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Quantum glasses

Review:

L. Cugliandolo and M. Muller
arXiv:2208.05417

Review on Quantum Glasses

Chapter 18 in:
Spin Glass Theory & Far Beyond -

40 years of Replica Symmetry Breaking,
1st ed. World Scientific. (2023)
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[<={J= Ergodicity and thermalization

General tenet of statistical physics: Interacting many body systems
establish equilibrium and are ergodic
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[<={J= Ergodicity and thermalization

General tenet of statistical physics: Interacting many body systems
establish equilibrium and are ergodic

If that happens:

* Unique state described by Gibbs ensemble

* No dependence on history, no memory

 Usually fast thermalization on microscopic timescales,
even in closed systems (cf. ETH hypothesis)

Convenient to calculate, reliably reproducible - but also a bit dull.
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PAUL SCHERRER INSTITUT

BS Non-Ergodicity and non-thermalization

An example where it does not happen:

Quantum glasses:
Intriguing history dependence

Science 1999
Quantum Annealing of a
Disordered Magnet

J. Brooke,? D. Bitko,” T. F. Rosenbaum,’* G. Aeppli?
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BS Non-Ergodicity and non-thermalization

An example where it does not happen:

Quantum glasses: Response y’ Absorption x"

u u u 60_ LA A B 3 T T T T T T T T
Intriguing history dependence i, A ; Guantum Gooling
Science 1999 525 R

2 Quantum Cooling %8s,
e Classical Cooling '65“|
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S "2 Utterly different response
LiHO,Y+Fa: Dipolar Ising spin glass in transverse field @ f}ﬁz) %% under same conditions (Ht,T)!
N N Long-lived non-equilibrium &
% = —g Jyoio; — T Z i history dependence
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= Routes to non-ergodicity

What underlies the belief of ubiquitous ergodicity?

And how can one escape from it?
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== Quantum localization

Classical particle:
E A Barrier-trapped
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== Quantum localization

Quantum particle

E A barrier tunneling!

P
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== Quantum localization

Quantum particle — no disorder
A plane waves = long range hybridization!
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== Quantum localization

Quantum particles 1n disorder:
E Anderson localization

H = Eec C; —tZ(C C. +hc)

i.J)

> s

>t :no hybr|d|zat|on wavefunction localizes on i or j
< t :‘“resonance”’, wavefunction spreads

If
If
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BS Quantum localization: no-percoation of resonances!
Anderson 1956

@D

@D

Anderson insulator Anderson metal

Few isolated resonances There are many resonances
and they overlap

YYXYYXXXXX!
XXX XX

No diffusion!
No ergodicity!
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Exchange of energy
can take you across
barriers

>
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Exchange of energy
can take you across
barriers

>

Exception?
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TTTTTTTT

Exchange of energy
can take you across
finite barriers

> |

Exception? 1. Spontaneous symmetry breaking:
energy barriers between different ordered states diverge
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TTTTTTTT

Exchange of energy
can take you across
finite barriers

>

Exception? 2. Glasses - classical or quantum:
Many collective states separated by barriers (Lectures I+Il)
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What about adding interactions ~ 2neerson Feisciman 1575

Basko Aleiner, Altshuler 2006

to Anderson localization? Gornyi, Mirlin, Polyakov 2005
“Many-body-localization™?

H = Z e;cle; — tZ(c;rcj + h.c.)
2,J

—
H = Z eic;-rci — tZ(c;-fcj + h.c.) + Z Jz-jc;-rcicj-cj
i, i]
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What about adding interactions  £"rson. Heischman 179

Basko Aleiner, Altshuler 2006

to Anderson localization? Gornyi, Mirlin, Polyakov 2005
“Many-body-localization™?

H = Z e;cle; — tZ(c;rcj + h.c.)
2,J

—
H = Z e/,;c,:-rcf,; —t Z(cjcj + h.c.) + Z Jz-jc;-rcicj-cj
i, i]

Can energy mismatch that localizes single particles be bridged by exchange of energy with
other particles, forming a bath (“dephasing”) ?
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What about adding interactions ~ 2neerson: Heisciman 1575

Basko Aleiner, Altshuler 2006

to Anderson localization? Gornyi, Mirlin, Polyakov 2005
“Many-body-localization™?

H = Z e;cle; — tZ(c;rcj + h.c.)
2,J

—
H = Z e/,;c,:-rcf,; —t Z(cjcj + h.c.) + Z Jz-jc;-rcicj-cj
i, i]

Can energy mismatch that localizes single particles be bridged by exchange of energy with
other particles, forming a bath (“dephasing”) ? No, not always!
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What about adding interactions ~ 2neerson: Heisciman 1575

Basko Aleiner, Altshuler 2006

to Anderson localization? Gornyi, Mirlin, Polyakov 2005
“Many-body-localization™?

H = Z ez-c,:-rcz- —t Z(c;rcj + h.c.) + Z Jz-jc;-rcic;cj
i, ]

Rewritten in single-particle localized basis:

H = ZGQCLCQ + Z Jagmgc&cﬁc];c(g
a7/87775
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What about adding interactions ~ 2neerson: Heisciman 1575

Basko Aleiner, Altshuler 2006

to Anderson localization? Gornyi, Mirlin, Polyakov 2005
“Many-body-localization™?

H = Z ez-c,:-rc?; —t Z(cjcj + h.c.) + Z Jz-jc;-rcic;f-cj
i, ]

Rewritten in single-particle localized basis:

H = ZGQCLCQ + Z Jagmgc&cﬁc];c(g
a9/87775
MBL <> Non-percolation of resonances in many-body space!

JaB s < €q — €3 + €4 — €5

The surrounding particles, being localized themselves do not form a continuous bath!
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(=)= Glass physics # Manybody localization

Two ways to break ergodicity

Spin/structural glasses Quantum localization
<>

Obstruction: Big mountains Obstruction: Bad tunnels
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"Many-body-localization”
<>

Glasses

Are these ergodicity breaking mechanisms
related?


















Neither implies the other &
Neither excludes the other!



Interplay of glassiness and quantum dynamics/ localization?

A very rich playground! (see lecture llI)
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@==1}= Other ways to avoid ergodicity and thermalization?
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BS Other ways to avoid ergodicity and thermalization?

* Integrable systems in 1d
Extensively many conserved quantities (XXZ chain, Lieb-Liniger)
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* Quantum many body scars
Hamiltonians admitting typically O(N) special,
low-entangled, non-ETH eigenstates (AKLT, Hubbard model)
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BS Other ways to avoid ergodicity and thermalization?

* Integrable systems in 1d
Extensively many conserved quantities (XXZ chain, Lieb-Liniger)

* Quantum many body scars
Hamiltonians admitting typically O(N) special,
low-entangled, non-ETH eigenstates (AKLT, Hubbard model)

« Shattered Hilbert spaces
Hamiltonians admitting many blocked, non-moving configurations
e.g. 1d systems with conserved charge & dipole moment,
and strictly finite range circuit dynamics
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BS Other ways to avoid ergodicity and thermalization?

Integrable systems in 1d
Extensively many conserved quantities (XXZ chain, Lieb-Liniger)

Quantum many body scars
Hamiltonians admitting typically O(N) special,
low-entangled, non-ETH eigenstates (AKLT, Hubbard model)

Shattered Hilbert spaces
Hamiltonians admitting many blocked, non-moving configurations
e.g. 1d systems with conserved charge & dipole moment,
and strictly finite range circuit dynamics

Fractons - systems whose excitations cannot move on their own
due to multiple topological constraints
(e.g. 3d analogue of toric code)
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BS Other ways to avoid ergodicity and thermalization?

— Fine-tuned!
Integrable systems in 1d € e
Extensively many conserved un chain, Lieb-Liniger)

Quantum many body scars
Hamiltonians admitting typically O(N) gpecial,
low-entangled, non-ETH eigengfates (AKLT, Hubbard model)

Shattered Hilbert spaces
Hamiltonians admitting many blocked, non-moving configurations
e.g. 1d systems with conserved charge & dipole moment,
and strictly finite range circuit dynamics

Fractons - systems whose excitations cannot move on their own
due to multiple topological constraints
(e.g. 3d analogue of toric code)
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BS Other ways to avoid ergodicity and thermalization?

, — Fine-tuned!
Integrable systems in 1d €
Extensively many conserved un chain, Lieb-Liniger)

Quantum many body scars
Hamiltonians admitting typically O(N) gpecial,
low-entangled, non-ETH eigengfates (AKLT, Hubbard model)

Shattered Hilbert spaces
Hamiltonians admitting many blocked, non-moving configurations
e.g. 1d systems with conserved charge & dipole moment,
and strictly finite range circuit dynamics

Fractons - systems whose excitations cannot move on their own
due to multiple topological constraints Exotic ergodicity breaking

(e.9. 3d analogue of toric code) Related neither to glasses
nor to MBL
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BS Interplay of glassiness and (many-body) localization

Interesting questions: (see lecture 1l
* How does glassy order affect localization & loc. transitions?

 Can glassy order coexist with delocalized quantum modes:
Bose condensates and/or metallic, delocalized fermions?

Phenomenology in long range, frustrated quantum glasses:

* Long-range-coupled cold atoms
 Quantum Coulomb glass and the metal insulator transition:
A very rich phase transition

Many interesting open questions
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Glasses

Glasses : = Ergodicity breakers with a large number of
amorphously ordered states that are separated by high barriers.

Multitude of states and their organization in phase space entail
interesting properties, also with regard to quantum dynamics.



Frustration

Typical spin glass Hamiltonian:

_ Randomly signed couplings
H = E JijSiSj ySIg PINg

(due to random doping/exchange paths,
(1,7) RKKY or dipolar couplings, etc)



Frustration

Typical spin glass Hamiltonian:

Randomly signed couplings
H = E Jz'jSiSj ySIg PINg

(due to random doping/exchange paths,
(1,7) RKKY or dipolar couplings, etc)

Hallmark: frustration of interactions

AF AF :
Lots of plaquettes with at least one unhappy bond

AF



Frustration

Typical spin glass Hamiltonian:

Randomly signed couplings
H = E JijSiSj ySIg PINg

(due to random doping/exchange paths,
(1,7) RKKY or dipolar couplings, etc)

Hallmark: frustration of interactions

AF AF :
Lots of plaquettes with at least one unhappy bond

? Spin glass: percolating magnetic unhappiness.
Many different ways to minimize the unhappiness!

AF



Frustration

Typical spin glass Hamiltonian:

Randomly signed couplings
H = E JijSiSj ySIg PN

(due to random doping/exchange paths,
(1,7) RKKY or dipolar couplings, etc)

Hallmark: frustration of interactions

AF AF :
Lots of plaquettes with at least one unhappy bond

? Spin glass: percolating magnetic unhappiness.
Many different ways to minimize the unhappiness!

AF

One of many NP-hard optimization problems



Glasses: systems with many states

Anticipate:
Unlike simple magnets, glasses can order in many amorphous patterns

Fundamental questions

s there a phase transition? — What is the order parameter?

How to deal with disorder?

How many ordering patterns are there, and how are they organized?

What are quantum dynamics and excitations in such states?
Impact on quantum phenomena like localization, Bose condensation etc?



Free energy landscape:

Ordering patterns as minima of a free energy functional?



Free energy landscape:
mean field Ising ferromagnet

Warm-up: mean-field, all-to-all Ising ferromagnet

S; = =£1
7N
H=—35 2 SiSi=B)S.
1,7=1 1=1
N
:—%mz—NBmENe(m)

1
m= > Sii Average magnetization per spin



Free energy landscape:
mean field Ising ferromagnet

Entropy of configurations of magnetization m:
S(m) = Nsg(m)

14+ m 14+m 1—m 1 —m
> log log 5

2 2

Free energy constrained to have magnetization m:

F(m)=E(m)—TS5(m) = N(e(m) — Tsq(m))



Free energy landscape:
mean field Ising ferromagnet

(B=0)
Full free energy:

F = min_lgmgl[F(m)]

Minima correspond to pure states

F(m) = E(m) — TS(m) = N(e(m) — Tso(m))



Free energy landscape:
mean field Ising ferromagnet

(B=0)
Full free energy: \

F = miﬂ—lgmgl[F(m)] \

Minima correspond to pure states

F<m>:E<>"’—TS< ) = N(e(m) — Tso(m))

Spontaneous 1i 1 P St B I 1 P SV B



Free energy landscape:
mean field Ising ferromagnet

Full free energy:

F = miﬂ_lgmgl[F(m)]

©

F(m) = B(m) - T:/: = N(e(m) — Tso(m)

Extensive free energy barrier: spontaneous symmetry breaking: the
two pure states are infinitely long-lived in the limit N — o0



Free energy landscape:
mean field Ising ferromagnet

Full free energy:

F = miﬂ_lgmgl[F(m)]

F(m)=FE(m)—TS5(m) = N(e(m) — Tsq(m))
Important: Only full F = F(T) is non-analytic due to the minimization over m, which bifurcates at T..
But “energy landscape” F(m,T) is analytic in both m and T. It can be obtained from a high T-expansion!



Energy landscape in glasses?



Energy landscape in glasses?

Typical spin glass Hamiltonian:
H = Z Jij SZ Sj Randomly signed couplings
(%,7)
Difficulties:
» No obvious symmetry breaking / ordering pattern
 Order parameter (analogue of m)?

« How many pure states are there? - What are their properties?



Energy landscape in glasses?

Consider mean field glasses (random all to all interactions):
 energy landscape can be construct unambiguously;
« saddle point methods can be used (replica approach)
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Two universality classes of glasses, with very different phenomenology!

1) Mean field version of spin glasses: Pairwise interacting spins -



Energy landscape in glasses?

Consider mean field glasses (random all to all interactions):
 energy landscape can be construct unambiguously;
« saddle point methods can be used (replica approach)

Two universality classes of glasses, with very different phenomenology!

1) Mean field version of spin glasses: Pairwise interacting spins -

2) Toy model for structural glasses (super-cooled liquids): 1
p-tuple interactions (e.g. p = 3) H = 6 Z JijkSiS; Sk
1,7,k
Believed to capture amorphous glasses in high dimensions:
Dynamical equations are structurally identical to those of mode coupling
theory of liquids



1. The Ising mean field glass:
Sherrington-Kirkpatrick (SK) model

Hamiltonian

N
Hsk[S] = Y Ji;Si8;

i<j=1

Gaussian disorder J; with zero mean and variance:

— 1
2

ensures O(1) local field b; on a given spin s;, and thus O(N) total energy.

0OH
J(#1)

bi =




2. The spherical p-spin model

Hamiltonian

1
Hlo] = _H Z Jir iy 04 "l — T Z Jiy iy Oy O

111 11 <2< -- <1
P P

Spherical constraint only (easy to compute - but for p=2 trivializes the model)

S,02=N {Es:i}%/l:[dazﬁ (Z:gg_N>

Gaussian disorder with zero mean and variance:

|
2 _ b
Ty = oppm

ensures O(1) local fields on a given spin, and thus O(N) total energy.



Free energy landscape

Free energy functional
Spins are not equivalent — construct free energy landscape G'({m;}i=1.... N)
= Gibbs free energy of system constrained such that spin S; has magnetization m;



Free energy landscape

Free energy functional
Spins are not equivalent — construct free energy landscape G'({m;}i=1.... N)
= Gibbs free energy of system constrained such that spin S; has magnetization m;

Computation  (Georges & Yedidia, J. Phys. A 1991)
« Atany T, apply local fields h; that impose magnetizations m;
 Perform Legendre transform

F({hi}i=1,...N) = G({mi}i=1,..N)



Free energy landscape

Free energy functional
Spins are not equivalent — construct free energy landscape G'({m;}i=1.... N)
= Gibbs free energy of system constrained such that spin S; has magnetization m;

Computation  (Georges & Yedidia, J. Phys. A 1991)
« Atany T, apply local fields h; that impose magnetizations m;
 Perform Legendre transform

F({hi}i=1,...N) = G({mi}i=1,..N)

 Order by order in a high T (or small J) expansion:
In the limit /N — 00 expansion terminates after second term!



Free energy landscape

Free energy functional
Spins are not equivalent — construct free energy landscape G'({m;}i=1.... N)
= Gibbs free energy of system constrained such that spin S; has magnetization m;

Computation  (Georges & Yedidia, J. Phys. A 1991)
« Atany T, apply local fields h; that impose magnetizations m;
 Perform Legendre transform

F({hi}i=1,...N) = G({mi}i=1,..N)

 Order by order in a high T (or small J) expansion:
In the limit N — 00 expansion terminates after second term!

\‘ -e_.--‘. T T —

« — Functional of all m; - convex at high T o
But: develops lots of local minima atlow T < T,! < ordering patterns



Free energy landscape

SK model: (Thouless-Anderson Palmer, 1975)

G{m;} = —TZ so(mi) = mgJizm; — %Z(l —m;)JB(1 —m3) + O(6%)

i<jf 1<J
Standard mean field energy Van der Waals-like interaction:
lam. 14m 1-m. 1—m “Onsager back reaction”
so(m) = — 5 log 5 T log 5

dm;  dtanh(Bh;)
dh; dh;

= B(1—mj)

Note: local susceptibility of Ising spins Xj =



Free energy landscape

SK model:

G{mi} =T so(ms) = > miJiym; — %Z(l —m;)JB(1 —m3) + O(6%)
7 i<j i<j

P-spin model:
GHm}) _ 1 ey L S T e
T ) p,NZ'Jn My L —pd" " + P (p— 1))

e



Free energy landscape

SK model:

G{mi} =T so(ms) = > miJiym; — %Z(l —m;)JB(1 —m3) + O(6%)
7 i<j i<j

P-spin model: Spin glass (Edwards-Anderson) order parameter, “self-overlap” ¢ = — Z m?
GHm) _ _Liea—g - L I p-1
N - 28 log(1 — q) p'N Z Jiy iy My T 1—pg" +¢"(p—1)]

’l,]_ ’Lp



Free energy landscape

SK model:

G{m;} = —TZ so(mi) = mgJizm; — %Z(l —m;)JB(1 —m3) + O(6%)

1<J 1<j

P-spin model: Spin glass (Edwards-Anderson) order parameter, “self-overlap” ¢ = — Z m3
G({mi}) _L . (P s s e é —maP 1 Pl _
i~ —gglesl—9) p,N D Tipiymiy L —p0" " +¢7(p— 1)]
21:*°%p
Pure states = Minima of G ! Paibs[S] = Y waPa[S]
. . . . 1+ m® 1—m® 1+m™s;
Clustering property in mean field models implies:  P.[S]=]] +;n 01,5, + ;" 6-1s | =]] H;l




Free energy landscape

SK model:

G{m;} = _TZSO(mi) — Zmz’Jijmj — %Z(l —m$)J5B(1 — m?) + O(8?)

1<j 1<)

. _ 1
P-spin model. Spin glass (Edwards-Anderson) order parameter, “self-overlap™ ¢ = — > m?
G({m; 1 1 B q
({;" D _ ~28 log(1 —¢q) — N Z JirewiipMiy =My, = 2 [1 = pg®~" +¢"(p — 1)]
R
Pure states = Minima of G ! Paibs[S] = Y waPa[S]

Free energy of minimum N fo = G{ms})
Weight of pure state in the full Gibbs measure Wa o< exp(= BN fa)



Free energy landscape

SK model;

G{m;} = _TZSO(mi) — Zmz’Jijmj — %Z(l —m$)J5B(1 — m?) + O(8?)

1<j 1<)

. _ 1
P-spin model: Spin glass (Edwards-Anderson) order parameter, “self-overlap™ ¢ = — > m?
GUm:}) _ _ 1 e L e = P g _
N = 2,8 ]‘Og(l q) p,N Z J”fl“‘zpmzl mzp 4 []‘ pqp + qp(p 1)]
R
Pure states = Minima of G ! Paibs[S] = Y waPa[S]

Free energy of minimum N fo = G{ms})
Weight of pure state in the full Gibbs measure Wa o< exp(= BN fa)

Can show: metastable states capture the essence of phase space: log() _wa) = log(Zun)



Free energy landscape

The two universality classes of glasses have very different landscapes

* Number and nature of minima
« The way they appear at low T

 Organization in energy and configuration space



TAP Equations: SK-model

G{m;} = _TZSO(mi) =) midiym; — %Z(l —m;)J5;B(1 —m3) + O(6%)

1<j 1<J

oG

=0«
8mz-

Minima:

m; = tanh 5 Z Jij (mj — mZJZ]B(l — m?)) <
| i _

Magnetization in absence of spin i:

m; = tanh |3 Jijmﬁ-” m§-i> = my —m;Ji; (1 —m7)
Ve

/_i ] Onsager reaction to m;

Standard mean field - diminished by polarization response of environment




TAP states: SK-model

m; = tanh ﬂz Jij (mj — miJijIB(l - m?))
ke

Linearize

m; = szijmj —m;B2J%  + O(m?’, 1/N)
JFu

High T : only solution is m; = 0. When/how do ordered minima with 1m; 7= 0 occur?



TAP states: SK-model

m; = tanh BZ Jij (mj —m;Ji; B(1 — m?))
JFi

Linearize
m; = 3 E Jiym; —m;B2J° 4+ O(m®,1/N)
JFt

Instability when first mode of the Gaussian random matrix J; goes soft

Wigner semicircle ()] = 1.0)

| Glass transition (spin freezing m; 7~ 0)
Spectrum .. | _
atT.=J

Of JIJ 0.20} %

1 1 L 1 L 1 1 | 1
-20 -15 -1.0 =05 0.0 0.5 1.0 1.5 2.0
A



TAP states: SK-model

ﬂz Jij (mj — miJiz (1 —m?))

m; — tanh

Linearize

m; = BZJijmj —m;B2J%  + O(mg, 1/N)

J#1

J#i

Instability when first mode of the Gaussian random matrix J; goes soft

Spectrum .| |
Of Jlj 0.20} %

Wigner semicircle ()] = 1.0)

1 1 L 1 L 1 1 | 1
-20 -15 -1.0 =05 0.0 0.5 1.0 1.5 2.0

A

Glass transition (spin freezing m; 7~ 0)
atT.=J

But: many modes become soft almost

simultaneously: competing condensates

— multiple minima!



SK-model

exponentially many minima (in N) for T < T,

TAP states

A priori:

But: only those at lowest free energy density are physically relevant
minima at higher energy are pathologically fragile
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minima at higher energy are pathologically fragile

— Minima are marginally stable, reflecting
vicinity of lots of competing states




TAP states: SK-model

A priori: exponentially many minima (in N) for T < T,

But: only those at lowest free energy density are physically relevant
minima at higher energy are pathologically fragile

— Minima are marginally stable, reflecting
vicinity of lots of competing states

— many soft collective excitations

— very sensitive to external parameters




Minima in the spherical p-spin model

Gmd) _ _ Lo - et I ) -
Sl - g los(l-q pwz']’l My May, — 7[L=pg”" +¢"(p— 1)]

R

Pure states = Minima of G !

Write m; = \/anz Z n? =N



Minima in the spherical p-spin model

G({—mi}): —Llogl—q _— Z Sy M : —g[l—Pqp_]‘qu(P_l)]

N 20 p'N
= e({ni})g""?

Pure states = Minima of G !
Write m; = \/qni Z n?

Peculiarity of spherical model:

 Minimization of G w.r.t. n;is independent of T'!
« Minima have constant “angular” texture n..

« Only q =q(T) changes with T - impose minimum 90G/0q =0 !
until instability occurs at T*(e) where minimum merges with saddle and evaporates



The spherical p-spin model

Solutions to the angular equations:

T=0:
« minima exist with energies € S [emina eth] e =



The spherical p-spin model

Solutions to the angular equations:

T=0: 1
- minima exist with energies € € [emirn eth] e= "IN > Jilu-i,,_mil LMy,

i1-e+ip

e> ey energy
landscape
dominated by

saddles m; =1

Threshold
Marginal states

\ o

2 s

Ground state




The spherical p-spin model

Solutions to the angular equations:

T=0:

e> ey,. ener
th 9y  minima exist with energies € S [emina 6th]

landscape . : :

dominated by There is an exponential number of them N(e) — exp(NE(e))
saddles s
Threshold
Marginal states

Ground state —




The spherical p-spin model

Solutions to the angular equations:

T=0:
e> €. ener
Iandtshca e & * minima exist with energies € S [emin, eth]
dorm tpd o » There is an exponential number of them N(e) — eXp(NE(e))
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Solutions to the angular equations:
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) « There is an exponential number of them N(e) = exp(NX(e
dominated by * Z(emin) = 0, and X is concave, increases with e ( ) p( ( ))
saddles f

Threshold Ty < T< T4 Gibbs weight is dominated

by non-trivial minima f*
(cf. DPRM and REM)

The full free energy remains analytic:
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The spherical p-spin model

Solutions to the angular equations:

T=0:

e> ey. ener
th 9y . minima exist with energies € € [emina eth]
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. « There is an exponential number of them N(e) = exp(NX(e
dominated by * X(emin) = 0, and X is concave, increases with e ( ) p( ( ))
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Threshold T = Ty: Freezing transition

Marginal states (“Kauzmann temperature”):

(like in SK) ~.,

Stable higher

energy states foara :
(gapped Hessian) Equilibrium free energy: Higher

—> " § § § than paramagnetic continuation!

Thermodynamic transition!

Ground state

(9apped Hessian) i i i BUT: Dynamically inaccessible!
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First order nature of the dynamic transition
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First order nature of the dynamic transition

Important difference to p=2 spin glasses (cf. SK model):
Paramagnetic state m = 0 has no instability!

G m; 6 N
({N b _ ——ﬂlogl—q —p,—N D Jireiyiy - mi, — 21— pg”~' + ¢"(p — 1)]

'Ll z'p

Energy-entropy balance of freezing:
p>2mK<1

Energy gain: O(mP) K Entropic cost: O(m?)

Continuously emerging minima with very small m are possible only for p = 2!

p > 2. Order parameter q jumps to finite value in minima at T,!

Discontinuous (first-order-like) onset magnetization

(due to clustering and dynamic arrest)




Spin glass universality classes

Two different types of (mean field) spin glasses
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MF-analogon for structural glasses
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Spin glass universality classes

Two different types of (mean field) spin glasses

yeivj

SK-model Hz-Z:J S-S

i<j
Continuous transition

EA dE4 = _Z T_)T

W

* All minima are marginal
& have the same free energy density

p-spin models H = ZJ,l i) Si S
p>3 ll< <lp

Discontinuous transition

4dE4 — QC>O
T—)Tg

P— —_— ™

@ o N\

® < Only threshold states are marginal
« States in extensive free energy window
 Separate dynamic (clustering)
and thermodynamic (freezing) transitions
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