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Flows of volcanic lava, La Palma  

Associated Press, 30 November 2021

Eruption Sept-Dec 

2021

7000 people 

displaced.

Estimated damage 

€ 850m 



Lava flow interactions with topography

• Lava flows slowly and as a 

relatively shallow layer.

• Very high viscosity

(>> viscosity of water)

• Driven by gravity, guided by 

topography, interacts with 

infrastructure

Model as a viscously-dominated, shallow flowing layer.

Determine the flow speed,depth and inundated area.



Can lava flows be deflected or arrested?
• Infrastructure, lives and 

livelihoods are catastrophically 

impacted by lava inundation.

• Recent examples: La Palma, 

Canary Islands; Reykjanes 

Peninsula, Iceland; Kīlauea, 

Hawaii; Goma, D.R. Congo

https://www.bbc.co.uk/news/magazine-29136747

Grindavík, Iceland 2024

Attempted strategies:

• Bombing (e.g. Hawaii, 1930s)

• Cooling (e.g. Heimaey, 

Iceland, 1973)

• Barriers



Barrier construction in Iceland (2023-)

• Programme of barrier 

construction to defend villages 

and infrastructure.

• Design choices: Size, location, 

materials

HALLDOR KOLBEINS /AFP

• Design based upon 

computational flow 

modelling

(Hörn Hrafnsdóttir, 

Verkis)
Hrafnsdóttir, Verkis



Lava rheology
• Three-phase mixture of melt, crystals, and gas bubbles.

• The rheology – the relationship between stresses and rates 

of deformation - is a function of:

chemical composition,  volume fractions of crystals and 

bubbles and temperature.

• High viscosity 

(106-1012 times viscosity of water)

• Vital role of cooling:

– increases viscosity

– changes rheology
KELLEY@URI.EDU



Free surface flows (i)

• Simple shear flow down a plane, 

driven by gravity. (Flow field u=(u(z),0,0))

• Balance of momentum 

(p(z)=pressure, xz(z)=deviatoric shear stress):

• Integrate: 

• Newtonian rheology
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Free surface flow: yield stress

• Flows with a yield stress, y

• Flow is unyielded for 0<z<Y xz(z=Y)=y  Yield height

• Yielded region (z<Y)

• Unyielded region (z>Y) 

• Volume flux 
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Mathematical model: lubrication

• Extend flow model to shallow flows (h/L<<1),

flowing over topography with z=d(x,y).

• Hydrostatic pressure 𝑝 = 𝜌𝑔 cos 𝛽 ℎ + 𝑑 − 𝑧

• Deviatoric shear stresses xz and yz 

• The flow yields when xz
2+ yz

2=y
2

– Defines a yield surface Y(x,y) and plug velocity Up(x,y)

• Find velocity field parallel to boundary: u=(u,v,0) and 

volume flux q=(qx,qy) as function of h(x,y,t)

• Mass conservation          
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Dimensionless parameters

• Steady flow driven by a uniform upstream flux of fluid per unit 

width, Q. Newtonian fluid flows with depth ℎ∞ = 3𝜇𝑄

𝜌𝑔 sin 𝛽

1/3
.

Flow interacts with topography of characteristic width L and 

height dm 

• Dimensionless parameters:

– Flow parameter, 𝐹 = ℎ∞
𝐿 tan 𝛽

– Topography parameter, 𝑀 = 𝑑𝑚
𝐿 tan 𝛽

– Yield stress parameter, 𝐵 =
𝜏𝑦

𝜌𝑔 sin 𝛽ℎ∞

• Topographic effects illustrated 

using d(x,y)=M exp(-x2-y2)

• Numerical solutions using finite elements



Flow over a mound (F=0.1, B=0)

• Contours of flow thickness: deflection and overtopping

Small mound

M=0.5

Large mound

M=1.5

Creation of ‘dry’

zone into which 

no fluid flows

Flow

Flow

Dimensions of dry zone are function of M and F (and d(x,y))



Flow over a mound: effects of yield stress

• Streamlines only weakly affected by yield stress

• Flow depths somewhat different:

– Maximum depth on symmetry axis upstream of mound when B=0.5.



Flow around surface-piercing obstacle
• Obstacle can not be overtopped.  Instead flow is deflected.

• Laboratory experiments with obstacles of different cross-

section (circle, square, diamond)

• Relatively wide obstacles 𝐹=
ℎ∞

𝐿 tan 𝛽
≪1 ∶

Upstream ‘pond’ of fluid. Downstream fluid-free region



Depth of fluid: circular cylinder

• Dimensionless governing equation

   
𝜕ℎ3

𝜕𝑥
= ∇. 𝐹ℎ3∇ℎ  

subject to ℎ → 1 as 𝑟 = |𝒙| → ∞ [Far field uniform thickness]

and ℎ3 𝐹𝜕ℎ

𝜕𝑟
− cos 𝜃 = 0 on r = 1 [Impermeable boundary]

• Numerical solution (F=1)
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Circular cylinder results
=

(r,)



x

Flow

Flow depth along 

symmetry axis 

(F=0.025)h

hmax

The maximum (=) and 

minimum (=0) flow 

depths at cylinder.

Close agreement with 

experiments.

hmax is large when F<<1

hmax,

hmin

Can this dependence be explained?



Flux in

Flux out

Maximum flow depth: F<<1

• Leading order result more readily deduced:

– Within deep-ponded inner region, no radial flux as cylinder impermeable

– Balance flux into inner region from upstream

 with deflected flux

– Deduce Maximum height: ℎ 1, 𝜋 =
4

𝐹

1/4

Cylinder

 (r=1)

Uniform 

oncoming 

flow (h=1)
DeflectionDeceleration

Outer region Intermediate 

region Inner 

region

h

x

The full asymptotic 

description requires 

three regions and 

matched expansions 

between them.



Flow around other shapes
Asymptotic results (F<<1)

• Circles: 

ℎ𝑚𝑎𝑥 =
4

𝐹

1/4

• Squares:

ℎ𝑚𝑎𝑥 =
10

𝐹2

1/5

• Diamond: 

ℎ𝑚𝑎𝑥 =
4 sin2 𝜓

cos 𝜓 𝐹

1/4



What happens when source

is  turned off?
• For a purely viscous fluid, all fluid drains away.

• With a yield stress, fluid is retained upstream of the obstacle

– Can yield stress be inferred from material left behind?



Laboratory Experiments 

Experiments run for over 10 hours to adjust to final state



Simulations of yield stress fluid

• Starting from the steady state of flow around obstacle, the 

source is turned off to compute h(x,y,t)

Slow evolution to a final state with fluid upstream of obstacle 



Final arrested state

• Flow arrested when shear stresses no longer exceed yield 

stress.

• Governing equation

• Integrate to find h(x,y) [using Charpit’s method]

• Compute volume of material retained and force exerted on 

obstacle by retained flow.
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Future challenges

• Compare deflection 

patterns with natural 

observations

• Inform engineering 

design of barriers that 

defend infrastructure

• Include more realistic 

rheology, including 

temperature dependence



Creative reactions

Viscosity, Huw Richard Evans, 2019



Operational models

Dr Mark Woodhouse, School of Earth Science, University of Bristol

Mark.Woodhouse@bristol.ac.uk



• Launched 2013

• Key users in ash hazard 

community

✶Met Office (London 

VAAC) 

✶Darwin VAAC

✶Icelandic Met Office 

✶Wellington VAAC 

✶GNS Science New 

Zealand 

✶BGS

Ash Plumes modelling using PlumeRise

www.plumerise.bris.ac.uk



Lahar modelling using LaharFlow.

LaharFlow solves 

equations that model 

the motion of a 

concentrated mixture 

of water and 

sediments, and 

includes erosion and 

deposition of solid 

materials.

www.laharflow.bris.ac.uk
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