

Modelling the interaction of lava flows with topography and barriers

Andrew Hogg

School of Mathematics, Unversity of Bristol

Ed Hinton,

School of Mathematics and Statistics,

University of Melbourne, Australia

Flows of volcanic lava, La Palma

Eruption Sept-Dec 2021

7000 people displaced.

Estimated damage
€ 850m

Associated Press, 30 November 2021

Lava flow interactions with topography

- Lava flows slowly and as a relatively shallow layer.
- Very high viscosity
 (>> viscosity of water)
- Driven by gravity, guided by topography, interacts with infrastructure

Model as a viscously-dominated, shallow flowing layer. Determine the flow speed, depth and inundated area.

Can lava flows be deflected or arrested?

- Infrastructure, lives and livelihoods are catastrophically impacted by lava inundation.
- Recent examples: La Palma, Canary Islands; Reykjanes Peninsula, Iceland; Kīlauea, Hawaii; Goma, D.R. Congo

Grindavík, Iceland 2024

Attempted strategies:

- Bombing (e.g. Hawaii, 1930s)
- Cooling (e.g. Heimaey, Iceland, 1973)
- Barriers

https://www.bbc.co.uk/news/magazine-29136747

Barrier construction in Iceland (2023-)

- Programme of barrier construction to defend villages and infrastructure.
- Design choices: Size, location, materials

 Design based upon computational flow modelling (Hörn Hrafnsdóttir, Verkis)

Lava rheology

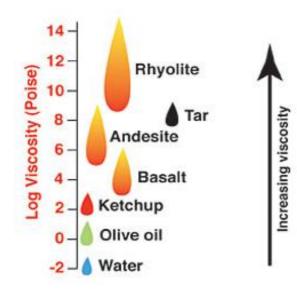
Three-phase mixture of melt, crystals, and gas bubbles.

 The rheology – the relationship between stresses and rates of deformation - is a function of: chemical composition, volume fractions of crystals and

bubbles and temperature.

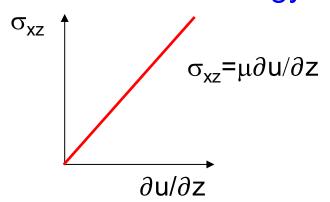
 High viscosity (10⁶-10¹² times viscosity of water)

- Vital role of cooling:
 - increases viscosity
 - changes rheology



KELLEY@URI.EDU

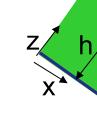
- Simple shear flow down a plane, driven by gravity. (Flow field u=(u(z),0,0))
- Balance of momentum (p(z)=pressure, $\sigma_{xz}(z)$ =deviatoric shear stress): $0 = -\frac{\partial p}{\partial z} - \rho g \cos \beta \qquad 0 = \frac{\partial \sigma_{xz}}{\partial z} + \rho g \sin \beta$
- Integrate: $p = p_a + \rho g \cos \beta (h z)$ $\sigma_{xz} = \rho g \sin \beta (h z)$
- Newtonian rheology



Velocity
$$u = \frac{\rho g \sin \beta}{2\mu} (2hz - z^2)$$

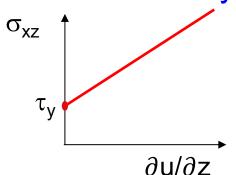
Volume flux $q = \int_0^h u \, dz = \frac{\rho g \sin \beta \, h^3}{3\mu}$

Free surface flow: yield stress



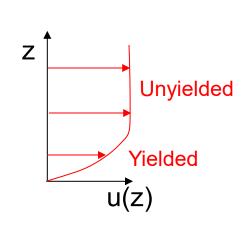
Plug velocity

Flows with a yield stress, τ_v



$$\sigma_{xz} = \tau_y + \mu \partial u / \partial z$$
 if $\sigma_{xz} > \tau_y$ Yielded $\partial u / \partial z = 0$ otherwise Unyielded

Flow is unyielded for $0 < z < Y \sigma_{xz}(z=Y) = \tau_y$ Yield height



- Yielded region (z<Y) $u = \frac{\rho g \sin \beta}{2\mu} z(2Y z)$ Unyielded region (z>Y) $u = U_p = \frac{\rho g \sin \beta}{2\mu} z(2Y z)$
- Volume flux

$$q = \int_0^h u \, dz = \frac{\rho g \sin \beta \, Y^2 (3h - Y)}{3\mu}$$

Mathematical model: lubrication

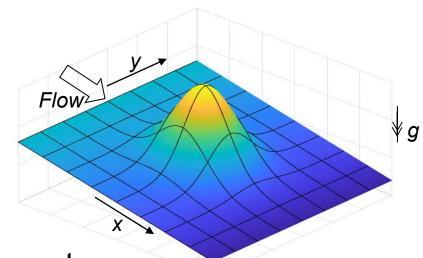
- Extend flow model to shallow flows (h/L<<1), flowing over topography with z=d(x,y).
- h(x,y,t) g
- Hydrostatic pressure $p = \rho g \cos \beta (h + d z)$
- Deviatoric shear stresses σ_{xz} and σ_{yz}

$$0 = -\frac{\partial p}{\partial x} + \frac{\partial \sigma_{xz}}{\partial z} + \rho g \sin \beta \qquad \qquad 0 = -\frac{\partial p}{\partial y} + \frac{\partial \sigma_{yz}}{\partial z}$$

- The flow yields when $\sigma_{xz}^2 + \sigma_{yz}^2 = \tau_y^2$
 - Defines a yield surface Y(x,y) and plug velocity $U_{D}(x,y)$
- Find velocity field parallel to boundary: u=(u,v,0) and volume flux q=(q_x,q_y) as function of h(x,y,t)
- Mass conservation $\frac{\partial h}{\partial t} + \nabla \cdot q = 0$

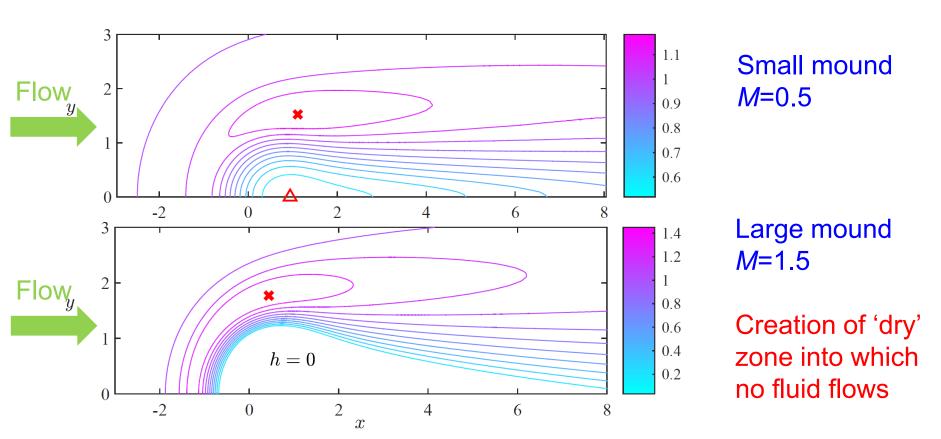
Dimensionless parameters

- Steady flow driven by a uniform upstream flux of fluid per unit width, Q. Newtonian fluid flows with depth $h_{\infty} = \left(\frac{3\mu Q}{\rho g \sin\beta}\right)^{1/3}$. Flow interacts with topography of characteristic width L and height $d_{\rm m}$
- Dimensionless parameters:
 - Flow parameter, $F = \frac{h_{\infty}}{L \tan \beta}$
 - Topography parameter, $M = \frac{d_m}{L \tan \beta}$
 - Yield stress parameter, $B = \frac{\tau_y}{\rho g \sin \beta h_{\infty}}$
- Topographic effects illustrated using d(x,y)=M exp(-x²-y²)
- Numerical solutions using finite elements



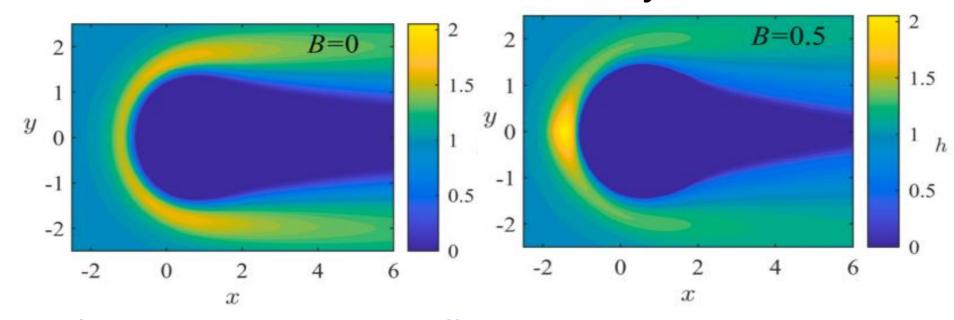
Flow over a mound (F=0.1, B=0)

Contours of flow thickness: deflection and overtopping



Dimensions of dry zone are function of M and F (and d(x,y))

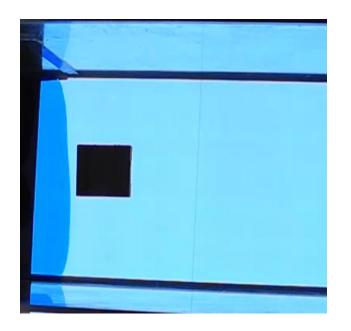
Flow over a mound: effects of yield stress



- Streamlines only weakly affected by yield stress
- Flow depths somewhat different:
 - Maximum depth on symmetry axis upstream of mound when B=0.5.

Flow around surface-piercing obstacle

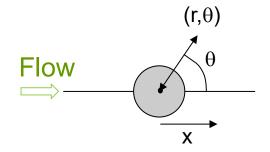
- Obstacle can not be overtopped. Instead flow is deflected.
- Laboratory experiments with obstacles of different crosssection (circle, square, diamond)





• Relatively wide obstacles $F = \frac{h_{\infty}}{L \tan \beta} \ll 1$:
Upstream 'pond' of fluid. Downstream fluid-free region

Depth of fluid: circular cylinder

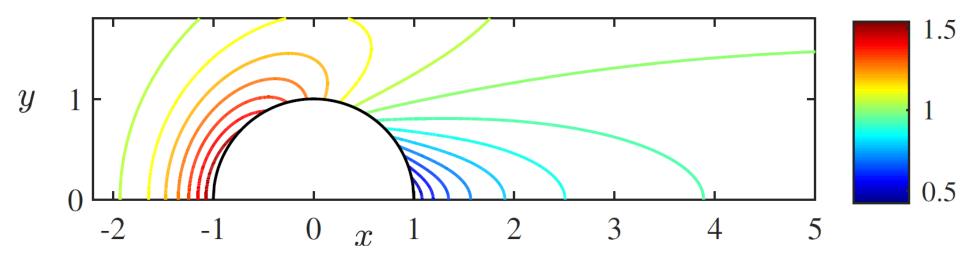


Dimensionless governing equation

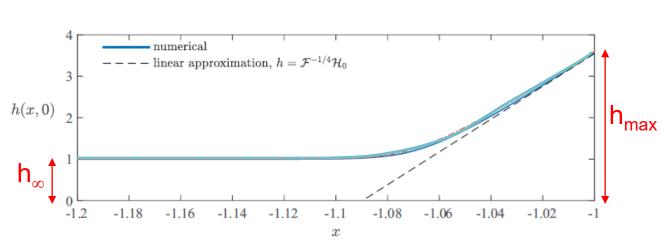
$$\frac{\partial h^3}{\partial x} = \nabla . \left(F h^3 \nabla h \right)$$

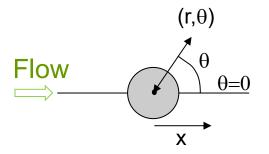
subject to $h \to 1$ as $r = |x| \to \infty$ [Far field uniform thickness] and $h^3 \left(F \frac{\partial h}{\partial r} - \cos \theta \right) = 0$ on r = 1 [Impermeable boundary]

Numerical solution (F=1)

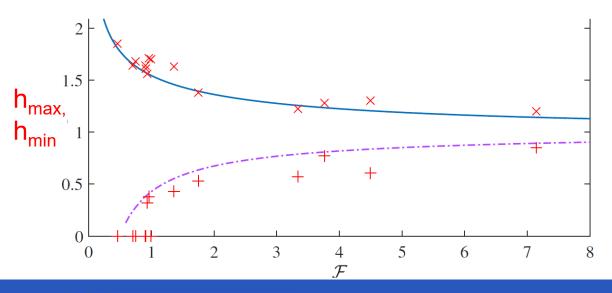


Circular cylinder results





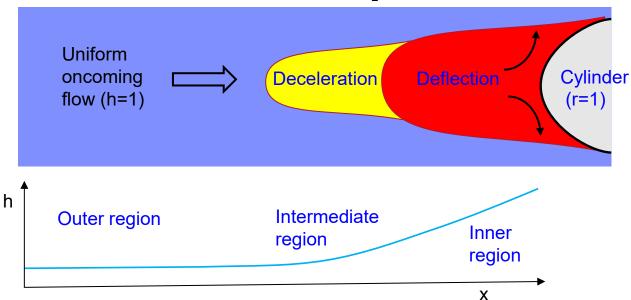
Flow depth along symmetry axis (*F*=0.025)



The maximum $(\theta=\pi)$ and minimum $(\theta=0)$ flow depths at cylinder. Close agreement with experiments.

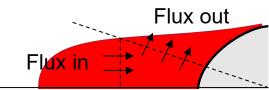
h_{max} is large when F<<1

Maximum flow depth: F<<1

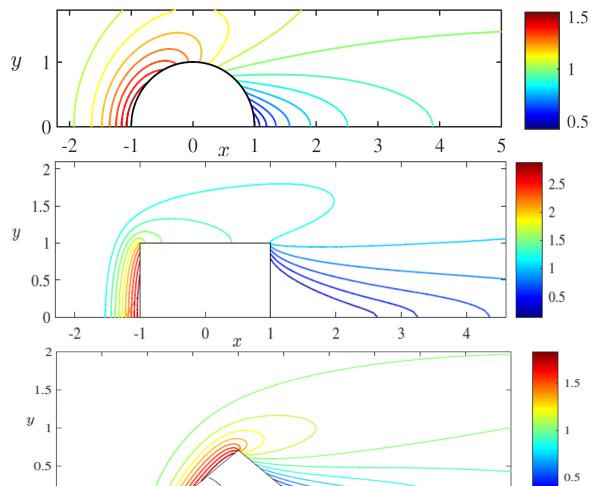


The full asymptotic description requires three regions and matched expansions between them.

- Leading order result more readily deduced:
 - Within deep-ponded inner region, no radial flux as cylinder impermeable
 - Balance flux into inner region from upstream with deflected flux
 - Deduce Maximum height: $h(1,\pi) = \left(\frac{4}{F}\right)^{1/4}$



Flow around other shapes



0.5

0

1.5

2.5

3

2

Asymptotic results (F<<1)

• Circles:

$$h_{max} = \left(\frac{4}{F}\right)^{1/4}$$

Squares:

$$h_{max} = \left(\frac{10}{F^2}\right)^{1/5}$$

Diamond:

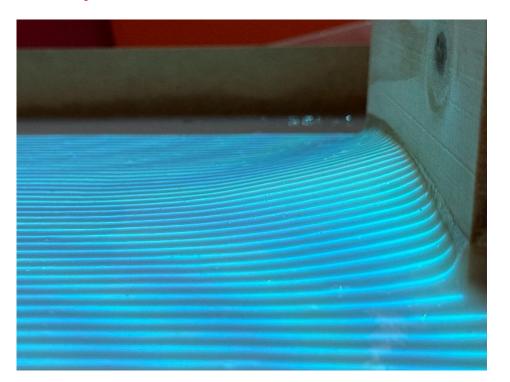
$$h_{max} = \left(\frac{4\sin^2\psi}{\cos\psi\,F}\right)^{1/4}$$

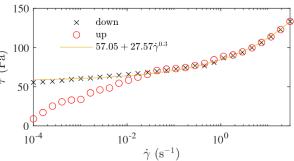
-0.5

-1.5

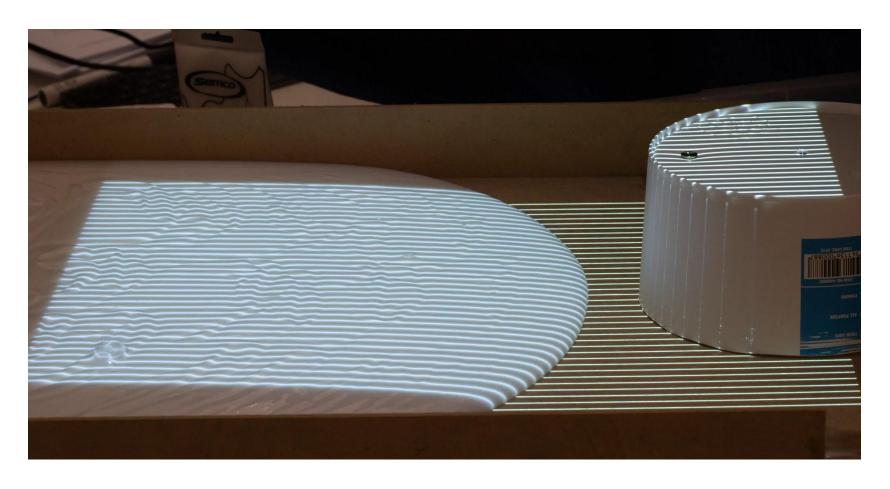
What happens when source is turned off?

- For a purely viscous fluid, all fluid drains away.
- With a yield stress, fluid is retained upstream of the obstacle
 - Can yield stress be inferred from material left behind?





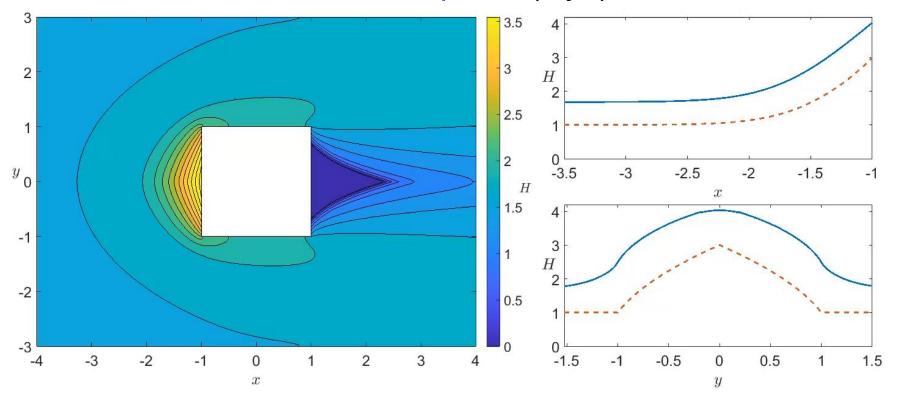
Laboratory Experiments



Experiments run for over 10 hours to adjust to final state

Simulations of yield stress fluid

 Starting from the steady state of flow around obstacle, the source is turned off to compute h(x,y,t)



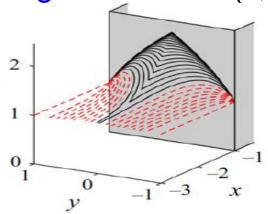
Slow evolution to a final state with fluid upstream of obstacle

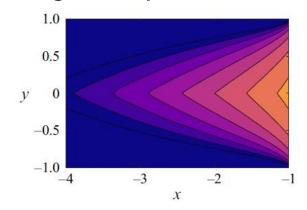
Final arrested state

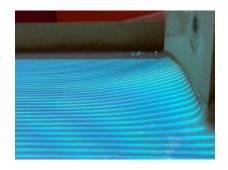
- Flow arrested when shear stresses no longer exceed yield stress. $\sigma_{xz}(z=0)^2 + \sigma_{vz}(z=0)^2 = \tau_v^2$
- Governing equation

$$h^2 \left(\frac{1}{\tan \beta} \frac{\partial h}{\partial x} - 1 \right)^2 + h^2 \left(\frac{1}{\tan \beta} \frac{\partial h}{\partial y} \right)^2 = \left(\frac{\tau_y}{\rho g \sin \beta} \right)^2$$

Integrate to find h(x,y) [using Charpit's method]







 Compute volume of material retained and force exerted on obstacle by retained flow.

Future challenges

- Compare deflection patterns with natural observations
- Inform engineering design of barriers that defend infrastructure
- Include more realistic rheology, including temperature dependence

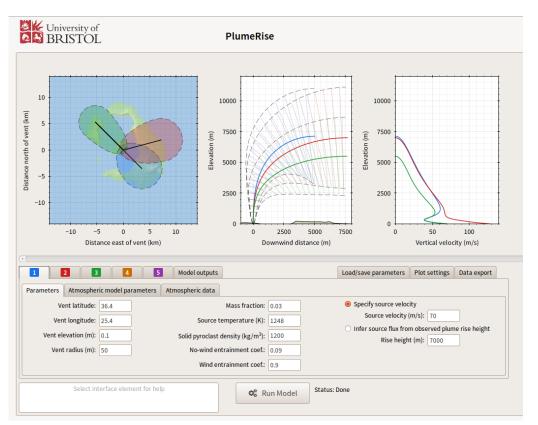
Creative reactions

Viscosity, Huw Richard Evans, 2019

Operational models

Dr Mark Woodhouse, School of Earth Science, University of Bristol Mark.Woodhouse@bristol.ac.uk

Ash Plumes modelling using PlumeRise

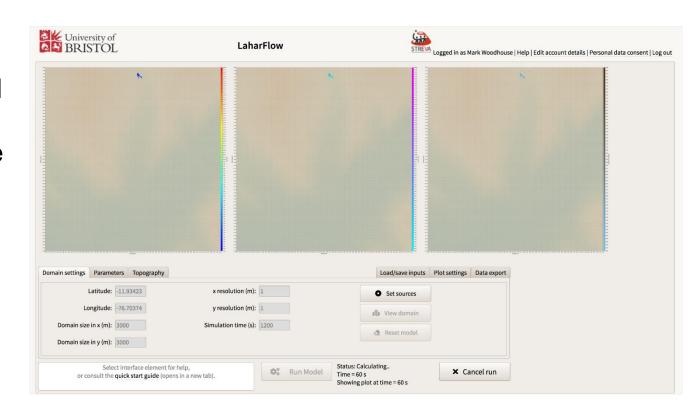


- Launched 2013
- Key users in ash hazard community
- ★Met Office (London VAAC)
- **★Darwin VAAC**
- **★** Icelandic Met Office
- **★Wellington VAAC**
- **★GNS Science New**
- Zealand
- *BGS

www.plumerise.bris.ac.uk

Lahar modelling using LaharFlow.

LaharFlow solves equations that model the motion of a concentrated mixture of water and sediments, and includes erosion and deposition of solid materials.



www.laharflow.bris.ac.uk

