

Markus Müller Condensed Matter Theory Paul Scherrer Institut, Villigen Switzerland

Non-ergodicity and glassiness in quantum systems

School on Quantum Dynamics of Matter, Light and Information ICTP Trieste, Aug 18 – Sep 5, 2025.

Review:

L. Cugliandolo and M. Müller arXiv:2208.05417

Review on Quantum Glasses

Chapter 18 in:

Spin Glass Theory & Far Beyond –

40 years of Replica Symmetry Breaking,

1st ed. World Scientific. (2023)

Ergodicity and thermalization

General tenet of statistical physics: Interacting many body systems establish equilibrium and are ergodic

Ergodicity and thermalization

General tenet of statistical physics: Interacting many body systems establish equilibrium and are ergodic

If that happens:

- Unique state described by Gibbs ensemble
- No dependence on history, no memory
- Usually fast thermalization on microscopic timescales, even in closed systems (cf. ETH hypothesis)

Convenient to calculate, reliably reproducible - but also a bit dull.

Non-Ergodicity and non-thermalization

An example where it does not happen:

Quantum glasses: Intriguing history dependence

Science 1999

Quantum Annealing of a Disordered Magnet

J. Brooke, ¹ D. Bitko, ¹ T. F. Rosenbaum, ^{1*} G. Aeppli²

LiHo_xY_{1-x}F₄: Dipolar Ising spin glass in transverse fie

$$\mathcal{H} = -\sum_{i,j}^{N} J_{ij} \sigma_i^z \sigma_j^z - \Gamma \sum_{i}^{N} \sigma_i^x$$

Non-Ergodicity and non-thermalization

An example where it does not happen:

Quantum glasses: Intriguing history dependence

Science 1999

Quantum Annealing of a Disordered Magnet

J. Brooke, ¹ D. Bitko, ¹ T. F. Rosenbaum, ^{1*} G. Aeppli²

LiHo_xY_{1-x}F₄: Dipolar Ising spin glass in transverse field

$$\mathcal{H} = -\sum_{i,j}^{N} \frac{J_{ij} \sigma_i^z \sigma_j^z}{\Gamma} - \frac{\Gamma}{\Gamma} \sum_{i}^{N} \sigma_i^x$$

Utterly different response under *same* conditions (H_t,T)! Long-lived non-equilibrium & history dependence

Routes to non-ergodicity

What underlies the belief of ubiquitous ergodicity?

And how can one escape from it?

If $|\epsilon_i - \epsilon_j| \gg t$: no hybridization, wavefunction localizes on i or j If $|\epsilon_i - \epsilon_j| \lesssim t$: "resonance", wavefunction spreads

Quantum localization: no-percoation of resonances!

Anderson 1958

Anderson insulator Few isolated resonances

No diffusion! No ergodicity!

Anderson metal
There are many resonances
and they overlap

Exception? 1. Spontaneous symmetry breaking: energy barriers between different ordered states diverge

Exception? 2. Glasses – classical or quantum:

Many collective states separated by barriers (Lectures I+II)

What about adding interactions to Anderson localization?

Anderson, Fleischman 1979 Basko Aleiner, Altshuler 2006 Gornyi, Mirlin, Polyakov 2005

"Many-body-localization"?

$$H = \sum_{i,j} \epsilon_i c_i^{\dagger} c_i - t \sum_{i,j} (c_i^{\dagger} c_j + \text{h.c.})$$

$$H = \sum_{i,j} \epsilon_i c_i^{\dagger} c_i - t \sum_{i,j} (c_i^{\dagger} c_j + \text{h.c.}) + \sum_{i,j} J_{ij} c_i^{\dagger} c_i c_j^{\dagger} c_j$$

Anderson, Fleischman 1979 Basko Aleiner, Altshuler 2006 Gornyi, Mirlin, Polyakov 2005

"Many-body-localization"?

$$H = \sum_{i,j} \epsilon_i c_i^{\dagger} c_i - t \sum_{i,j} (c_i^{\dagger} c_j + \text{h.c.})$$

$$H = \sum_{i,j} \epsilon_i c_i^{\dagger} c_i - t \sum_{i,j} (c_i^{\dagger} c_j + \text{h.c.}) + \sum_{i,j} J_{i,j} c_i^{\dagger} c_i c_j^{\dagger} c_j$$

Can energy mismatch that localizes single particles be bridged by exchange of energy with other particles, forming a bath ("dephasing")?

Anderson, Fleischman 1979 Basko Aleiner, Altshuler 2006 Gornyi, Mirlin, Polyakov 2005

"Many-body-localization"?

$$H = \sum_{i,j} \epsilon_i c_i^{\dagger} c_i - t \sum_{i,j} (c_i^{\dagger} c_j + \text{h.c.})$$

$$H = \sum_{i,j} \epsilon_i c_i^{\dagger} c_i - t \sum_{i,j} (c_i^{\dagger} c_j + \text{h.c.}) + \sum_{i,j} J_{i,j} c_i^{\dagger} c_i c_j^{\dagger} c_j$$

Can energy mismatch that localizes single particles be bridged by exchange of energy with other particles, forming a bath ("dephasing")? No, not always!

What about adding interactions to Anderson localization?

Anderson, Fleischman 1979 Basko Aleiner, Altshuler 2006 Gornyi, Mirlin, Polyakov 2005

"Many-body-localization"?

$$H = \sum_{i,j} \epsilon_i c_i^{\dagger} c_i - t \sum_{i,j} (c_i^{\dagger} c_j + \text{h.c.}) + \sum_{i,j} J_{i,j} c_i^{\dagger} c_i c_j^{\dagger} c_j$$

Rewritten in single-particle localized basis:

$$H = \sum_{\alpha,\beta,\gamma,\delta} \epsilon_{\alpha} c_{\alpha}^{\dagger} c_{\alpha} + \sum_{\alpha,\beta,\gamma,\delta} J_{\alpha\beta,\gamma\delta} c_{\alpha}^{\dagger} c_{\beta} c_{\gamma}^{\dagger} c_{\delta}$$

What about adding interactions to Anderson localization?

Anderson, Fleischman 1979 Basko Aleiner, Altshuler 2006 Gornyi, Mirlin, Polyakov 2005

"Many-body-localization"?

$$H = \sum_{i,j} \epsilon_i c_i^{\dagger} c_i - t \sum_{i,j} (c_i^{\dagger} c_j + \text{h.c.}) + \sum_{i,j} J_{ij} c_i^{\dagger} c_i c_j^{\dagger} c_j$$

Rewritten in single-particle localized basis:

$$H = \sum_{\alpha,\beta,\gamma,\delta} \epsilon_{\alpha} c_{\alpha}^{\dagger} c_{\alpha} + \sum_{\alpha,\beta,\gamma,\delta} J_{\alpha\beta,\gamma\delta} c_{\alpha}^{\dagger} c_{\beta} c_{\gamma}^{\dagger} c_{\delta}$$

MBL ↔ Non-percolation of resonances in many-body space!

$$J_{\alpha\beta,\gamma\delta} \leftrightarrow \epsilon_{\alpha} - \epsilon_{\beta} + \epsilon_{\gamma} - \epsilon_{\delta}$$

The surrounding particles, being localized themselves do not form a continuous bath!

Glass physics ≠ Manybody localization

Two ways to break ergodicity

Spin/structural glasses

Obstruction: Big mountains

Quantum localization

Obstruction: Bad tunnels

"Many-body-localization"

Glasses

Are these ergodicity breaking mechanisms related?

Frustrated disordered systems	Quantum localized systems
Spin/structural glass	Anderson insulator (Fermi glass)

Frustrated disordered systems	Quantum localized systems
Spin/structural glass	Anderson insulator (Fermi glass)
Very large barriers ΔE between metastable states: $\Delta E \gg \text{Temperature T (classical)}$ $\Delta E \gg \text{Tunneling } \Gamma \text{ (quantum)}$	Vanishingly small matrix elements between distant states in Hilbert space (no energy barriers necessary)

Frustrated disordered systems	Quantum localized systems
Spin/structural glass	Anderson insulator (Fermi glass)
Very large barriers ΔE between metastable states: $\Delta E \gg$ Temperature T (classical) $\Delta E \gg$ Tunneling Γ (quantum)	Vanishingly small matrix elements between distant states in Hilbert space (no energy barriers necessary)
Destroyed by large T	Robust to additional energy

Frustrated disordered systems	Quantum localized systems
Spin/structural glass	Anderson insulator (Fermi glass)
Very large barriers ΔE between metastable states: $\Delta E \gg$ Temperature T (classical) $\Delta E \gg$ Tunneling Γ (quantum)	Vanishingly small matrix elements between distant states in Hilbert space (no energy barriers necessary)
Destroyed by large T	Robust to additional energy
Robust to environment coupling	Destroyed by a continuous bath

Frustrated disordered systems	Quantum localized systems
Spin/structural glass	Anderson insulator (Fermi glass)
Very large barriers ΔE between metastable states: $\Delta E \gg$ Temperature T (classical) $\Delta E \gg$ Tunneling Γ (quantum)	Vanishingly small matrix elements between distant states in Hilbert space (no energy barriers necessary)
Destroyed by large T	Robust to additional energy
Robust to environment coupling	Destroyed by a continuous bath
Most stable in high dimension	Rigorously probably only in d=1

Frustrated disordered systems	Quantum localized systems
Spin/structural glass	Anderson insulator (Fermi glass)
Very large barriers ΔE between metastable states: $\Delta E \gg$ Temperature T (classical) $\Delta E \gg$ Tunneling Γ (quantum)	Vanishingly small matrix elements between distant states in Hilbert space (no energy barriers necessary)
Destroyed by large T	Robust to additional energy
Robust to environment coupling	Destroyed by a continuous bath
Most stable in high dimension	Rigorously probably only in d=1

Neither implies the other & Neither excludes the other!

Frustrated disordered systems	Quantum localized systems
Spin/structural glass	Anderson insulator (Fermi glass)
Very large barriers ΔE between metastable states: $\Delta E \gg$ Temperature T (classical) $\Delta E \gg$ Tunneling Γ (quantum)	Vanishingly small matrix elements between distant states in Hilbert space (no energy barriers necessary)
Destroyed by large T	Robust to additional energy
Robust to environment coupling	Destroyed by a continuous bath
Most stable in high dimension	Rigorously probably only in d=1

Interplay of glassiness and quantum dynamics/ localization?

A very rich playground! (see lecture III)

Integrable systems in 1d

Extensively many conserved quantities (XXZ chain, Lieb-Liniger)

Integrable systems in 1d

Extensively many conserved quantities (XXZ chain, Lieb-Liniger)

Quantum many body scars

Hamiltonians admitting typically O(N) special,

low-entangled, non-ETH eigenstates (AKLT, Hubbard model)

Integrable systems in 1d

Extensively many conserved quantities (XXZ chain, Lieb-Liniger)

Quantum many body scars

Hamiltonians admitting typically O(N) special, low-entangled, non-ETH eigenstates (AKLT, Hubbard model)

Shattered Hilbert spaces

Hamiltonians admitting many blocked, non-moving configurations e.g. 1d systems with conserved charge & dipole moment, and strictly finite range circuit dynamics

Integrable systems in 1d

Extensively many conserved quantities (XXZ chain, Lieb-Liniger)

Quantum many body scars

Hamiltonians admitting typically O(N) special, low-entangled, non-ETH eigenstates (AKLT, Hubbard model)

Shattered Hilbert spaces

Hamiltonians admitting many blocked, non-moving configurations e.g. 1d systems with conserved charge & dipole moment, and strictly finite range circuit dynamics

 Fractons - systems whose excitations cannot move on their own due to multiple topological constraints (e.g. 3d analogue of toric code)

- Integrable systems in 1d

 Extensively many conserved quantities (XXZ chain, Lieb-Liniger)
- Quantum many body scars
 Hamiltonians admitting typically O(N) special,
 low-entangled, non-ETH eigenstates (AKLT, Hubbard model)
- Shattered Hilbert spaces
 - Hamiltonians admitting many blocked, non-moving configurations e.g. 1d systems with conserved charge & dipole moment, and strictly finite range circuit dynamics
- Fractons systems whose excitations cannot move on their own due to multiple topological constraints (e.g. 3d analogue of toric code)

Other ways to avoid ergodicity and thermalization?

- Integrable systems in 1d

 Extensively many conserved quantities (XXZ chain, Lieb-Liniger)
- Quantum many body scars
 Hamiltonians admitting typically O(N) special,
 low-entangled, non-ETH eigenstates (AKLT, Hubbard model)
- Shattered Hilbert spaces

Hamiltonians admitting many blocked, non-moving configurations e.g. 1d systems with conserved charge & dipole moment, and strictly finite range circuit dynamics

Fractons - systems whose excitations cannot move on their own due to multiple topological constraints
 _{Exotic ergodicity breaking}
 (e.g. 3d analogue of toric code)
 Related neither to glasses
 nor to MBL

Interplay of glassiness and (many-body) localization

Interesting questions: (see lecture III)

- How does glassy order affect localization & loc. transitions?
- Can glassy order coexist with delocalized quantum modes:
 Bose condensates and/or metallic, delocalized fermions?

Phenomenology in long range, frustrated quantum glasses:

- Long-range-coupled cold atoms
- Quantum Coulomb glass and the metal insulator transition:
 A very rich phase transition

Many interesting open questions

Glasses

Glasses: = Ergodicity breakers with a large number of amorphously ordered states that are separated by high barriers.

Multitude of states and their organization in phase space entail interesting properties, also with regard to quantum dynamics.

Typical spin glass Hamiltonian:

$$H = \sum_{\langle i,j \rangle} J_{ij} S_i S_j$$

Randomly signed couplings (due to random doping/exchange paths, RKKY or dipolar couplings, etc)

Typical spin glass Hamiltonian:

$$H = \sum_{\langle i,j \rangle} J_{ij} S_i S_j$$

Randomly signed couplings (due to random doping/exchange paths, RKKY or dipolar couplings, etc)

Hallmark: **frustration** of interactions

Lots of plaquettes with at least one unhappy bond

Typical spin glass Hamiltonian:

$$H = \sum_{\langle i,j \rangle} J_{ij} S_i S_j$$

Randomly signed couplings (due to random doping/exchange paths, RKKY or dipolar couplings, etc)

Hallmark: **frustration** of interactions

Lots of plaquettes with at least one unhappy bond

Spin glass: percolating magnetic unhappiness. Many different ways to minimize the unhappiness!

Typical spin glass Hamiltonian:

$$H = \sum_{\langle i,j \rangle} J_{ij} S_i S_j$$

Randomly signed couplings (due to random doping/exchange paths, RKKY or dipolar couplings, etc)

Hallmark: **frustration** of interactions

Lots of plaquettes with at least one unhappy bond

Spin glass: percolating magnetic unhappiness. Many different ways to minimize the unhappiness!

One of many NP-hard optimization problems

Glasses: systems with many states

Anticipate:

Unlike simple magnets, glasses can order in many amorphous patterns

Fundamental questions

- Is there a phase transition? What is the order parameter?
- How to deal with disorder?
- How many ordering patterns are there, and how are they organized?
- What are quantum dynamics and excitations in such states?
 Impact on quantum phenomena like localization, Bose condensation etc?

Ordering patterns as minima of a free energy functional?

Warm-up: mean-field, all-to-all Ising ferromagnet

$$\begin{split} S_i &= \pm 1 \\ H &= -\frac{J}{2N} \sum_{i,j=1}^N S_i S_j - B \sum_{i=1}^N S_i \\ &= -\frac{NJ}{2} m^2 - NBm \equiv Ne(m) \\ m &:= \frac{1}{N} \sum_i S_i; \qquad \text{Average magnetization per spin} \end{split}$$

Entropy of configurations of magnetization m:

$$S(m) = Ns_0(m)$$

$$s_0(m) = -\frac{1+m}{2}\log\frac{1+m}{2} - \frac{1-m}{2}\log\frac{1-m}{2}$$

Free energy constrained to have magnetization m:

$$F(m) = E(m) - TS(m) = N(e(m) - Ts_0(m))$$

Spontaneous symmetry breaking:

$$\lim_{B \uparrow 0^{-}} \lim_{N \to \infty} P_{\text{Gibbs}}(\{S\}; B) \neq \lim_{B \downarrow 0^{+}} \lim_{N \to \infty} P_{\text{Gibbs}}(\{S\}; B)$$

Extensive free energy barrier: spontaneous symmetry breaking: the two pure states are infinitely long-lived in the limit $N \to \infty$

Important: Only full F = F(T) is non-analytic due to the minimization over m, which bifurcates at T_c . But "energy landscape" F(m,T) is analytic in both m and T. It can be obtained from a high T-expansion!

Typical spin glass Hamiltonian:

$$H = \sum_{\langle i,j
angle} J_{ij} S_i S_j$$
 Randomly signed couplings

Difficulties:

- No obvious symmetry breaking / ordering pattern
- Order parameter (analogue of m)?
- How many pure states are there? What are their properties?

Consider mean field glasses (random all to all interactions):

- energy landscape can be construct unambiguously;
- saddle point methods can be used (replica approach)

Consider mean field glasses (random all to all interactions):

- energy landscape can be construct unambiguously;
- saddle point methods can be used (replica approach)

Two universality classes of glasses, with very different phenomenology!

Mean field version of spin glasses: Pairwise interacting spins $H = -\frac{1}{2} \sum_{i} J_{ij} S_i S_j$

$$H = -\frac{1}{2} \sum_{i,j} J_{ij} S_i S_j$$

Consider mean field glasses (random all to all interactions):

- energy landscape can be construct unambiguously;
- saddle point methods can be used (replica approach)

Two universality classes of glasses, with very different phenomenology!

Mean field version of spin glasses: Pairwise interacting spins $H = -\frac{1}{2} \sum_{i,j} J_{ij} S_i S_j$

$$H = -\frac{1}{2} \sum_{i,j} J_{ij} S_i S_j$$

Toy model for structural glasses (super-cooled liquids): p-tuple interactions (e.g. p = 3)

$$H = -\frac{1}{6} \sum_{i,j,k} J_{ijk} S_i S_j S_k$$

Believed to capture amorphous glasses in high dimensions: Dynamical equations are structurally identical to those of mode coupling theory of liquids

1. The Ising mean field glass: Sherrington-Kirkpatrick (SK) model

Hamiltonian

$$H_{SK}[S] = \sum_{i < j=1}^{N} J_{ij} S_i S_j$$

Gaussian disorder J_{ii} with zero mean and variance:

$$\overline{J_{ij}^2} = \frac{1}{N}$$

ensures O(1) local field b_i on a given spin s_i , and thus O(N) total energy.

$$b_i = \frac{\partial H}{\partial S_i} = \sum_{j(\neq i)} J_{ij} S_j$$

2. The spherical p-spin model

Hamiltonian

$$H[\sigma] = -\frac{1}{p!} \sum_{i_1 \cdots i_p} J_{i_1 \cdots i_p} \sigma_{i_1} \cdots \sigma_{i_p} = -\sum_{i_1 < i_2 < \cdots < i_p} J_{i_1 \cdots i_p} \sigma_{i_1} \cdots \sigma_{i_p}$$

Spherical constraint only (easy to compute - but for p=2 trivializes the model)

$$\sum_i \sigma_i^2 = N$$
 $\sum_{\{s_i\}} o \int \prod_i d\sigma_i \delta \left(\sum_i \sigma_i^2 - N \right)$

Gaussian disorder with zero mean and variance:

$$\overline{J^2_{i_1\cdots i_p}} = \frac{p!}{2N^{p-1}}$$

ensures O(1) local fields on a given spin, and thus O(N) total energy.

Free energy functional

Spins are not equivalent \rightarrow construct free energy landscape $G(\{m_i\}_{i=1,...,N})$

= Gibbs free energy of system constrained such that spin S_i has magnetization m_i

Free energy functional

Spins are not equivalent \rightarrow construct free energy landscape $G(\{m_i\}_{i=1,...,N})$ = Gibbs free energy of system constrained such that spin S_i has magnetization m_i

Computation (Georges & Yedidia, J. Phys. A 1991)

- At any T, apply local fields h_i that impose magnetizations m_i
- Perform Legendre transform

$$F(\{h_i\}_{i=1,...,N}) \stackrel{L.T.}{\to} G(\{m_i\}_{i=1,...,N})$$

Free energy functional

Spins are not equivalent \rightarrow construct free energy landscape $G(\{m_i\}_{i=1,...,N})$ = Gibbs free energy of system constrained such that spin S_i has magnetization m_i

Computation (Georges & Yedidia, J. Phys. A 1991)

- At any T, apply local fields h_i that impose magnetizations m_i
- Perform Legendre transform

$$F(\{h_i\}_{i=1,...,N}) \stackrel{L.T.}{\to} G(\{m_i\}_{i=1,...,N})$$

• Order by order in a high T (or small J) expansion: In the limit $N \to \infty$ expansion terminates after second term!

Free energy functional

Spins are not equivalent \rightarrow construct free energy landscape $G(\{m_i\}_{i=1,...,N})$ = Gibbs free energy of system constrained such that spin S_i has magnetization m_i

Computation (Georges & Yedidia, J. Phys. A 1991)

- At any T, apply local fields h_i that impose magnetizations m_i
- Perform Legendre transform

$$F(\{h_i\}_{i=1,...,N}) \stackrel{L.T.}{\to} G(\{m_i\}_{i=1,...,N})$$

- Order by order in a high T (or small J) expansion: In the limit $N \to \infty$ expansion terminates after second term!
- \rightarrow Functional of all m_i convex at high T But: develops lots of local minima at low T < T_c! \leftrightarrow ordering patterns

SK model: (Thouless-Anderson Palmer, 1975)

$$G\{m_i\} = -T\sum_{i} s_0(m_i) - \sum_{i < j} m_i J_{ij} m_j - \frac{1}{2} \sum_{i < j} (1 - m_i^2) J_{ij}^2 \beta (1 - m_j^2) + O(\beta^2)$$

Standard mean field energy

$$s_0(m) = -\frac{1+m}{2}\log\frac{1+m}{2} - \frac{1-m}{2}\log\frac{1-m}{2}$$

Van der Waals-like interaction:

"Onsager back reaction"

$$\chi_j = \frac{dm_j}{dh_j} = \frac{d\tanh(\beta h_j)}{dh_j} = \beta(1 - m_j^2)$$

SK model:

$$G\{m_i\} = -T\sum_{i} s_0(m_i) - \sum_{i < j} m_i J_{ij} m_j - \frac{1}{2} \sum_{i < j} (1 - m_i^2) J_{ij}^2 \beta (1 - m_j^2) + O(\beta^2)$$

P-spin model:

$$\frac{G(\{m_i\})}{N} = -\frac{1}{2\beta} \log(1-q) - \frac{1}{p!N} \sum_{i_1 \cdots i_p} J_{i_1 \cdots i_p} m_{i_1} \cdots m_{i_p} - \frac{\beta}{4} [1 - pq^{p-1} + q^p(p-1)]$$

SK model:

$$G\{m_i\} = -T\sum_{i} s_0(m_i) - \sum_{i < j} m_i J_{ij} m_j - \frac{1}{2} \sum_{i < j} (1 - m_i^2) J_{ij}^2 \beta (1 - m_j^2) + O(\beta^2)$$

P-spin model:

Spin glass (Edwards-Anderson) order parameter, "self-overlap": $q \equiv \frac{1}{N} \sum_{i} m_i^2$

$$\frac{G(\{m_i\})}{N} = -\frac{1}{2\beta} \log(1-q) - \frac{1}{p!N} \sum_{i_1 \cdots i_p} J_{i_1 \cdots i_p} m_{i_1} \cdots m_{i_p} - \frac{\beta}{4} [1 - pq^{p-1} + q^p(p-1)]$$

SK model:

$$G\{m_i\} = -T\sum_i s_0(m_i) - \sum_{i < j} m_i J_{ij} m_j - \frac{1}{2} \sum_{i < j} (1 - m_i^2) J_{ij}^2 \beta (1 - m_j^2) + O(\beta^2)$$

P-spin model:

Spin glass (Edwards-Anderson) order parameter, "self-overlap": $q \equiv \frac{1}{N} \sum m_i^2$

$$\frac{G(\{m_i\})}{N} = -\frac{1}{2\beta} \log(1-q) - \frac{1}{p!N} \sum_{i_1 \cdots i_p} J_{i_1 \cdots i_p} m_{i_1} \cdots m_{i_p} - \frac{\beta}{4} [1 - pq^{p-1} + q^p(p-1)]$$

Pure states = Minima of G!

$$P_{\text{Gibbs}}[S] = \sum w_{\alpha} P_{\alpha}[S]$$

Clustering property in mean field models implies: $P_{\alpha}[S] = \prod_{i} \left[\frac{1 + m_{i}^{(\alpha)}}{2} \delta_{1,S_{i}} + \frac{1 - m_{i}^{(\alpha)}}{2} \delta_{-1,S_{i}} \right] = \prod_{i} \frac{1 + m_{i}^{(\alpha)}S_{i}}{2}$

$$P_{\alpha}[S] = \prod_{i} \left[\frac{1 + m_{i}^{(\alpha)}}{2} \delta_{1,S_{i}} + \frac{1 - m_{i}^{(\alpha)}}{2} \delta_{-1,S_{i}} \right] = \prod_{i} \frac{1 + m_{i}^{(\alpha)} S_{i}}{2}$$

SK model:

$$G\{m_i\} = -T\sum_{i} s_0(m_i) - \sum_{i < j} m_i J_{ij} m_j - \frac{1}{2} \sum_{i < j} (1 - m_i^2) J_{ij}^2 \beta (1 - m_j^2) + O(\beta^2)$$

P-spin model:

Spin glass (Edwards-Anderson) order parameter, "self-overlap": $q \equiv \frac{1}{N} \sum m_i^2$

$$\frac{G(\{m_i\})}{N} = -\frac{1}{2\beta} \log(1-q) - \frac{1}{p!N} \sum_{i_1 \cdots i_p} J_{i_1 \cdots i_p} m_{i_1} \cdots m_{i_p} - \frac{\beta}{4} [1 - pq^{p-1} + q^p(p-1)]$$

Pure states = Minima of G!
$$P_{\text{Gibbs}}[S] = \sum w_{\alpha} P_{\alpha}[S]$$

Free energy of minimum $Nf_{lpha} = G(\{m_i^{lpha}\})$

Weight of **pure state** in the full Gibbs measure $w_{lpha} \propto \exp(-eta N f_{lpha})$

$$w_{\alpha} \propto \exp(-\beta N f_{\alpha})$$

SK model:

$$G\{m_i\} = -T\sum_{i} s_0(m_i) - \sum_{i < j} m_i J_{ij} m_j - \frac{1}{2} \sum_{i < j} (1 - m_i^2) J_{ij}^2 \beta (1 - m_j^2) + O(\beta^2)$$

P-spin model:

Spin glass (Edwards-Anderson) order parameter, "self-overlap": $q \equiv \frac{1}{N} \sum m_i^2$

$$\frac{G(\{m_i\})}{N} = -\frac{1}{2\beta} \log(1-q) - \frac{1}{p!N} \sum_{i_1 \cdots i_p} J_{i_1 \cdots i_p} m_{i_1} \cdots m_{i_p} - \frac{\beta}{4} [1 - pq^{p-1} + q^p(p-1)]$$

Pure states = Minima of G !
$$P_{\text{Gibbs}}[S] = \sum w_{\alpha} P_{\alpha}[S]$$

Free energy of minimum $Nf_{lpha}=G(\{m_i^{lpha}\})$

Weight of **pure state** in the full Gibbs measure

$$w_{\alpha} \propto \exp(-\beta N f_{\alpha})$$

Can show: metastable states capture the essence of phase space: $\log(\sum w_{\alpha}) = \overline{\log(Z_{\mathrm{full}})}$

The two universality classes of glasses have very different landscapes

- Number and nature of minima
- The way they appear at low T
- Organization in energy and configuration space

TAP Equations: SK-model

$$G\{m_i\} = -T\sum_{i} s_0(m_i) - \sum_{i < j} m_i J_{ij} m_j - \frac{1}{2} \sum_{i < j} (1 - m_i^2) J_{ij}^2 \beta (1 - m_j^2) + O(\beta^2)$$

Minima:

$$\frac{\partial G}{\partial m_i} = 0 \leftrightarrow$$

$$m_i = \tanh \left[\beta \sum_{j \neq i} J_{ij} \left(m_j - m_i J_{ij} \beta (1 - m_j^2) \right) \right] \leftrightarrow$$

$$m_i = anh \left[eta \sum_{j
eq i} J_{ij} m_j^{(i)}
ight]$$
 Magnetization in absence of spin i: $m_j^{(i)} = m_j - m_i J_{ij} eta(1-m_j^2)$ On Sager reaction to $m_j^{(i)} = m_j - m_j J_{ij} \beta(1-m_j^2)$

$$m_j^{(i)} = m_j - m_i J_{ij} \beta (1 - m_j^2)$$

Onsager reaction to m_i

Standard mean field - diminished by polarization response of environment

TAP states: SK-model

$$m_i = anh \left[eta \sum_{j \neq i} J_{ij} \left(m_j - m_i J_{ij} eta(1 - m_j^2)
ight)
ight]$$

Linearize

$$m_i = \beta \sum_{j \neq i} J_{ij} m_j - m_i \beta^2 J^2 + O(m^3, 1/N)$$

High T : only solution is m_i = 0. When/how do ordered minima with $m_i \neq 0$ occur?

TAP states: SK-model

$$m_i = \tanh \left[\beta \sum_{j \neq i} J_{ij} \left(m_j - m_i J_{ij} \beta (1 - m_j^2) \right) \right]$$

Linearize

$$m_i = \beta \sum_{j \neq i} J_{ij} m_j - m_i \beta^2 J^2 + O(m^3, 1/N)$$

Instability when first mode of the Gaussian random matrix J_{ij} goes soft

 $\begin{array}{c} \text{Spectrum} \\ \text{of } J_{ij} \end{array}$

Glass transition (spin freezing $m_i \neq 0$) at T_c = J

$$m_i = \tanh \left[\beta \sum_{j \neq i} J_{ij} \left(m_j - m_i J_{ij} \beta (1 - m_j^2) \right) \right]$$

Linearize

$$m_i = \beta \sum_{j \neq i} J_{ij} m_j - m_i \beta^2 J^2 + O(m^3, 1/N)$$

Instability when first mode of the Gaussian random matrix J_{ij} goes soft

Spectrum of J_{ij}

Glass transition (spin freezing $m_i \neq 0$) at T_c = J

But: many modes become soft almost simultaneously: competing condensates → multiple minima!

A priori: exponentially many minima (in N) for $T < T_c$

But: only those at lowest free energy density are physically relevant minima at higher energy are pathologically fragile

A priori: exponentially many minima (in N) for $T < T_c$

But: only those at lowest free energy density are physically relevant minima at higher energy are pathologically fragile

Intriguing aspect: At all T the relevant minima have a gapless Hessian

 $rac{\partial^2 G}{\partial m_i \partial m_j}$

→ Minima are marginally stable, reflecting vicinity of lots of competing states

A priori: exponentially many minima (in N) for $T < T_c$

But: only those at lowest free energy density are physically relevant minima at higher energy are pathologically fragile

Intriguing aspect: At all T the relevant minima have a gapless Hessian

$$rac{\partial^2 G}{\partial m_i \partial m_j}$$

- → Minima are marginally stable, reflecting vicinity of lots of competing states
- → many soft collective excitations
- → very sensitive to external parameters
 - → critical spin flip avalanches upon applying fields

Minima in the spherical p-spin model

$$\frac{G(\{m_i\})}{N} = -\frac{1}{2\beta} \log(1-q) - \frac{1}{p!N} \sum_{i_1 \cdots i_p} J_{i_1 \cdots i_p} m_{i_1} \cdots m_{i_p} - \frac{\beta}{4} [1 - pq^{p-1} + q^p(p-1)]$$

Pure states = Minima of G!

Write
$$m_i = \sqrt{q} n_i$$
 $\sum n_i^2 = N$

Minima in the spherical p-spin model

$$\frac{G(\{m_i\})}{N} = -\frac{1}{2\beta}\log(1-q) - \frac{1}{p!N}\sum_{i_1\cdots i_p}J_{i_1\cdots i_p}m_{i_1}\cdots m_{i_p} - \frac{\beta}{4}[1-pq^{p-1}+q^p(p-1)]$$
 Pure states = Minima of G!
$$e(\{n_i\})q^{p/2}$$
 Write
$$m_i = \sqrt{q}n_i \sum n_i^2 = N$$

$$m_i = \sqrt{q} n_i$$

Peculiarity of spherical model:

- Minimization of G w.r.t. n_i is independent of T!
- Minima have constant "angular" texture n_i .
- Only q = q(T) changes with T impose minimum $\partial G/\partial q = 0$! until instability occurs at T*(e) where minimum merges with saddle and evaporates

T = 0 :
 • minima exist with energies
$$e \in [e_{\min}, e_{th}]$$
 $e = -\frac{1}{p!N} \sum_{i_1 \cdots i_p} J_{i_1 \cdots i_p} m_{i_1} \cdots m_{i_p}$

$$m_i = \pm 1$$

$$e = -\frac{1}{p!N} \sum_{i_1 \cdots i_p} J_{i_1 \cdots i_p} m_{i_1} \cdots m_{i_p}$$

$$m_i = \pm 1$$

Important difference to p=2 spin glasses (cf. SK model):

Paramagnetic state m = 0 has no instability!

$$\frac{G(\{m_i\})}{N} = -\frac{1}{2\beta} \log(1-q) - \frac{1}{p!N} \sum_{i_1 \cdots i_p} J_{i_1 \cdots i_p} m_{i_1} \cdots m_{i_p} - \frac{\beta}{4} [1 - pq^{p-1} + q^p(p-1)]$$

Important difference to p=2 spin glasses (cf. SK model):

Paramagnetic state m = 0 has no instability!

$$\frac{G(\{m_i\})}{N} = -\frac{1}{2\beta} \log(1-q) - \frac{1}{p!N} \sum_{i_1 \cdots i_p} J_{i_1 \cdots i_p} m_{i_1} \cdots m_{i_p} - \frac{\beta}{4} [1 - pq^{p-1} + q^p(p-1)]$$

Energy-entropy balance of freezing:

Energy gain: $O(m^p)$ Entropic cost: $O(m^2)$

Important difference to p=2 spin glasses (cf. SK model):

Paramagnetic state m = 0 has no instability!

$$\frac{G(\{m_i\})}{N} = -\frac{1}{2\beta} \log(1-q) - \frac{1}{p!N} \sum_{i_1 \cdots i_p} J_{i_1 \cdots i_p} m_{i_1} \cdots m_{i_p} - \frac{\beta}{4} [1 - pq^{p-1} + q^p(p-1)]$$

Energy-entropy balance of freezing:

$$p > 2, m \ll 1$$

Energy gain: $O(m^p)$ < Entropic cost: $O(m^2)$

Continuously emerging minima with very small m are possible only for p = 2!

Important difference to p=2 spin glasses (cf. SK model):

Paramagnetic state m = 0 has no instability!

$$\frac{G(\{m_i\})}{N} = -\frac{1}{2\beta} \log(1-q) - \frac{1}{p!N} \sum_{i_1 \cdots i_p} J_{i_1 \cdots i_p} m_{i_1} \cdots m_{i_p} - \frac{\beta}{4} [1 - pq^{p-1} + q^p(p-1)]$$

Energy-entropy balance of freezing:

$$p > 2, m \ll 1$$

Energy gain: $O(m^p)$ <
 Entropic cost: $O(m^2)$

Continuously emerging minima with very small m are possible only for p = 2!

p > 2: Order parameter q jumps to finite value in minima at T_d !

Discontinuous (first-order-like) onset magnetization (due to clustering and dynamic arrest)

Spin glass universality classes

Two different types of (mean field) spin glasses

$$\mathsf{SK}\text{-model} \quad H = \sum_{i < j} J_{ij} s_i s_j$$

Continuous transition

$$q_{EA} = \frac{1}{N} \sum_{i} \langle s_i \rangle^2 \underset{T \to T_g}{\longrightarrow} 0$$

$$\begin{array}{ll} \text{p-spin models} & H = -\sum_{i_1 < \ldots < i_p} J_{i_1 \ldots i_p} s_{i_1} \cdots s_{i_p} \\ & \text{p} \geq 3 \end{array}$$

Discontinuous transition

$$q_{EA} \underset{T \to T_g}{\longrightarrow} q_c > 0$$

Spin glass universality classes

Two different types of (mean field) spin glasses

SK-model
$$H = -\sum_{i < j} J_{ij} s_i s_j$$

Continuous transition

$$q_{EA} = \frac{1}{N} \sum_{i} \langle s_i \rangle^2 \xrightarrow{T \to T_g} 0$$
All minima are marginal

- All minima are marginal
- & have the same free energy density

$$\begin{array}{ll} \text{p-spin models} & H = -\sum_{i_1 < \ldots < i_p} J_{i_1 \ldots i_p} s_{i_1} \cdots s_{i_p} \\ & \text{p} \geq 3 \end{array}$$

Discontinuous transition

$$q_{EA} \xrightarrow[T \to T_g]{} q_c > 0$$

MF-Model for real spin glasses

MF-analogon for structural glasses

Spin glass universality classes

Two different types of (mean field) spin glasses

SK-model
$$H = \sum_{i < j} J_{ij} s_i s_j$$

Continuous transition

$$q_{EA} = \frac{1}{N} \sum_{i} \langle s_i \rangle^2 \underset{T \to T_g}{\longrightarrow} 0$$

- All minima are marginal
- & have the same free energy density

MF-Model for real spin glasses

$$\begin{array}{ll} \text{p-spin models} & H = -\sum_{i_1 < \ldots < i_p} J_{i_1 \ldots i_p} s_{i_1} \cdots s_{i_p} \\ & p \geq 3 \end{array}$$

Discontinuous transition

$$q_{EA} \xrightarrow[T \to T_g]{} q_c > 0$$

- Only threshold states are marginal
- States in extensive free energy window
- Separate dynamic (clustering) and thermodynamic (freezing) transitions

MF-analogon for structural glasses