
Simulation Recipes from the
Parrinello Family Cookbook

Michele Ceriotti
cosmo.epfl.ch

ICTP, September 2025



Simulating Parrinello-Style

Know the classics, and use them creatively

Don’t be afraid of complicated s**t

No project is finished until there’s an implementation people can use
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CPMD, CP2K, PLUMED, . . .



A cookbook of atomistic recipes
Modern atomistic simulations combine QM, stat mech, ML and more
A comprehensive open-source software stack for advanced atomic-scale simulations
. . . and a cookbook to use it effectively
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A cookbook of atomistic recipes
Modern atomistic simulations combine QM, stat mech, ML and more
A comprehensive open-source software stack for advanced atomic-scale simulations
. . . and a cookbook to use it effectively
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Modern atomistic simulations combine QM, stat mech, ML and more
A comprehensive open-source software stack for advanced atomic-scale simulations
. . . and a cookbook to use it effectively
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PET-MAD - Accuracy across materials (and molecular) space

Consistent benchmarking shows competitive performance with 100x less data

Fast, unconstrained architecture
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Mazitov

Bigi

Mazitov, Bigi et al., arXiv:2503.14118;
https://atomistic-cookbook.org/examples/pet-mad/pet-mad.html
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PET-MAD - Accuracy across materials (and molecular) space

Consistent benchmarking shows competitive performance with 100x less data

Fast, unconstrained architecture

Dataset PET-MAD MACE-MP-0-L MatterSim-5M Orb-v2 SevenNet

MAD 17.6|65.1 81.6|181.5 47.3|133.7 52.9|96.2 82.1|173.5
MPtrj 22.3|77.9 15.1|50.8 21.3|61.4 5.6|21.9 9.8|25.5
Matbench 31.3| --- 58.5|--- 38.2 |--- 37.9|--- 47.5|---
Alexandria 49.0|66.8 65.4|79.5 21.2|39.9 13.2|10.5 47.6|70.3
OC2020 18.3|114.5 82.4|169.6 31.5|119.2 19.8|99.3 45.7|162.7
SPICE 3.7|59.5 10.6|166.8 21.3|145.6 59.0|140.8 11.3|139.1
MD22 1.9|65.6 9.4|182.9 28.6|160.4 174.3|220.7 11.1|146.2
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Mazitov, Bigi et al., arXiv:2503.14118;
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atomistic-cookbook.org/examples/pet-mad-uq/pet-mad-uq.html



The design space of uncertainty quantification

Large design space for uncertainty quantification on top of a given architecture:
1 Error estimate (ensemble vs mean-variance dual-output)
2 Diversification of the ensemble (subsampling, weight pruning, NLL target)
3 Calibration (essential for quantitative estimates)
4 Uncertainty propagation
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Uncertainty estimation on a shoestring

‘‘Shallow’’ ensemble architecture to reduce overhead to (nearly) zero

Propagate the ensemble directly to obtain errors on the end properties

direct propagation of
shallow ensembles

last
layer

NLL
loss
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Musil et al., JCTC (2019); Kellner & MC, MLST (2024)



Last-layer ensembles are accurate

A last-layer ensemble model provides good, calibrated and informative UQ over a variety of
atomistic benchmarks
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Kellner & MC, MLST (2024)



Ensembles are easy to propagate uncertainty with
Obtaining uncertainties for complex simulation protocols is as simple as applying them to
separate ensemble members

z(k)(A) = f
[
y(k) (A)

]
z̄ =

1
n

∑
k

z(k), σ2
z =

1
n − 1

∑
k

(
z(k) − z̄

)2

mean / eV var / eV std / eV

Before creating vacancy -127.312576 1.347783 1.160941
Right after creating vacancy -122.585747 1.116814 1.056794
Energy of optimized vacancy -122.649384 1.129488 1.062774
Vacancy formation energy 0.684676 0.011522 0.107341
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UQ for free-energy sampling
Errors in ML-based thermodynamic averages combine effects on the observable σ2

a and those
from sampling σ2

aV

A committee of predictions can be obtained from a single trajectory!

⟨a⟩V (i) =
〈
a eβ(V̄−V (i))

〉
V̄

Statistically stable estimates with a Cumulant Expansion Approximation

⟨a⟩V (i),CEA ≈ ⟨a⟩V̄ − β
[〈

a
(
V (i) − V̄

)〉
V̄

− ⟨a⟩V̄
〈(

V (i) − V̄
)〉

V̄

]

10 Michele Ceriotti cosmo.epfl.ch Simulation Recipes from the Parrinello Family Cookbook

Imbalzano et al. JCP (2021)
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MC et al. PRSA (2012)

http://dx.doi.org/10.1098/rspa.2011.0413


UQ propagation with PET-MAD
Verify accuracy of a universal model on the end property by comparison with a bespoke model
or a fine tuned one)

Predictive model errors with shallow ensembles
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atomistic-cookbook.org/examples/pet-mad-nc/pet-mad-nc.html



One (equivariant) framework to rule them all
Deep connections between most atomic-scale ML frameworks due to symmetry priors
All equivariant frameworks have a structure constrained by the O (3) group
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Musil et al., Chem. Rev. (2021)

Musil
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http://dx.doi.org/10.1021/acs.chemrev.1c00021


One (equivariant) framework to rule them all
Deep connections between most atomic-scale ML frameworks due to symmetry priors
All equivariant frameworks have a structure constrained by the O (3) group
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GTTP (2,3)projectionACE (n*)
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SNAP (4)

SOAP (3)
FCHL (2,3,4)
Wavelets (3)

NICE (n*)
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Diffraction FP
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named features (body order)
   2,3,4: radial, angular, dihedrals
   n: n-body
   n*: complete n-body linear basis
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One (equivariant) framework to rule them all
Deep connections between most atomic-scale ML frameworks due to symmetry priors
All equivariant frameworks have a structure constrained by the O (3) group
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One (equivariant) framework to rule them all
Deep connections between most atomic-scale ML frameworks due to symmetry priors
All equivariant frameworks have a structure constrained by the O (3) group
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The bitter lesson
Deep learning with rotational augmentation is simpler, faster, and often more accurate

a
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b
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neighborsfrom 
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The bitter lesson
Deep learning with rotational augmentation is simpler, faster, and often more accurate
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The bitter lesson
Deep learning with rotational augmentation is simpler, faster, and often more accurate

credits: M. Langer
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Handle with some care

Symmetry breaking leads to artefacts
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Gong et al., Nature Nano. (2007)



Handle with some care

Symmetry breaking leads to artefacts that are small and easy to control
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Handle with some care

Symmetry breaking leads to artefacts that are small and easy to control
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0.0

0.2

0.4

c u
u

(
r

)

PET cL
uu

cT
uur

L

T

T

L

15 Michele Ceriotti cosmo.epfl.ch Simulation Recipes from the Parrinello Family Cookbook

Langer

Pozdnyakov

Langer, Pozdnyakov, MC, MLST (2024)



Handle with some care

Symmetry breaking leads to artefacts that are small and easy to control

2 3 4 5 6 7 8
r (Å)
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The dark side of the forces

Many application only need interatomic forces, fj = −∂V (r1, . . . rN) /∂rj , but learn them as the
derivative of a potential energy V

Data-minded approach: learning fj directly is faster

Bad idea. No energy conservation, unstable sampling, dynamics and geometry optimization
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derivative of a potential energy V
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Making good of non-conservative forces

No easy fix! Thermostatting stabilizes dynamics but leaves serious artifacts
How about using direct fitting togetherwith conservative forces?

Conservative fine-tuning: physically-consistent forces at half cost
Multiple time stepping: evaluating conservative correction everyM steps
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400
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Making good of non-conservative forces
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Making good of non-conservative forces

No easy fix! Thermostatting stabilizes dynamics but leaves serious artifacts
How about using direct fitting togetherwith conservative forces?

Conservative fine-tuning: physically-consistent forces at half cost
Multiple time stepping: evaluating conservative correction everyM steps
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... with the universal potential PET-MAD

This is a pretty robust setup: works for PET-MAD in the deep extrapolative regime with a
simulation of BMIM-Cl at 500K

See by yourself https://atomistic-cookbook.org/examples/pet-mad-nc/pet-mad-nc.html
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Fast and furious

If we give up energy conservation, we might at least get more than a 2x speedup. Can we
predict (q,p)(t +∆t) starting from (q,p)(t)? With large strides?

Train on 100k MD trajectories generated with PET-MAD → FlashMD

Universal MD with 16-64 fs time steps!

𝑍! Embed.

MLP

MLP

𝒑!(𝜏)

{𝒒!"(𝜏)}

GNN
(PET)

⊕ 𝒉!

𝒆!"

	𝒉-!

MLP 	𝒑#!(𝜏 + Δ𝜏)

	𝝈"!

MLP 	Δ𝒒#!(𝜏 + Δ𝜏)

	𝝈#$!

FlashMD

COM

COM

	𝒑!(𝜏 + Δ𝜏)

	Δ𝒒!(𝜏 + Δ𝜏)

Prediction with UQ
MVE

	𝝈!"#	+	𝝈$$%&

	𝝁%'
LL feats

	𝝈'

𝒒'( = 𝒒' − 𝒒(
|𝒒'(| < 𝑟)*+

{𝒑!, 𝒒!}"

Optional filters

MD
Δ𝜏 strides (vs. 1)

to reach final config.

Random rotation
Thermo/barostat
Energy rescaling

{𝑍(}

19 Michele Ceriotti cosmo.epfl.ch Simulation Recipes from the Parrinello Family Cookbook

Bigi

Chong

Bigi, Chong, Kristiadi, MC, arxiv:2505.19350



Fast and furious

If we give up energy conservation, we might at least get more than a 2x speedup. Can we
predict (q,p)(t +∆t) starting from (q,p)(t)? With large strides?

Train on 100k MD trajectories generated with PET-MAD → FlashMD

Universal MD with 16-64 fs time steps!

19 Michele Ceriotti cosmo.epfl.ch Simulation Recipes from the Parrinello Family Cookbook

Bigi

Chong

Bigi, Chong, Kristiadi, MC, arxiv:2505.19350



Fast and furious

If we give up energy conservation, we might at least get more than a 2x speedup. Can we
predict (q,p)(t +∆t) starting from (q,p)(t)? With large strides?

Train on 100k MD trajectories generated with PET-MAD → FlashMD

Universal MD with 16-64 fs time steps!

19 Michele Ceriotti cosmo.epfl.ch Simulation Recipes from the Parrinello Family Cookbook

Bigi

Chong

Bigi, Chong, Kristiadi, MC, arxiv:2505.19350



Fast and furious

If we give up energy conservation, we might at least get more than a 2x speedup. Can we
predict (q,p)(t +∆t) starting from (q,p)(t)? With large strides?

Train on 100k MD trajectories generated with PET-MAD → FlashMD

Universal MD with 16-64 fs time steps!

19 Michele Ceriotti cosmo.epfl.ch Simulation Recipes from the Parrinello Family Cookbook

Bigi

Chong

Bigi, Chong, Kristiadi, MC, arxiv:2505.19350



atomistic-cookbook.org/examples/flashmd/flashmd-demo.html



Thank you!
cosmo.epfl.ch
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Thank you!
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Last-layer ensembles are size-consistent
Atomistic potentials are often sums of atom-centered predictions y (A) =

∑
i∈A y (Ai)

How do atomic errors propagate to structure errors?
Mixed behavior for a water model in the NVT ensemble
Well-calibrated force prediction
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Last-layer ensembles extrapolate well

Accuracy degrades for out-of-sample predictions, but is good enough to select structures for
active learning

Incremental training improves UQ calibration as well as prediction accuracy
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Last-layer ensembles extrapolate well

Accuracy degrades for out-of-sample predictions, but is good enough to select structures for
active learning

Incremental training improves UQ calibration as well as prediction accuracy
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UQ for acid-base equilibria
Energetics described with a DFTB baseline and a MLP correction. Accelerated by multiple time
stepping
PIGLET thermostatting & ring-polymer contraction for the quantum sampling, Plumed-driven
metadynamics applied to the centroid
Metadynamics sampling of the dissociation of CH3SO2OH.
UQ for the free-energy profile!

Hybrid DFT 
correction fast

+

*

-

Hybrid DFT 
fullslowffcommittee

multiple 
time step
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PIGLET thermostatting & ring-polymer contraction for the quantum sampling, Plumed-driven
metadynamics applied to the centroid
Metadynamics sampling of the dissociation of CH3SO2OH.
UQ for the free-energy profile!
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UQ for acid-base equilibria
Energetics described with a DFTB baseline and a MLP correction. Accelerated by multiple time
stepping
PIGLET thermostatting & ring-polymer contraction for the quantum sampling, Plumed-driven
metadynamics applied to the centroid
Metadynamics sampling of the dissociation of CH3SO2OH.
UQ for the free-energy profile!
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Going MAD
Training set generation based on Maximum Atomic Diversity.
Internally consistent DFT details - aim for DFT accuracy with < 100k structures
Diverse data space, covering more ground than much larger datasets
The latent variables provide a general framework for data analytics

Subset name Description # structures # atoms

MC3D Bulk crystals from theMaterials Cloud 3D crystals 33596 738484
MC3D-rattled Rattled analogs of the original MC3D crystals,

with Gaussian noise added to all atomic positions
30044 599675

MC3D-random Artificial structures from MC3D with randomized
atomic species from 85 elements

2800 25095

MC3D-surface Surface slabs generated from MC3D by cleaving
along random low-index crystallographic planes

5589 205185

MC3D-cluster Nanoclusters (2-8 atoms) cut from MC3D and
MC3D-rattled environments

9071 44829

MC2D 2D crystals from the Materials Cloud 2676 43225
SHIFTML-molcrys Curated SHIFTML molecular crystals from the

Cambridge Structural Database
8578 852044

SHIFTML-molfrags Neutral molecular fragments from SHIFTML 3241 72120
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Going MAD
Training set generation based on Maximum Atomic Diversity.
Internally consistent DFT details - aim for DFT accuracy with < 100k structures
Diverse data space, covering more ground than much larger datasets
The latent variables provide a general framework for data analytics
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Going MAD
Training set generation based on Maximum Atomic Diversity.
Internally consistent DFT details - aim for DFT accuracy with < 100k structures
Diverse data space, covering more ground than much larger datasets
The latent variables provide a general framework for data analytics
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Going MAD
Training set generation based on Maximum Atomic Diversity.
Internally consistent DFT details - aim for DFT accuracy with < 100k structures
Diverse data space, covering more ground than much larger datasets
The latent variables provide a general framework for data analytics
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Going MAD
Training set generation based on Maximum Atomic Diversity.
Internally consistent DFT details - aim for DFT accuracy with < 100k structures
Diverse data space, covering more ground than much larger datasets
The latent variables provide a general framework for data analytics
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PET-MAD - Accuracy across materials (and molecular) space
Consistent benchmarking shows competitive performance with 100x less data
Fast, unconstrained architecture
Prediction of complex properties, simple fine-tuning, model errors with shallow ensembles
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