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Tackling challenging and useful problems
The case of crystallization

Manufacturing of pharmaceutical materials

Li and Mattei, Pharmaceutical Crystals (2018)Snæbjörnsdóttir et al, Nature Reviews Earth & Environment 1, 90 (2020)

Climate change mitigation via mineral carbonation



Rare, but beautiful fluctuations
Classical Nucleation Theory (CNT)

bulk interface
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J. De Yoreo et al., Science 349, 6247 (2015)
Finney and Salvalaglio, Faraday Discussions (2021)
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Ab initio Atomistic Machine Learning
Training set

Compute observables from 
quantum mechanical electronic 

structure  calculations

Typically at the density-functional theory 
(DFT) level
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Define a model for the observables
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Model based on neural networks

Training process

Train model by minimizing a loss 
function

Mean square error loss function leads to 
a normal distribution of errorsMultiple observables:

• Potential energy (potential energy 
surface)

• Forces
• Dipoles and Wannier centers
• Charges
• Magnetic moment

Descriptors preserve symmetries and are 
key tools for analysis

Global or local, and can be scalars, 
vectors, or tensors. Equivariant or 
invariant in O(3)

Short-range with cutoffs around 6 Å Minimization with algorithm akin to 
steepest-gradient descent

Behler and Parrinello, Phys. Rev. Lett. 98, 14 (2007)



Enhanced sampling and the rise of OPES

OPES advantages:
● Very easy to use
● Fast convergence
● Stationary bias → easy reweighting
● Kernel compression to avoid slowdown

Invernizzi and Parrinello,  J. Phys. Chem. Lett., 11, 2731 (2020)
Invernizzi, Piaggi, and Parrinello, Phys. Rev. X 10, 041034 (2020)

Iterative reweighted 
KDE to determine 

P(s)

OPES (On the fly Probability Enhanced Sampling)

Bias

Reweighting

fs ps ns µs ms

Direct ab initio MD

MD with machine learning models

MD with empirical models

Rare-event techniques
● Seeding technique
● Umbrella sampling
● Metadynamics
● Path sampling

Laio and Parrinello,  Proc. Natl. Acad. Sci. 99 (2002)
Valsson, Tiwary, and Parrinello, Annu. Rev. Phys. Chem. 67 (2016)

Crystal nucleation



Homogeneous ice 
nucleation

Heterogeneous 
ice nucleation 
on feldspar

Piaggi, Weis, 
Panagiotopoulos, 

Debenedetti, and Car, 
PNAS 119, 33 (2022)

Piaggi, Selloni, 
Panagiotopoulos, Car, 

and Debenedetti, 
Faraday Discussions

(2024)

Calcium 
carbonate 
precipitation

Piaggi, Gale, and 
Raiteri, PNAS (2025)

Growth of CoBr2

on Au(111)

Kerschbaumer, 
Piaggi, Rogero, et al., 

submitted (2025)

A few examples



Ab initio water and ice (SCAN DFT functional)

Experiment
SCAN-ML

Water/ice phase diagram from machine-
learning driven MD

Zhang, Wang, Car, and E, Phys. Rev. Lett. 126, 236001 (2021) Piaggi, Weis, Panagiotopoulos, Debenedetti, and Car, PNAS 119, 33 (2022)

Ice Ih nucleation rates from supercooled liquid water



Simulations require high-performance computing capabilities

We used DeePMD 
and the SUMMIT 
supercomputer to 
simulate ~300,000 
atoms with ab initio 
accuracy on 600 
NVIDIA V100 GPUs

Piaggi, Weis, Panagiotopoulos, Debenedetti, and Car, Proc. Natl. Acad. Sci. 119, 33 (2022)

: Oxygen with liquid-like environment 

: Oxygen with ice Ih-like environment

: Oxygen with ice Ic-like environment

: Oxygen

: Hydrogen



Ab initio machine learning simulations of ice nucleation on feldspar

Wanqi Zhou
Postdoctoral researcher @ 
nanoGUNE

Piaggi, Selloni, Panagiotopoulos, Car, and Debenedetti, Faraday Discussions 249, 98 (2024)

: O : H: K : Al : Si

Trained using biased sampling and active learning to 
capture the formation of ice at surfaces.

Thorough analysis of ice nucleation activity for the multiple 
felspar crystallographic surfaces 



Crystallization of CaCO3 at near neutral pH

Eslam Ibrahim
Visiting PhD student @
nanoGUNE (collaboration 
with Ralf Drautz)

CO2 / HCO3
- / CO3

2- speciation vs pH

Mechanism for the bicarbonate to carbonate 
transformation is mot fully understood

Reactivity is key for this process and ML potentials are 
fully reactive

Jin, De Yoreo, et al, Nat. Mater. (2024)



Ab initio machine learning simulation of calcium carbonate

Piaggi, Gale, and Raiteri, PNAS (2025)

Training set and accuracy of SCAN-DFT model

t-SNE dimensionality reduction using DeePMD descriptors



Improved ion association thermodynamics and reactivity
Ion pair association via OPES simulation Carbonate to bicarbonate transformation

Piaggi, Gale, and Raiteri, PNAS (2025)

50-ns-long simulations with 5000 atoms



CaCO3 precipitation with unconstrained reactivity 

Piaggi, Gale, and Raiteri, PNAS (2025)

• Species interconvert via proton transfer
• Mean (max) error in forces 20 meV/Å (150 meV/Å)
• First time this process is simulated with full reactivity



Ab initio machine learning electrostatics

Bloch’s theorem (delocalized eigenstates)

Wannierization (localized eigenstates)

Wannier centers

Wannier centers

Marzari and Vanderbilt., Phys. Rev. B 56, 20 (1997)

Electrostatics and ML model

Charges are constant, but the Wannier centers can move! 
→ polarization and charge conservation
Large systems cannot be tackled directly

Electrostatic energy

Zhang et al., J. Chem. Phys. 156, 12 (2022)

Wannier
centroids

Train an ML model to predict positions of 
Wannier centers

Using a loss function



Are long-range interactions relevant for CaCO3?

Wannier centers and centroids

Long-range interactions are important to capture 
the ab initio thermodynamics of this system

Ion pair association with long-range 
interactions

Piaggi, Gale, and Raiteri, PNAS (2025)



Growth of magnetic 2D materials

Kerschbaumer, Piaggi, Rogero, et al., submitted (2025)

Simulate the reactive
deposition of molecules 
using the MACE-MP
foundation model 

STM images of growth process

There is a precursor phase (PP) 
that precedes the formation of the 
monolayer (ML). There seems to be 
a triangular motif in the PP.

Samuel Kerschbaumer
PhD student @ CFM 
(collaboration with Celia 
Rogero / Max Ilyn)

Au

CoBr2
Was thought to 
form directly 
during vapor 
depositions 

Van der Waals layer of CoBr2 on Au(111)

Validation with spin-polarized 
DFT calculations
▪ MAE = 103 meV/Å
▪ RMSE = 152 meV/Å
▪ R2 = 0.9743



Growth of magnetic 2D materials

Kerschbaumer, Piaggi, Rogero, et al., submitted (2025)

Side View Top View

MD simulations identify the triangular motif 

The PP structure is finally 
confirmed with direct DFT 
calculations, bolstering the 
evidence for a two-step 
growth mechanism in this 
system

Machine learning model for the magnetic moment

▪ MAE = 0.04 μB
▪ RMSE = 0.06 μB
▪ R2 = 0.93

Co
Br or Au



Funding

Team members @ nanoGUNE
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● Pablo Peña
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Bochum, Germany)
● Sergio Estrada

Collaborators and funding sources
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● Julian Gale


	Slide 1: Understanding Crystallization with Ab Initio Machine Learning Simulation
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Enhanced sampling and the rise of OPES
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

