#### 12th Workshop on the Theory and Use of Regional Climate Models 25 August – 5 September 2025, ICTP

# Bias correction in defining and predicting heatwaves over Croatia

Sara Ivasić<sup>1</sup>, Lidija Srnec<sup>1</sup> and Renata Sokol Jurković

sara.ivasic@dhz.hr

<sup>1</sup>Croatian Meteorological and Hydrological Service
Zagreb, Croatia

# Health risks associated with heat are projected to increase in the future



Cumulative number of deaths in Europe attributed to cold and heat by age group.

García-León et al. (2024)

Temperature-related mortality burden and projected change in 1368 European regions: a modelling study. *The Lancet Public Health*, Volume 9, Issue 9, e644 - e653



## Heatwave early warning system in Croatia

- established in 2012 → now issued 4 days in advance
- heatwave health risk algorithm input:
   Tmin, Tmax and mortality data



| Region    | Thu<br>07 08 2025 | Fri<br>08.08.2025. | Sat<br>09.08.2025 | Sun<br>10.08.2025 | Mon<br>11 08 2025 |
|-----------|-------------------|--------------------|-------------------|-------------------|-------------------|
| Osijek    | 0                 | 0                  | 1                 | 2                 | 1                 |
| Zagreb    | 0                 | 0                  | 1                 | 2                 | 1                 |
| Karlovac  | 0                 | 0                  | 0                 | 1                 | 1                 |
| Gospić    | 0                 | 0                  | 1                 | 1                 | 1                 |
| Knin      | 0                 | 0                  | 1                 | 2                 | 3                 |
| Rijeka    | 0                 | 1                  | 2                 | 2                 | 3                 |
| Split     | 0                 | 0                  | 1                 | 2                 | 3                 |
| Dubrovnik | 0                 | 0                  | 1                 | 2                 | 3                 |
| Risk:     | 0<br>none         | 1<br>moderat       | _                 | 2<br>igh          | 3<br>very high    |

Zaninović and Matzarakis (2014)
Impact of heat waves on mortality in Croatia.
International Journal of Biometorology, Vol 58:1135-1145.
https://doi.org/10.1007/s00484-013-0706-3

Heat health risks: green – no risk yellow – moderate orange – high red – very high



1 Jun − 31 Aug →

CLIMATE MONITORING AND ASSESSMENT FOR 2022 https://klima.hr/razno/publikacije/prikazi/prikazi 34 2022.pdf

## **EURO-CORDEX climate projections**

| model                         | institution                                      | reference               |  |  |  |
|-------------------------------|--------------------------------------------------|-------------------------|--|--|--|
| regional climate models (RCM) |                                                  |                         |  |  |  |
| RegCM4                        | ICTP                                             | Giorgi et al. (2012)    |  |  |  |
| RCA4                          | SMHI                                             | Wang et al. (2015)      |  |  |  |
| CCLM4                         | CLM-Community                                    | Rockel et al. (2008)    |  |  |  |
| global climate models (GCM)   |                                                  |                         |  |  |  |
| CNRM-CM5                      | Centre National de Recherches<br>Météorologiques | Voldoire et al. (2013)  |  |  |  |
| EC-EARTH                      | ECMWF                                            | Hazeleger et al. (2010) |  |  |  |
| MPI-ESM                       | Max-Planck-Institute for<br>Meteorology          | Giorgetta et al. (2013) |  |  |  |

- climate projections at 12.5 km horizontal resolution → daily maximum and minimum temperature data
- P0 1991-2020 vs. P3 2041-2070
- RCP4.5 and RCP8.5 scenarios

#### **Bias correction methods**

- following Sokol Jurković et al. (2022) parametric marginal distributions and a Gaussian copula → bivariate correction of daily maximum and minimum temperature from the RCM ensemble
- normal distribution used to model temperature
- previously, bivariate empirical method proved best for corrections of *monthly* mean temperature and precipitation data
- preliminary results:
  - season June-July-August (JJA)
  - station Split-Marjan (ST)
  - bivariate correction method with underlying normal distribution (2D teor)





#### 1991 - 2020

Percentage of days with different levels of heatwave risk in JJA season



- 1991 2020 & 2041 2070 → original RCM data → trend smaller than observed and with inconsistent sign
- 2041 2070 RCP8.5 → 2D teor bias corrected RCM ouput → consistently increasing trend of days with orange and red warnings in JJA season













#### **Observations**

→ the number of heatwave warnings in Croatia is increasing

#### RCM ensemble

- → bias corrected data closer to observations
- → number of heatwave warnings and their duration increases in the future, especially under the high-emission scenario

#### Future work...

- → expand analysis to all Croatian regions
- → compare results from other bias correction methods to the bivariate theoretical method