Regional Climate Modeling of Anthropogenic Water Cycle Perturbation: Focus on Irrigation

Presenter: Eun-Soon Im, Yuwen Fan (Wendy)

Affiliation: The Hong Kong University of Science and Technology

Date: Aug 29th 2025

Today, agriculture accounts for about 70% of the global freshwater withdrawal, and most of the water is consumed by Irrigation

Heat Comfort

Heat Comfort

Precipitation

Heat Comfort

Precipitation

Water Resource

Method: Climate Models

Domain: North China Plain

Domain: North China Plain

- Intense irrigation
- Heavily rely on groundwater
- Double-season crop rotation

Complex Irrigation System

Integration

This "Complex Irrigation System" is NOT well considered.

Research Gap

Integration

This "Complex Irrigation System" is NOT well considered.

Why is Joint Crop-Irrigation-Groundwater System not included yet?

Integration

Regionalization

Why is Joint Crop-Irrigation-Groundwater System not included yet?

Current related models are NOT appropriate in the NCP region.

Research Gap

Integration

Regionalization

Current related models are NOT appropriate in the NCP region.

Implement regional-specific functions and parameters.

Regionalization

Model-dependency

Previous results have heavy dependence on models.

Research Gap

Integration

Regionalization

Model-dependency

Previous results have heavy dependence on models.

Model Statistics for studies on temperature/precipitation/radiations until 2024

Research Gap

Integration

Regionalization

Model-dependency

Previous results have heavy dependence on models.

Comparison

Reliability
Uncertainty

Regionalization

Model-dependency

Model Design

Model-dependency

Title: Regional Climate Modeling of

Anthropogenic Water Cycle Perturbation:

Focus on Irrigation Integration

Regionalization

Model 1	RegCM5 + CLM4.5-CN-CROP
Model 2	WRF4.5 + Noah-MP5
Resolution	27km
Timespan	2005-2014 (2004 spin-up)

Scheme Selection

Greater hot bias, less dry bias. WSM5 group performs generally better.

Irrigation

Groundwater

Crop

Irrigation

- Amount

Groundwater

Crop

Irrigation

Amount

Groundwater

Crop

Averaged irrigation amount using default model

Irrigation

Amount

Groundwater

Crop

Default model adopts spatially uniformed threshold (MAD).

Regional heterogeneity might not be well captured.

Irrigation

- Amount

Groundwater

Crop

Default model adopts spatially uniformed threshold (MAD).

Regional heterogeneity might not be well captured.

⇒ <u>Calibrate the irrigation amount on provincial basis.</u>

Irrigation

L Amount

Groundwater

L Pumping Crop

Irrigation

L Amount

Groundwater

L Pumping

Crop

Irrigation

L Amount

Groundwater

L Pumping

Crop

Calendar

Irrigation

L Amount

Groundwater

L Pumping

Crop

Calendar

Crop Rotation

Satellite data comes from ChinaCropPhen1km (Luo et al., 2020)

Irrigation

L Amount

Groundwater

L Pumping

Crop

- Calendar

Irrigation

L
Amount

Groundwater

L Pumping

Crop

Calendar

Crop Rotation

Crop Calendar Validation

Irrigation

L
Amount

Groundwater

L Pumping

Crop

Calendar

Crop Rotation

Crop Calendar Validation

Irrigation

L Amount

Groundwater

L Pumping

Crop

Calendar

Irrigation

Amount

Groundwater

L Pumping

Crop

Calendar

Biomass

Irrigation

Amount

Groundwater

L Pumping

Crop

Calendar

Biomass

Irrigation

L Amount

Groundwater

L Pumping

Crop

Calendar

Biomass

Leaf Area Index

Irrigation

Amount

Groundwater

L Pumping

Crop

Calendar

Biomass

- Leaf Area Index

Model Performance

Impact: Water Cycle

RegCM has more runoff loss from water body storage.

Impact: Water Cycle

Both model shows groundwater depletion, but more serious in RegCM.

Impact: Groundwater

Impact: Water Cycle

ET increases, but WRF and RegCM has different ET partition.

Transpiration ↑ during vegetated period

Evaporation \uparrow during rotation period (more bareland)

Transpiration ↑ during vegetated period

Evaporation even \downarrow due to regional cooling

Transpiration ↑ during vegetated period

Evaporation \uparrow during rotation period (more bareland)

Transpiration ↑ during vegetated period

Evaporation even ↓ due to regional cooling

Transpiration ↑ during vegetated period

Evaporation ↑ during rotation period (more bareland)

Affected by evaporation, irrigation peaks in June

Transpiration ↑ during vegetated period

Evaporation even \downarrow due to regional cooling

Transpiration ↑ during vegetated period

Evaporation ↑ during rotation period (more bareland)

Affected by evaporation, irrigation peaks in June

Transpiration ↑ during vegetated period

Evaporation even ↓ due to regional cooling

Transpiration ↑ during vegetated period

Evaporation ↑ during rotation period (more bareland)

Affected by evaporation, irrigation peaks in June

Transpiration ↑ during vegetated period

Evaporation even ↓ due to regional cooling

Affected by transpiration, irrigation peaks in May

Even though seasonal pattern of irrigation are different, the seasonal pattern of cooling are consistent.

Impact: Cooling

Irrigation causes a general cooling.

Extreme heat may become intensified when considering humidity.

Impact: Cooling

Irrigation causes a general cooling.
This helps to reduce the original warm bias.

Complex Precipitation

Irrigation has a non-linear impact on precipitation.

Impact: Water Cycle

Consistent precipitation increases although land processes are different.

Impact: Precipitation

Consistent Annual Precipitation Pattern

Annual Precipitation Changes WRF RegCM 45°N 40°N mm/day 35°N 30°N 0.2 25°N 0.1 0.05 20°N -0.05 110°E 120°E 110°E 120°E -0.140°N -0.2 Red dots: 39°N (1) p < 0.0538°N 37°N (2) > 30 mm/year36°N (3) > 5% increase 35°N (4)≥7 years 34°N 33°N 116°E 120°E 116°E 120°E

Impact: Precipitation

Irrigation promoting precipitation by increasing frequency.

Significance

Better irrigation representation can increase model consistency.

Significance of Vegetation

Model deficiency may cause great uncertainty in irrigation impact.

Conclusion

Model-dependency

Title: Regional Climate Modeling of

Anthropogenic Water Cycle Perturbation:

Focus on Irrigation Integration

Regionalization

Model Development

VALIDATED

Significant Study

PROVED

Irrigation Impact

ASSESSED

Consistent Findings

Water Cycle:
Humidity upto **+25/+10%**GW depletion **-0.6/-1 m/yr**

Extreme Heat:
Temperature -0.8/-0.5°C
WBGT_{max} +1°C in northern part

Precipitation Pattern:
Annually up to **+10**%
More frequent **drizzles**

Inconsistency Identification

Necessity of better land representations and multi-model comparison

Land Surface Model

Runoff Increase
Groundwater Depletion
Energy budget
Humidity increases

Both

June Precipitation

Mean Heat Stress

Atmosphere Model

July Precipitation

Non-convective Precipitation

Mid-to-high level Instability

29 Aug 2025

Publication

Fan, Y., and Im, E.-S. (2025). The Role of Vegetation Dynamics in Assessing Irrigation Impacts. Geophysical Research Letters.

Fan, Y., Yang, Z., Lo, M.-H., Hur, J., & Im, E.-S. (2025). Deciphering the Capricious Precipitation Response: Irrigation Impact in the North China Plain. npj Climate and Atmospheric Science.

Fan, Y., Yang, Z., Lo, M.-H., Hur, J., & Im, E.-S. (2024). Applying double cropping and interactive irrigation in the North China Plain using WRF4.5. Geoscientific Model Development.

Fan, Y., Im, E.-S.*, Lan, C.-W., & Lo, M.-H. (2023). An increase in precipitation driven by irrigation over the North China Plain based on RegCM and WRF simulations. Journal of Hydrometeorology.