^{\dagger}b_{\alpha}=SM \ (0 \leq S)$$

$$\Sigma_{\alpha} b_{\alpha}^{\dagger} b_{\alpha} = SM \quad (0 \leq S) \qquad \qquad \Sigma_{\alpha} f_{\alpha}^{\dagger} f_{\alpha} = q_0 M \quad (0 \leq q_0 \leq 1)$$

Low T: Fermions require finite M to order: continuous spin-glass transition $T_g \sim \exp[-c\sqrt{M}]$ Full RSB - but again: $\chi''(\omega) \propto \omega/J^2$

Solved mean field models:

Heisenberg glass: - SU(M >> 1) "spins" (Sachdev,Ye '93; Parcollet Georges '00)

- SU(2) spins (Kavokine, MM, Parcollet Georges, '24)

$$\mathcal{H} = -\sum_{i < j} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j$$

RSB solution + continuous time QMC

Solved mean field models:

Heisenberg glass: - SU(M >> 1) "spins" (Sachdev,Ye '93; Parcollet Georges '00)
 - SU(2) spins (Kavokine, MM, Parcollet Georges, '24)

$$\mathcal{H} = -\sum_{i < j} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j$$

RSB solution + continuous time QMC

Again:

$$\chi''_{\mathrm{Hb}}(\omega) \approx 3.5 \frac{\omega}{J^2}$$

Solved mean field models:

Heisenberg glass: - SU(M >> 1) "spins" (Sachdev,Ye '93; Parcollet Georges '00)
 - SU(2) spins (Kavokine, MM, Parcollet Georges, '24)

$$\mathcal{H} = -\sum_{i < j} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j$$

RSB solution + continuous time QMC

Again:

$$\chi''_{
m Hb}(\omega) \approx 3.5 \frac{\omega}{J^2} \quad \longleftrightarrow \quad \chi''_{
m Ising}(\omega) \approx 0.5 \frac{\omega}{J^2}$$

Heisenberg glasses have lower T_c and more soft excitation spectrum than Ising systems with the same coupling. But the spectral density has the same linear frequency scaling.

Interpretation?

A. Andreanov, MM '11 L. Cugliandolo, MM '23 (Review on Quantum glasses)

A. Andreanov, MM '11 L. Cugliandolo, MM '23 (Review on Quantum glasses)

Physical interpretation: [applies to ALL insulating meanfield glasses]

A. Andreanov, MM '11 L. Cugliandolo, MM '23 (Review on Quantum glasses)

Physical interpretation: [applies to ALL insulating meanfield glasses]

Marginally stable energy landscape $G(\{m_i\})$ Minima: gapless semicircular spectrum of Hessian $\mathcal{H}_{ij}=\frac{\delta^2 G}{\delta m_i \delta m_j}$ $\rho(\lambda) \sim \frac{\sqrt{\lambda \Gamma}}{J^2}$

A. Andreanov, MM '11 L. Cugliandolo, MM '23 (Review on Quantum glasses)

Physical interpretation: [applies to ALL insulating meanfield glasses]

Marginally stable energy landscape $G(\{m_i\})$ Minima: gapless semicircular spectrum of Hessian $\mathcal{H}_{ij}=\frac{\delta^2 G}{\delta m_i \delta m_j}$ $\rho(\lambda) \sim \frac{\sqrt{\lambda \Gamma}}{I^2}$

-> Collective harmonic oscillators of mass $M\sim \Gamma^{-1}$ $\omega=\sqrt{\lambda/M}$ $\to \rho(\omega)\sim \frac{\omega^2}{\Gamma I^2}$

A. Andreanov, MM '11 L. Cugliandolo, MM '23 (Review on Quantum glasses)

Physical interpretation: [applies to ALL insulating meanfield glasses]

Marginally stable energy landscape $G(\{m_i\})$ Minima: gapless semicircular spectrum of Hessian $\mathcal{H}_{ij}=\frac{\delta^2 G}{\delta m_i \delta m_j}$ $\rho(\lambda) \sim \frac{\sqrt{\lambda \Gamma}}{I^2}$

-> Collective harmonic oscillators of mass $M\sim \Gamma^{-1}$ $\omega=\sqrt{\lambda/M}$ $\to \rho(\omega)\sim \frac{\omega^2}{\Gamma J^2}$

Gapless spectral function

$$\chi''(\omega) \sim x_{\omega}^2 \rho(\omega)$$

A. Andreanov, MM '11 L. Cugliandolo, MM '23 (Review on Quantum glasses)

Physical interpretation: [applies to ALL insulating meanfield glasses]

Marginally stable energy landscape $G(\{m_i\})$ Minima: gapless semicircular spectrum of Hessian $\mathcal{H}_{ij}=\frac{\delta^2 G}{\delta m_i \delta m_j}$ $\rho(\lambda) \sim \frac{\sqrt{\lambda \Gamma}}{I^2}$

ightharpoonup Collective harmonic oscillators of mass $M \sim \Gamma^{-1}$ $\omega = \sqrt{\lambda/M}$ $ightharpoonup
ho(\omega) \sim rac{\omega^2}{\Gamma \cdot I^2}$ $\langle x_\omega^2 \rangle = (M\omega)^{-1}$

Gapless spectral function

$$\chi''(\omega) \sim x_{\omega}^2 \rho(\omega)$$

A. Andreanov, MM '11 L. Cugliandolo, MM '23 (Review on Quantum glasses)

Physical interpretation: [applies to ALL insulating meanfield glasses]

Marginally stable energy landscape $G(\{m_i\})$ Minima: gapless semicircular spectrum of Hessian $\mathcal{H}_{ij} = \frac{\delta^2 G}{\delta m_i \delta m_j}$ $\rho(\lambda) \sim \frac{\sqrt{\lambda \Gamma}}{I^2}$

ightharpoonup Collective harmonic oscillators of mass $M \sim \Gamma^{-1}$ $\omega = \sqrt{\lambda/M}$

$$\rightarrow \rho(\omega) \sim \frac{\omega^2}{\Gamma J^2}$$
 $\langle x_\omega^2 \rangle = (M\omega)^{-1}$

Gapless spectral function

$$\chi''(\omega) \sim x_\omega^2 \rho(\omega) \sim rac{Z}{\omega} rac{\omega^2}{Z^2} \sim rac{\omega}{J^2}$$
 Independent of transverse field $\Gamma!$

$$M \sim \Gamma^{-1} \quad \omega = \sqrt{\lambda/M}$$

$$\langle x_{\omega}^2 \rangle = (M\omega)^{-1}$$

Non-trivial check: Independent of

Quantum glasses beyond mean field?

L. Vitteriti, ..., G. Carleo, A. Scardicchio, arXiv:2507.05073

Promising prospect: Numerics on Heisenberg glass (spin 1/2) in 2d

Quantum glasses beyond mean field?

L. Vitteriti, ..., G. Carleo, A. Scardicchio, arXiv:2507.05073

Promising prospect: Numerics on Heisenberg glass (spin 1/2) in 2d

Neural network variational wavefunctions that are adapted to arbitrary disorder

→ Efficient numerics

Results:

- There **is** a glass at T = 0, despite strong quantum fluctuations: Random ordering of spins
- Large S analysis allows to study low frequency spectrum and spatial mode properties (localization of spin waves)

Back to mean field: Metallic glasses

Is there any escape from the super-universal spectral function? $~\chi^{\prime\prime}(\omega)\propto\omega/J^2$

Back to mean field: Metallic glasses

Is there any escape from the super-universal spectral function? $\chi''(\omega) \propto \omega/J^2$

Yes: If the spins interact with a gapless bath (e.g. conduction electrons)

- → The collective oscillators (landscape normal modes) are overdamped
- → yet slower modes

$$ightarrow$$
 more spectral weight at low frequency, $~\chi^{\prime\prime}(\omega)\propto\omega^{lpha}~~lpha=0.5$

Sengupta, Georges; Read, Sachdev;

or even
$$lpha=0$$

Glass in a doped Mott insulator

Kavokine et al., Sachdev et al

Interplay of glassiness and localization

Long range frustrated quantum glasses?

Infinite range quantum glasses = a theorists' toy fantasy?

MM, P. Strack, S. Sachdev '12

Lattice fermions in laser cavity

Three building blocks:

- 1) Fermionic atoms in optical lattice
- 2) Laser cavity with multiple photon modes
- 3) Classical pump laser, driving transitions between fermion ground and excited state (sufficiently off resonance)

MM, P. Strack, S. Sachdev '12

Lattice fermions in laser cavity

Three building blocks:

- 1) Fermionic atoms in optical lattice
- 2) Laser cavity with multiple photon modes
- 3) Classical pump laser, driving transitions between fermion ground and excited state (sufficiently off resonance)

Integrating out pump and cavity photons:

$$\longrightarrow H\left[c^{\dagger},c\right] = -t\sum_{\langle i,j\rangle} \left(c_{i}^{\dagger}c_{j} + h.c.\right) + \sum_{i=1}^{N} \left(\varepsilon_{i} - \mu\right)n_{i} - \frac{1}{2}\sum_{i,j=1}^{N} V_{ij}n_{i}n_{j}$$

MM, P. Strack, S. Sachdev '12

Lattice fermions in laser cavity

Three building blocks:

- 1) Fermionic atoms in optical lattice
- 2) Laser cavity with multiple photon modes
- 3) Classical pump laser, driving transitions between fermion ground and excited state (sufficiently off resonance)

Random couplings

Integrating out pump and cavity photons:

$$V_{ij}(\Omega) = 2 \sum_{\ell=1}^{M} \frac{g_{i\ell}g_{j\ell}h_ih_j}{\Delta^2} \frac{\omega_{\ell}}{\Omega^2 + \omega_{\ell}^2}$$

$$\longrightarrow H\left[c^{\dagger},c\right] = -t\sum_{\langle i,j\rangle} \left(c_{i}^{\dagger}c_{j} + h.c.\right) + \sum_{i=1}^{N} \left(\varepsilon_{i} - \mu\right)n_{i} - \frac{1}{2}\sum_{i,j=1}^{N} V_{ij}n_{i}n_{j}$$

MM, P. Strack, S. Sachdev '12

Pumped optical cavities create mean field quantum Fermi glasses

MM, P. Strack, S. Sachdev '12

Pumped optical cavities create mean field quantum Fermi glasses

$$\mu_{f-ph} = -t \sum_{\langle i,j \rangle} \left(c_i^{\dagger} c_j + h.c. \right) + \sum_{i=1}^{N} (\epsilon_i - \mu) n_i$$

$$+ \sum_{\ell=1}^{M} \omega_{\ell} a_{\ell}^{\dagger} a_{\ell} + \sum_{i=1}^{N} \sum_{\ell=1}^{M} \frac{g_{i\ell} h_i}{\Delta} n_i \left(a_{\ell} + a_{\ell}^{\dagger} \right)$$

Integrating out the cavity photons:

$$H\left[c^{\dagger},c\right] = -t\sum_{\langle i,j\rangle} \left(c_{i}^{\dagger}c_{j} + h.c.\right) + \sum_{i=1}^{N} \left(\varepsilon_{i} - \mu\right)n_{i} - \frac{1}{2}\sum_{i,j=1}^{N} V_{ij}n_{i}n_{j}$$

Long range, frustrated interactions + short range hopping!

$$V_{ij}(\Omega) = 2 \sum_{\ell=1}^{M} \frac{g_{i\ell}g_{j\ell}h_ih_j}{\Delta^2} \frac{\omega_{\ell}}{\Omega^2 + \omega_{\ell}^2}$$

MM, P. Strack, S. Sachdev '12

Basic mechanisms:

can be made weak

$$H\left[c^{\dagger},c\right] = -t\sum_{\langle i,j\rangle} \left(c_{i}^{\dagger}c_{j} + h.c.\right) + \sum_{i=1}^{N} \left(\varepsilon_{i} - \mu\right)n_{i} - \frac{1}{2}\sum_{i,j=1}^{N} V_{ij}n_{i}n_{j}$$

MM, P. Strack, S. Sachdev '12

Basic mechanisms:

can be made weak

$$H\left[c^{\dagger},c\right] = -t\sum_{\langle i,j\rangle} \left(c_{i}^{\dagger}c_{j} + h.c.\right) + \sum_{i=1}^{N} \left(\varepsilon_{i} - \mu\right)n_{i} - \frac{1}{2}\sum_{i,j=1}^{N} V_{ij}n_{i}n_{j}$$

Short range hopping
Long range interaction

MM, P. Strack, S. Sachdev '12

Basic mechanisms:

can be made weak

$$H\left[c^{\dagger},c\right] = -t\sum_{\langle i,j\rangle} \left(c_{i}^{\dagger}c_{j} + h.c.\right) + \sum_{i=1}^{N} \left(\varepsilon_{i} - \mu\right)n_{i} - \frac{1}{2}\sum_{i,j=1}^{N} V_{ij}n_{i}n_{j}$$

Glassy density order → effective, selfgenerated disorder potential → possibly Anderson localization of single fermion modes

MM, P. Strack, S. Sachdev '12

Basic mechanisms:

can be made weak

$$H\left[c^{\dagger},c\right] = -t\sum_{\langle i,j\rangle} \left(c_{i}^{\dagger}c_{j} + h.c.\right) + \sum_{i=1}^{N} \left(\varepsilon_{i} - \mu\right)n_{i} - \frac{1}{2}\sum_{i,j=1}^{N} V_{ij}n_{i}n_{j}$$

Glassy density order → effective, selfgenerated disorder potential

→ possibly Anderson localization of single fermion modes

MM, P. Strack, S. Sachdev '12

Basic mechanisms:

can be made weak

$$H\left[c^{\dagger},c\right] = -t\sum_{\langle i,j\rangle} \left(c_{i}^{\dagger}c_{j} + h.c.\right) + \sum_{i=1}^{N} \left(\varepsilon_{i} - \mu\right)n_{i} - \frac{1}{2}\sum_{i,j=1}^{N} V_{ij}n_{i}n_{j}$$

Glassy density order → effective, selfgenerated disorder potential → possibly Anderson localization of single fermion modes

MM, P. Strack, S. Sachdev '12

Basic mechanisms:

can be made weak

$$H\left[c^{\dagger},c\right] = -t\sum_{\langle i,j\rangle} \left(c_{i}^{\dagger}c_{j} + h.c.\right) + \sum_{i=1}^{N} \left(\varepsilon_{i} - \mu\right)n_{i} - \frac{1}{2}\sum_{i,j=1}^{N} V_{ij}n_{i}n_{j}$$

Glassy density order → effective, selfgenerated disorder potential → possibly Anderson localization of single fermion modes

MM, P. Strack, S. Sachdev '12

Basic mechanisms:

can be made weak

$$H\left[c^{\dagger},c\right] = -t\sum_{\langle i,j\rangle} \left(c_{i}^{\dagger}c_{j} + h.c.\right) + \sum_{i=1}^{N} \left(\varepsilon_{i} - \mu\right)n_{i} - \frac{1}{2}\sum_{i,j=1}^{N} V_{ij}n_{i}n_{j}$$

 $n \sim \frac{1}{2}$ \rightarrow Intermediate phase: both glassy & delocalized!

MM, P. Strack, S. Sachdev '12

Basic mechanisms:

can be made weak

$$H\left[c^{\dagger},c\right] = -t\sum_{\langle i,j\rangle} \left(c_{i}^{\dagger}c_{j} + h.c.\right) + \sum_{i=1}^{N} \left(\varepsilon_{i} - \mu\right)n_{i} - \frac{1}{2}\sum_{i,j=1}^{N} V_{ij}n_{i}n_{j}$$

 $n \rightarrow 0.1 \rightarrow Instabilities cross: \rightarrow 1st order transition, metastability!$

MM, P. Strack, S. Sachdev '12

Basic mechanisms:

can be made weak

$$H\left[c^{\dagger},c\right] = -t\sum_{\langle i,j\rangle} \left(c_{i}^{\dagger}c_{j} + h.c.\right) + \sum_{i=1}^{N} \left(\varepsilon_{i} - \mu\right)n_{i} - \frac{1}{2}\sum_{i,j=1}^{N} V_{ij}n_{i}n_{j}$$

 $n \rightarrow 0.1 \rightarrow Instabilities cross: \rightarrow 1st order transition, metastability!$ Dynamics across the transition? Nucleation of delocalised phase?

Adding on-site disorder: Perturbing the Anderson transition

Dobrosavljevic, Tanaskovic, Pastor '03

Analogous phase diagram proposed in electron glasses (d=2,3)

$$V_{ij} = \frac{e^2}{r_{ij}}$$

$$H_{\text{eff}} = -t \sum_{\langle i,j \rangle} \left(c_i^{\dagger} c_j + h.c. \right) + \sum_{i=1}^{N} \left(\varepsilon_i - \mu \right) n_i - \frac{1}{2} \sum_{i,j=1}^{N} V_{ij} n_i n_j$$