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Magma is liquid rock with crystals. Approaching the surface, gas bubbles 

form as pressure drops, so magma can contain solid, liquid, and gas.

• Magma = liquid rock + crystals

• Pressure drops near surface → 

gases bubble out

• Magma becomes solid + liquid + gas
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Effusive

It’s all about viscosity

• Melt composition

• Temperature

• Crystals (content, shape, size distribution)

• Strain rate

• Vesicles

• …

from Etna Volcano Live Webcam

All this contributes to the different responses of magma rheology and eruption styles!

Explosive

Scientific 
Problem

Background 
and Summary Database Generalizing Costa et al. 

(2009) model
Application 
to test cases Conclusion

1

It can vary over 20 orders of magnitude!



Explosive

2

Melt viscosity (e.g., Spera, 2000; Giordano, Russell, Dingwell, 2008)



Rheological 
literature

Many studies… but no systematic results on strain rate and Aspect Ratio!

No focus on rheology above critical crystal 
fraction (e.g. maximum packing fraction)!
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Effects of crystal content

Relative viscosity increase with the solid 
phase concentration

Relative viscosity = 
magma viscosity/melt viscosity (ml)

Namiki et al. (2025). Crystal-rich magma is solid-like and liquefies 
when deformed. J. Geophys. Res., 130, e2024JB030483. 



Focusing on particle-bearing systems rheology:

- Database from rheological literature covering all the 

natural volcanic parameters.

- Systematic model of relative viscosity (𝜂𝑟) as function of :

• apparent viscosity 𝜂𝑎 

• melt viscosity 𝜂𝑙

• crystal concentration 𝜙 

• crystal shape R

• and strain rate ሶ𝜀

Low R High R

Low ሶ𝜀 High ሶ𝜀

- Quantitative description of the rheological behavior of crystal-bearing magmatic systems.
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Sigmoidal shape proposed by Lejeune and Richet (1995) and then described by Costa et al. 
(2007,2009):

B = Einstein coefficient = 2.5

𝜑= Τ𝜙 𝜙∗ → 𝜙= solid fraction 

      𝜙∗= critical solid fraction

𝛾 = steepness of the curve near 𝜙∗

𝛿 and 𝜉 = steepness and height 

 of the iper-concentrated region

erf = error function

𝜂𝑟 𝜙 =
1 + 𝜑𝛿

[1 − 𝐹 𝜑, 𝜀, 𝛾 ]𝐵𝜙∗
𝐹 = 1 − 𝜉 erf[

𝜋
2 1 − 𝜉

𝜑 1 + 𝜑𝛾 ]

Four different flow regimes: diluted, semi-diluted, concentrated and hyper-concentrated 5

R =1 only!
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Viscosity varies with particles shape and strain rate!

Spherical (Leucite)

• Different elongation of crystals in nature

• Need to take into account the elongation (Aspect Ratio R)

Elongated (Plagioclase)
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Database: construction (over 1400 rheological data) and classification

• Material type (natural, synthetic or analogue)

• Chemical composition

• Experimental methodology
‣ Temperature
‣ Applied strain rate
‣ Confining pressure

• The phase components
‣ Crystal content and mean aspect ratio R
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Results:
• Apparent viscosity 𝜂a
• Melt viscosity 𝜂l
• Relative viscosity 𝜂r= 𝜂a/ 𝜂l
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Common issues in reporting data:

➢Deformation mechanisms; 

➢Relative viscosity of NATURAL SAMPLES 
   experiments;

➢Missing information

➢Viscous heating
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Data correction

𝜂𝑒𝑓𝑓 =
𝑚 𝑔 ℎ2

3𝑉 𝛿ℎ
𝛿𝑡

𝜂𝑒𝑓𝑓 =
σ

ሶ𝜀 vs

Natural vs residual melt

(R, ሶ𝜀, Chemistry and/or T…)

For high particle fraction, high R and high ሶ𝜀

Effects of crystal content



𝛿 = 𝛿𝑚 − Δ𝛿 𝛿𝑚 = 7.73 (previously 6.78)

Avoid sharp increase at very 
low particle concentration 

Better fit for the 
upper plateau
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Spherical particles and wide range of strain rates
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𝜙∗ ሶ𝜀 = 10−4 𝑠−1; 𝑅 = 1
𝑅𝑏1

𝜙𝑠 10−4 𝑠−1

𝜉 ሶ𝜀 = 10−4 𝑠−1; 𝑅 = 1
𝑅𝑏3

𝜉𝑚 10−4 𝑠−1

𝛾 ሶ𝜀 = 10−4 𝑠−1; 𝑅 = 1
𝑅𝑏4

𝛾𝑚 10−4 𝑠−1

𝛿 ሶ𝜀 = 10−4 𝑠−1; 𝑅 = 𝛿𝑚𝑒𝑏2(𝑅−1) 10−4 𝑠−1

b1=0.538       b2=0.092  

b3=4.568       b4=0.718
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ሶ𝜀=10-4 s-1 

Entire range of R 
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𝜂𝑟( ሶ𝜀, 𝑅) =
1 + 𝜑𝛿( ሶ𝜀,𝑅)

[1 − 𝐹( ሶ𝜀, 𝑅)]𝐵𝜙∗( ሶ𝜀,𝑅)

• High crystal fraction plateau-like relative viscosity region
• For a given R, this plateau-like region is higher as the strain rate decreases
• For a given strain rate, the curves are shifted towards the lower crystal fractions    

as R increases .

A 
CO

M
PR

EH
EN

SI
VE

 D
AT

AB
AS

E 
O

F 
CR

YS
TA

L-
BE

AR
IN

G
 M

AG
M

AS
 F

O
R 

TH
E 

CA
LI

BR
AT

IO
N

 O
F 

A 
RH

EO
LO

GI
CA

L 
M

O
DE

L

11

ሶ𝜀

𝑅
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• Building wide rheological database:

 https://doi.org/10.6084/m9.figshare.16886155.v1

• Identification of issues in reporting data 

• Extension of the model of Costa et al. (2009) to all the natural strain rates ( ሶ𝜀) 

for spherical particles (R=1)

• Generalization of the model for all the aspect ratios (R) and strain rates ( ሶ𝜀) 

pertinent to natural environment
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Conclusion and future work



Scientific community should: 

• adopt measurement standardization

• fill the gaps in the poorly characterized parameter space;

• carry experiments to characterize viscous dissipation effects (e.g. focusing on the regime 

explored by Ryerson et al., 1988)
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Conclusion and future work

Tmax – T0= ln (Na)/b

Tmax= max temperatura
T0 = considered temperature
Na = Nahme number
b = rheological sensitivity to temperature



Scientific community should: 

• better characterizing the effects of crystal-size distribution (fine vs coarse), fluid-solid 

interactions, and hysteresis relevant for elongated particles (Cimarelli et al., 2011) 
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Conclusion and future work



Thank you for your attention! 15

For further information:



Application to all the strain rates, crystal content and aspect ratios of 
volcanological interest!

• ሶ𝜀=5 x 10-5 s-1 • ሶ𝜀=5 x 100 s-1
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Rationale

Complex history of  crystallization (microlites + phenocrysts)

Increasing crystallinity changes rheology (non-Newtonian)

Influence on magma flow and eruptive style.

Caricchi et al. 2007



Analogues

glass beads: = 2.448 g/cm3; d=125m

Suspensions of  particles in Newtonian silicone oil

carbon fibres: = 1.740 g/cm3; r=9.05

SiC grit: = 3.166 g/cm3; r=1.8 wollastonite: = 2.750 g/cm3; r=8.50

+

+



Analogues
Bimodal suspensions of  particles with different 

shape and size



Measurements



Flow curve  = f (’)
Herschel-Bulkley model

0: yield strength (Pa)

K: consistency (Pa sn)

n: flow index

Measurements

effective relative viscosity



Monodisperse suspensions:

Einstein 1906
Theoretical, linear, dilute suspensions 
B ‘intrinsic viscosity’ = 2.5 for spheres

Einstein-Roscoe 1952
Power-law, ϕm = max. particle 
concentration 

Krieger & Dougherty 1967
Power-law, exponent modified by ϕm

Costa et al. 2009
sigmoidal semi-empirical 3-parameter 
equation

Models for  r(ϕ)



Monodisperse



Bidisperse



Bidisperse



Monodisperse
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