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Lava flow interactions with topography

« Lava flows slowly and as a
relatively shallow layer.

* Very high viscosity
(>> viscosity of water)

* Driven by gravity, guided by
topography, interacts with
infrastructure

Model as a viscously-dominated, shallow flowing layer.
Determine the flow speed,depth and inundated area.
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Can lava flows be defl ?

 Infrastructure, lives and
livelihoods are catastrophicall
iImpacted by lava inundation.

 Recent examples: La Palma,
Canary Islands; Reykjanes
Peninsula, lceland; Kilauea,
Hawaii; Goma, D.R. Congo

Grindavik, Iceland 2024

Attempted strategies:

« Bombing (e.g. Hawaii, 1930s)

* Cooling (e.g. Heimaey,
lceland, 1973)

» Barriers
https://www.bbc.co.uk/news/magazine-29136747
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Barrier construction in Iceland (2023-)

* Programme of barrier
construction to defend villages
and infrastructure.

« Design choices: Size, location,
materials

Design based upon
computational flow
modelling

(Horn Hrafnsdottir,

Verkis)
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Lava rheology
« Three-phase mixture of melt, crystals, and gas bubbles.

* The rheology — the relationship between stresses and rates
of deformation - is a function of:

chemical composition, volume fractions of crystals and
bubbles and temperature.

» High viscosity 121 B Rhyolite
(108-10"2 times viscosity of water) wal ' b

‘ Andesite

-

Log Viscosity (Poise)

4 ' Basalt
2 1 Ketchup

« Vital role of cooling: o_18 oiive oi
— increases viscosity 21§ Water
KELLEY@URI.EDU
— changes rheology

Increasing viscosity

.% University of

B BRISTOL



Free surface flows (i) z

« Simple shear flow down a plane,
driven by gravity. (Flow field u=(u(z),0,0))

« Balance of momentum

(p(z)=pressure, o,,(z)=deviatoric shear stress):
aO-xz

0z
* Integrate: p=p,+pgcosB(h—2z) oy, =pgsinf (h—z)

 Newtonian rheology
Oy, 1 Velocity u

0
O=—a—Z—pgcosﬂ 0= + pgsinp

_pgsinf
-
h

sin 8 h3
Volume flux q=f udz:pg P
0 3u

(2hz — z%)

G,,~1ou/0z

ouloz
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Free surface flow: yield stress -
O

* Flows with a yield stress, t, §

GXZ A
/ GXZ:Ty—l_L’la u/oz if GXZ>Ty Yielded ~—~ 7T
T ou/0z=0 otherwise Unyielded

y

ouloz

- Flow is unyielded for 0<z<Y c,,(z=Y)=1,  Yield height
. Yielded region (z<Y) 4 =P9SnA 2(2Y — 7)

z| U : 2
T Unvielsea  * Unyielded region (z>Y) u = U, = £ SIZILﬁ f
| * Volume flux Plug velocity
_— iY'elded h pgsinfY?(Bh—-Y)
u(z) =J0 udz = 3'u
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Mathematical model: /ubrication

Extend flow model to shallow flows (h/L<<1),
flowing over topography with z=d(x,y).
Hydrostatic pressure p = pgcosf (h +d — z)
Deviatoric shear stresses c,,and o,

_ ap aO'xZ _ ap aO-yz
0= 6x+ e + pg sin 0__6y+ s

The flow yields when c,,*+ 6,,°=1,2
— Defines a yield surface Y(x,y) and plug velocity U (x,y)

Find velocity field parallel to boundary: u=(u,v,0) and
volume flux q=(q,,q,) as function of h(x,y,t)

Mass conservation ‘3—}; +V.q=0
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Dimensionless parameters

Steady flow driven by a uniform upstream flux of fluid per unit
width, Q. Newtonian fluid flows with depth he, = (-2 )"

pg sin B

Flow interacts with topography of characteristic width L and
height d,
Dimensionless parameters:

— — ho
Flow parameter, F = Ttan g

y
— Topography parameter, M = Lfa"r}ﬁ |
— Vi —__ W
Yield stress parameter, B = - — %

Topographic effects illustrated
using d(x,y)=M exp(-x?-y?)
Numerical solutions using finite elements
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Flow over a mound (F=0.1, B=0)

« Contours of flow thickness: deflection and overtopping

H Small mound

0.9 M=0.5

0.8
0.7
0.6

14 Large mound

12 M=1.5

0.8

0.6 Creation of ‘dry’
3‘2‘ zone into which
| no fluid flows

Dimensions of dry zone are function of M and F (and d(x,y))
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Flow over a mound: effects of yield stress

2
%
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0 0
6 . 0 2 4 6
J£

« Streamlines only weakly affected by yield stress

* Flow depths somewhat different:
— Maximum depth on symmetry axis upstream of mound when B=0.5.
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Flow around surface-piercing obstacle
* Obstacle can not be overtopped. Instead flow is deflected.

» Laboratory experiments with obstacles of different cross-
section (circle, square, diamond)

» Relatively wide obstacles r=—_«1 :
an f8

Upstream ‘pond’ of fluid. Downstream fluid-free region
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(r.0)

Depth of fluid: circular cylinder fe
ow
* Dimensionless governing equation

—

oh® 3 X
e V.(Fh>Vh)

subjectto h - 1 as r = |x| = o [Far field uniform thickness]
and h3(F2% — cos ) = 0 on r = 1 [Impermeable boundary]

* Numerical solution (F=1)
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Circular cylinder results
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(r.0)

i@
Flow 6-0

—
X

Flow depth along
max- symmetry axis
(F=0.025)

The maximum (6=r) and
minimum (6=0) flow
depths at cylinder.
Close agreement with
experiments.

h... is large when F<<1

max

Can this dependence be explained?



Maximum flow depth: F<<1

Cylinder
(r=1)
The full asymptotic

description requires

nt three regions and
Outer region Intermediate matched expansions
region Inner
region between them.

»
Ll

X

» Leading order result more readily deduced:

— Within deep-ponded inner region, no radial flux as cylinder impermeable

— Balance flux into inner region from upstream - Fluxout
with deflected flux

| | a\1/4
— Deduce Maximum height: h(1, ) = (;)
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Flow around other shapes
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y Asymptotic results (F<<1)

 Circles:
1 N
0.5 hmax = (F)
. * Squares:
i ) 10 1/5
1.5 — —
1 max F2
0.5
 Diamond:

L 4 sin? 174
max — \ cosy F




What happens when source

is turned off?
* For a purely viscous fluid, all fluid drains away.

« With a yield stress, fluid is retained upstream of the obstacle
— Can yield stress be inferred from material left behind?

150

@] up ®®
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100 00®
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Laboratory Experiments

Experiments run for over 10 hours to adjust to final state
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Simulations of yield stress fluid

« Starting from the steady state of flow around obstacle, the
source is turned off to compute h(x,y,t)

4 T T T
3r L

H
2- 'al )

-1.5 -1 -0.5 0 0.5 1 1.5

Slow evolution to a final state with fluid upstream of obstacle
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Final arrested state
* Flow arrested when shear stresses no longer exceed yield

stress. Oxz(z = 0)* + 0y,(z = 0)* =15
» Governing equation (1 on 2 (L o g, Y
tan f dx tanfdy) \pgsinp

 Integrate to find h(x,y) [using Charpit’'s method]
\ 1.0

« Compute volume of material retained and force exerted on
obstacle by retained flow.
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Future challenges

« Compare deflection
patterns with natural
observations

Inform engineering
design of barriers that
defend infrastructure

Include more realistic
rheology, including
temperature dependence
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Creative reactions
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Operational models

Dr Mark Woodhouse, School of Earth Science, University of Bristol
Mark.Woodhouse@bristol.ac.uk
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Ash Plumes modelling using PlumeRise
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 Launched 2013

« Key users in ash hazard
community

* Met Office (London

VAAC)

*xDarwin VAAC

X [celandic Met Office

*xWellington VAAC

*xGNS Science New

Zealand

*xBGS

www.plumerise.bris.ac.uk




Lahar modelling using LaharFlow.

niversity of (S
] BRISTOL LaharFlow %

L aharFlow solves ,
equations that model “ | | |
the motion of a |
concentrated mixture

of water and
sediments, and I
includes erosion and

B
B
=C

d ltl f I . d Domain settings =~ Parameters Topography Load/saveinputs Plotsettings = Data export
e pos I I O n O SO I : |-11.93423 xresolution (m): 1 O Setsources
m ate ri a IS Longitude: |-76.70374 y resolution (m): |1
" Domain sizeinx (m): 3000 Simulation time (s): | 1200
y (m):
Sele X Cancel

www.laharflow.bris.ac.uk
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