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Simulating Parrinello-Style

o Know the classics, and use them creatively

Car & Parrinello, Phys. Rev. Lett. (1985)

2 Michele Ceriotti cosmo.epfl.ch Simulation Recipes from the Parrinello Family Cookbook



Simulating Parrinello-Style

o Know the classics, and use them creatively
e Don’t be afraid of complicated s**t

———— MD CODE

COMPUTE CVs

E N ACCUMULATE » CLUSTERING
= SNAPSHOTS
e
- COMPARE
O ADD HILLS BASINS
~ [ & UPDATE
5 RESIZE T
&y L] COMPUTE -
BIAS Fig. 1. A complex free-energy surface that is periodic in three directions (4)

Fix and its sketch-map projection (8). B shows how one can use functions of the
I sketch-map coordinates to describe the position in the three-dimensional

|—p MD CODE space. The fields generated for the three marked points are shown. Where
sketch-map reproduces the topology (point 1) the field is sharply peaked and
is roughly Gaussian shaped. Where sketch-map provides a less good descrip-

Fig. 2. Flcwchart for the reconnaissance metadyn a mics algorith m. tion the field has multiple peaks because there are multiple points where it is

reasonable to project (point 3).

Tribello et al. PNAS (2010); Tribello et al. PNAS (2012)
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Simulating Parrinello-Style

o Know the classics, and use them creatively
e Don’t be afraid of complicated s**t
e No project is finished until there's an implementation people can use

CPMD, CP2K, PLUMED, . ..
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A cookbook of atomistic recipes

e Modern atomistic simulations combine QM, stat mech, ML and more

{:E& path integrals
S
molecular wavefunction

dynamics accelergted methods & QMC expe mgntal
sampling constraints

multi-scale
modeling
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A cookbook of atomistic recipes

e Modern atomistic simulations combine QM, stat mech, ML and more
e A comprehensive open-source software stack for advanced atomic-scale simulations

meéatlotm.ic. i-Pl: a universal force
model training engine for advanced
& evaluation s i-PI (PI)MD simulations

trajectory
visualization
! metaten(sjor
annotate
featomic data sharing - ChemlSCOpe
torch-spex ... ‘g )
sphericart chemiscope:
torch-pme data a portable,
multi-language feature analytics browser-based
multi-platform selection structure-property
efficient o explorer
descriptors scikit-matter: 3

and model 599 scii sklearn-style ..
libraries : < .'maue/‘t python library
calculation N385 of ML utilities
https://github.com/lab-cosmo/
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A cookbook of atomistic recipes

e Modern atomistic simulations combine QM, stat mech, ML and more
e A comprehensive open-source software stack for advanced atomic-scale simulations
e ...and a cookbook to use it effectively

3

The Atomistic
Cookbook

Q Search

Recipes grouped by topic v

Recipes grouped by software v
used

List of all recipes v

Contributing a recipe

s://atomistic-cookbook.org/index.html#

Michele Ceriotti cosmo.epfl.ch

The Atomistic Cookbook

This cookbook contains recipes for atomic-scale modelling for materials and molecules, with a particular
focus on machine learning and statistical sampling methods. Most of the examples rely heavily on
software developed by the laboratory of computational science and modeling (COSMO, see its github
page) but the cookbook is open for recipes using all types of modeling tools and techniques. Rather
than focusing on the usage of a specific package, this cookbook provides concrete examples of the
solution of modeling problems, often using a combination of several tools.

Downloading and running the recipes

Each recipe can be viewed online as an interactive HTML page, but can also be downloaded as a
stand-alone .py script of .ipynb Jupyter notebook. To simplify setting up an environment that contains
all the dependencies needed for each recipe, you can also download an environment.yml file that you
can use with conda to create a custom environment to run the example.

# Pick a name for the environment and replace <environment-name> with it
conda env create --name <environment-name> --file environment.yml

# when you want to use the environment
conda env activate --name <environment-name>

Additional data needed for each example is usually either downloaded dynamically, or can be found in a
data folder for each examnle or downlnaded as a dara 7in file at the end of each recine in the

https://atomistic-cookbook.org/
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PET-MAD - Accuracy across materials (and molecular) space

o Consistent benchmarking shows competitive performance with 100x less data

0.16 Frrr————— T ——— T —— T ——— 108
MEGNet
o

0.14 | 10 g
Gl PET-MAD (inconsistent reference)
S 012} ! i
© T <
i ® 151
< L ) i 107 5
< o010 i g
> A I
§ 008 | M3GNet g
) B T u
3 ‘{\ SevenNet-i3is MACE-MP-0 °
S 006} S ’ ©SEN-30M-OAM i 8
s N
g PERMAD >~ 108 2
2 004 ‘
=

0.02 } i Mazitov

eSEN-30M-MP MatterSim vi 5M
000 1 1 1 1
105 108 107 108

Training set size

Bigi
Mazitov, Bigi et al., arXiv:2503.14118;
https://atomistic-cookbook.org/examples/pet-mad/pet-mad.html
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PET-MAD - Accuracy across materials (and molecular) space

o Consistent benchmarking shows competitive performance with 100x less data

Dataset PET-MAD MACE-MP-0-L  MatterSim-5M Orb-v2 SevenNet
MAD 17.6/65.1 81.6/181.5 47.3|1133.7 52.9]96.2 82.1]173.5
MPLtrj 22.3|77.9 15.1/50.8 21.3|61.4 5.6/21.9 9.8|25.5

Matbench 31.3| - 58.5|-- 38.2 |- 37.9|-- 47.5|--

Alexandria  49.0/|66.8 65.4|79.5 21.2|39.9 13.2|10.5 47.6|70.3
0C2020 18.3|114.5 82.4|169.6 31.5/119.2 19.8/99.3 45.7|1162.7
SPICE 3.7|59.5 10.6/166.8 21.3]145.6 59.0/140.8 11.3]139.1
MD22 1.9/65.6 9.4|182.9 28.6/160.4 174.3|1220.7 11.1|146.2

Mazitov, Bigi et al., arXiv:2503.14118;
https://atomistic-cookbook.org/examples/pet-mad/pet-mad.html
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PET-MAD - Accuracy across materials (and molecular) space

o Consistent benchmarking shows competitive performance with 100x less data
e Fast, unconstrained architecture

- PET-MAD (LMP-kk) 4% MACE (LMP-kk) - Orb (NC, ASE) ¥ MatterSim (ASE) -# SevenNet (LMP) x OOM Error

108
€
ol
< 2L 1 1 ]
G 10
2
[0}
E
[ ~o

A\‘_*,A
10l + + E
Water Diamond Aluminium
L L L L L L L L L
102 108 104 101 102 108 104 101 102 103 104
Number of Atoms Number of Atoms Number of Atoms

Mazitov, Bigi et al., arXiv:2503.14118;
https://atomistic-cookbook.org/examples/pet-mad/pet-mad.html

4 Michele Ceriotti cosmo.epfl.ch Simulation Recipes from the Parrinello Family Cookbook


https://atomistic-cookbook.org/examples/pet-mad/pet-mad.html

atomistic-cookbook.org/examples/pet-mad-uq/pet-mad-uq.html

I Go to the end to download the full example code.

ON THIS PAGE

Optional: Adding UQ to a Model

Uncertainty Quantification with PET-

Model Loading

M A D Uncertainties on a Dataset

Uncertainties in Vacancy Formation
Energies

Authors: Uncertainty Propagation with MD

Johannes Spies @johannes-spies

This recipe demonstrates three ways of computing errors on the outputs of ML potential-driven
simulations, using as an example the PET-MAD model and its built-in uncertainty quantification (UQ)
capabilities.

In particular, it demonstrates:

1. Estimating uncertainties for single-point calculations on a full validation dataset.

2. Computing energies in simple functions of energy predictions, namely the value of vacancy formation
energies

3. Propagating errors from energy predictions to thermodynamic averages computed over a constant-
temperature MD simulation.

For more information on PET-MAD, have a look at Mazitov et al., 2025. The LLPR uncertainties are
introduced in Bigi et al., 2024. For more information on dataset calibration and error propagation, see
Imabalzano et al., 2021.

Ontional: Addina UO to a Maodel



The design space of uncertainty quantification

e Large design space for uncertainty quantification on top of a given architecture:

@ Error estimate (ensemble vs mean-variance dual-output)

@ Diversification of the ensemble (subsampling, weight pruning, NLL target)

@ Calibration (essential for quantitative estimates)
© Uncertainty propagation

a weight b
bl
vg}?aar?c/e ensemble shar|ng MSE NLL
estimator random

deep
E ------ .ishallow WEIthS -@
m it

m(_ean/
ensemble (N RN
H
train set = '/ELyref
subsampling Yy
architecture training strategy
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— no calibration
— scaling

— nonlinear

calibration

g

d ensemble
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linearized

p

, O

Y f.oy
uncertainty
propagation
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Uncertainty estimation on a shoestring

e “Shallow"” ensemble architecture to reduce overhead to (nearly) zero
e Propagate the ensemble directly to obtain errors on the end properties

direct propagation of
shallow ensembles

Musil et al., JCTC (2019); Kellner & MC, MLST (2024)

7 Michele Ceriotti cosmo.epfl.ch Simulation Recipes from the Parrinello Family Cookbook



Last-layer ensembles are accurate

o A last-layer ensemble model provides good, calibrated and informative UQ over a variety of

atomistic benchmarks

Michele Ceriotti cosmo.epfl.ch
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Kellner & MC, MLST (2024)
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Ensembles are easy to propagate uncertainty with

e Obtaining uncertainties for complex simulation protocols is as simple as applying them to
separate ensemble members

z(k><A):f[y<k> (A)} 221%22(”’ 052,711;(2(0_2)2

mean/eV  var/eV  std/eV

Before creating vacancy -127.312576 1.347783 1.160941
Right after creating vacancy  -122.585747 1.116814 1.056794
Energy of optimized vacancy -122.649384 1.129488 1.062774
Vacancy formation energy 0.684676 0.011522 0.107341
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Ensembles are easy to propagate uncertainty with
e Obtaining uncertainties for complex simulation protocols is as simple as applying them to

1 1 \2

D =flyo @) 2=

separate ensemble members

Paracetamol 1

— SA-GPR
ab initio

(m)

-1
wavenumber (CHN Etaimbault, A. Grisafi, MC, M. Rossi, New J. Phys. (2019)

Simulation Recipes from the Parrinello Family Cookbook
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Ensembles are easy to propagate uncertainty with

e Obtaining uncertainties for complex simulation protocols is as simple as applying them to
separate ensemble members

z(k>(A):f[y<k> (A)} 221; ) ngnzk:(zm_z)z

n n

Paracetamol 11

I(w)
-
=~

0 50 100 150 1300 1400 3100 3200

-1
wavenumber (CHN Etaimbault, A. Grisafi, MC, M. Rossi, New J. Phys. (2019)
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UQ for free-energy sampling

e Errorsin ML-based thermodynamic averages combine effects on the observable 2 and those
from sampling o2,

e BV P (@) sV (2)

Imbalzano et al. JCP (2021)
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UQ for free-energy sampling

e Errorsin ML-based thermodynamic averages combine effects on the observable 2 and those
from sampling o2,

> X
Imbalzano et al. JCP (2021)
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UQ for free-energy sampling

e Errorsin ML-based thermodynamic averages combine effects on the observable 2 and those

from sampling o2,
o A committee of predictions can be obtained from a single trajectory!

@y = <G QB(V_V(D)>,

v

Imbalzano et al. JCP (2021)
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UQ for free-energy sampling

e Errorsin ML-based thermodynamic averages combine effects on the observable 2 and those
from sampling o2,
o A committee of predictions can be obtained from a single trajectory!

@y = <G eB(V—V("))>7

v
o Statistically stable estimates with a Cumulant Expansion Approximation

(@yo.can=tay 8 [(a (v V)~ @y (v 7)), |
P(.CC) A

e BV (@)qy(1) () e~ BV (2)

> xr
MC et al. PRSA (2012)

Simulation Recipes from the Parrinello Family Cookbook
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UQ propagation with PET-MAD

e Verify accuracy of a universal model on the end property by comparison with a bespoke model

75 T T T T T
-@- PET-MAD Liquid
90 [ -e- PET-Bespoke il
> -A- PET-MAD-LoRA Rl
é 25 — ’/j
) ,i" ¢
é’ e S -4
= 0 i
5 25t gl
2 -~
a2 ’/'i
- 50 rz
Solid

75 1 1 1 1 1 .
950 1000 1050 1100 1150 1200 1250

Temperature [K]
Mazitov, Bigi et al., arXiv:2503.14118;
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UQ propagation with PET-MAD

e Verify accuracy of a universal model on the end property by comparison with a bespoke model

or a fine tuned one)

75 T T T T
-@- PET-MAD
90 [ -e- PET-Bespoke
> -A- PET-MAD-LoRA
E 25}
g pts
f 0 _”/,,. ..............
| g e
2 -251 A g
n ’ ’/’
o ’/’ ’
- 50 ir/ ,,/
/,.’
-75 Pi 1 1 1 1 1 !
950 1000 1050 1100 1150 1200 1250

Temperature [K]
Mazitov, Bigi et al., arXiv:2503.14118;
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UQ propagation with PET-MAD

e Verify accuracy of a universal model on the end property by comparison with a bespoke model
or a fine tuned one)
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Mazitov, Bigi et al., arXiv:2503.14118;
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UQ propagation with PET-MAD

e Verify accuracy of a universal model on the end property by comparison with a bespoke model
or a fine tuned one)

e Predictive model errors with shallow ensembles

75 T T T I
-@- PET-MAD Liquid
_ 90 [ -e- PET-Bespoke Z
> -4A- PET-MAD-LoRA 722
g 25 B lz’i’
3 g
g R e A A v st 7 Zl . ........ -
= 0 &
> 25} =
2 -
3 ’,’i
_ 50 rz
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_75 > 1 1 1 L 1 v
950 1000 1050 1100 1150 1200 1250

Temperature [K]
Mazitov, Bigi et al., arXiv:2503.14118;
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atomistic-cookbook.org/examples/pet-mad-nc/pet-mad-nc.html

I Go to the end to download the full example code.
ON THIS PAGE

Fetch PET-MAD and export the
model

MD using direct-force predictions with

Energy conservation in NVE

PET‘MAD molecular dynamics

Conservative forces

Non-conservative (direct) forces

Authors:
Energy conservation at low-cost
Michele Ceriotti @ceriottm, Filippo Bigi @frostedoyster with multiple time stepping
LAMMPS implementation
Evaluating forces as a direct output of a ML model accelerates their evaluation, by up to a factor of 3 in Running LAMMPS on GPUs
comparison to the traditional approach that evaluates them as derivatives of the interatomic potential. with KOKKOS

Unfortunately, as discussed e.g. in this paper, doing so means that forces are not conservative, leading
to instabilities and artefacts in many modeling tasks, such as constant-energy molecular dynamics.
Here we demonstrate the issues associated with direct force predictions, and ways to mitigate them,
using the generally-applicable PET-MAD potential. See also this recipe for examples of using PET-MAD
for basic tasks such as geometry optimization and conservative MD, and this for an example of how to
use direct forces to accelerate training.

# sphinx_gallery_thumbnail_number = 2

If you don’t want to use the conda environment for this recipe, you can get all dependencies installing
the PET-MAD package:

pip install pet-mad



One (equivariant) framework to rule them all

e Deep connections between most atomic-scale ML frameworks due to symmetry priors

translations f

completeness

structure space

;2(' symmetry 2
*

AT

feature space \
E smoothness &‘

* additivity

Musil et al., Chem. Rev. (2021) Nigam
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One (equivariant) framework to rule them all

e Deep connections between most atomic-scale ML frameworks due to symmetry priors
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n*: complete n-body linear basis coordinates MUSIERERMEISH. Rev. (2021)
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One (equivariant) framework to rule them all

e Deep connections between most atomic-scale ML frameworks due to symmetry priors
o All equivariant frameworks have a structure constrained by the O (3) group

€0 () = (nlAz M) = 3 Ron (1) Y2 (i)
JEA;

neighbor density density coefficients

(x[lm)

(z|nl)

)

Nigam et al., J. Chem. Phys. (2022) Nigam
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One (equivariant) framework to rule them all

e Deep connections between most atomic-scale ML frameworks due to symmetry priors
o All equivariant frameworks have a structure constrained by the O (3) group

(amlokynlklpP "0 =37 (0P dm) (s n k0P ka) (Ims kgl )

i
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body order
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Il
8 v

v=2 v=3

M

resolution

Nigam et al., J. Chem. Phys. (2022) Nigam
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The bitter lesson

o Deep learning with rotational augmentation is simpler, faster, and often more accurate

layer
predictions

E®) ME) k) H®)
%z
—tr
—tr

from =
v = (40 neighbors

environment

(perm. equiv.)

Pozdnyakov, MC, NeurlIPS (2023)
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The bitter lesson

o Deep learning with rotational augmentation is simpler, faster, and often more accurate

Pozdnyakov, MC, NeurlIPS (2023)
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The bitter lesson

o Deep learning with rotational augmentation is simpler, faster, and often more accurate

Pozdnyakov, MC, NeurlIPS (2023)
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The bitter lesson

o Deep learning with rotational augmentation is simpler, faster, and often more accurate
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Pozdnyakov, MC, NeurlIPS (2023)
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The bitter lesson

o Deep learning with rotational augmentation is simpler, faster, and often more accurate
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Handle with some care

o Symmetry breaking leads to artefacts

Gong et al., Nature Nano. (2007)
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Handle with some care

o Symmetry breaking leads to artefacts that are small and easy to control

goo(r)

2 3 4 5 6 7 8

Pozdnyakov
Langer, Pozdnyakov, MC, MLST (2024)

Simulation Recipes from the Parrinello Family Cookbook
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Handle with some care

o Symmetry breaking leads to artefacts that are small and easy to control

2.0 A m—— PET
M ---- PET, 2i avg.
1.5 4

goo(r)

Pozdnyakov
Langer, Pozdnyakov, MC, MLST (2024)

15 Michele Ceriotti cosmo.epfl.ch Simulation Recipes from the Parrinello Family Cookbook



Handle with some care

o Symmetry breaking leads to artefacts that are small and easy to control

Cwr ()

Pozdnyakov
Langer, Pozdnyakov, MC, MLST (2024)
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Handle with some care

o Symmetry breaking leads to artefacts that are small and easy to control
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Langer, Pozdnyakov, MC, MLST (2024)
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The dark side of the forces

e Many application only need interatomic forces, f; = —9V (r4,...ry) /Orj, but learn them as the
derivative of a potential energy V

o Data-minded approach: learning F; directly is faster

conservative

B VA — 3’
2OV jor—— 20N\
direct model f; = 0V /0r;
fi(A) A} targets

Langer
Bigi, Langer, MC, oral @ ICML (2025)
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The dark side of the forces

e Many application only need interatomic forces, f; = -0V (ry, ..

Time [ps/atom]

derivative of a potential energy V
o Data-minded approach: learning F; directly is faster

.fn) /Orj, but learn them as the

& PETMAD (LMP-kk) ~ PET-MAD (NC, LMP-kk) % MACE (LMP-kk) 4 Orb (NC, ASE) -¥ MatterSim (ASE) - SevenNet (L(MP) x OOM Error
103 —_———— —
102 + E
N
Lisgoig-t
10l + + E
Water Diamond Aluminium
aaal aaal ol " il " il el sl " il gl
102 108 104 10! 102 103 104 10! 102 108 104

-

6
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The dark side of the forces

e Many application only need interatomic forces, f; = —9V (r4,...ry) /Orj, but learn them as the
derivative of a potential energy V

o Data-minded approach: learning F; directly is faster
o Badidea. No energy conservation, unstable sampling, dynamics and geometry optimization

600 4 —— f=09V/or, NVE
— f direct, NVE
500 A
¥
f 400 E
7
300 A :
f / m 0 1 2 3 4 5
t/ps Langer

Bigi, Langer, MC, oral @ ICML (2025)
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The dark side of the forces

e Many application only need interatomic forces, f; = —9V (r4,...ry) /Orj, but learn them as the
derivative of a potential energy V

o Data-minded approach: learning F; directly is faster
o Badidea. No energy conservation, unstable sampling, dynamics and geometry optimization

800 -
—— PET-NC —— PET-C

700 - —— SOAP-NC —— SOAP-C
—— ORB —— SevenNet
—— Equiformer = —— MACE-MPO

0 10000 20000 30000 40000

Step Langer
Bigi, Langer, MC, oral @ ICML (2025)
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Making good of non-conservative forces

e No easy fix! Thermostatting stabilizes dynamics but leaves serious artifacts

—— NVT, total T

400 A

0 100 200 300 400 500
t/ps

Langer
Bigi, Langer, MC, oral @ ICML (2025)
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Making good of non-conservative forces

e No easy fix! Thermostatting stabilizes dynamics but leaves serious artifacts

0 100 200 300 400 500
t/ps

Langer
Bigi, Langer, MC, oral @ ICML (2025)
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Making good of non-conservative forces

e No easy fix! Thermostatting stabilizes dynamics but leaves serious artifacts
e How about using direct fitting together with conservative forces?

f; (A)J targets

Langer
Bigi, Langer, MC, oral @ ICML (2025)
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Making good of non-conservative forces

e No easy fix! Thermostatting stabilizes dynamics but leaves serious artifacts

e How about using direct fitting together with conservative forces?
o Conservative fine-tuning: physically-consistent forces at half cost

200 T
— PETC

< —— PET-NC
% — PET-M, fine-tuned
IS
W
<
=
(O]
Y 100
2 ]
o . .

70 T T LI | T T T |

2 5 10 20 50 100
GPU hours

Langer
Bigi, Langer, MC, oral @ ICML (2025)
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Making good of non-conservative forces

o No easy fix! Thermostatting stabilizes dynamics but leaves serious artifacts
e How about using direct fitting together with conservative forces?

o Conservative fine-tuning: physically-consistent forces at half cost
o Multiple time stepping: evaluating conservative correction every M steps

Atflr —> — M
At e —s

M S

Langer
Tuckerman et al., JCP (1992); Bigi, Langer, MC, oral @ ICML (2025)
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Making good of non-conservative forces

o No easy fix! Thermostatting stabilizes dynamics but leaves serious artifacts
e How about using direct fitting together with conservative forces?

o Conservative fine-tuning: physically-consistent forces at half cost
o Multiple time stepping: evaluating conservative correction every M steps

800
— PET-C, NVE
7004 — PET-NC, NVE
— PET-M, NVE MTS-4
— PET-M, NVE MTS-8
600
hV4
— 500
400
300 + -
0 10000 20000 30000 40000
step

Langer
Bigi, Langer, MC, oral @ ICML (2025)
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... with the universal potential PET-MAD

e This is a pretty robust setup: works for PET-MAD in the deep extrapolative regime with a

simulation of BMIM-Cl at 500K

e See by yourself https://atomistic-cookbook.org/examples/pet-mad-nc/pet-mad-nc.html

T/K

18

NVE

NVT, SVR 1, = 10fs

NVT, SVR 1, = 10fs

—— conservative
— direct
— MTS, M=8

— all atoms
-==- only Cl
only H

t/ps

Michele Ceriotti cosmo.epfl.ch
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... with the universal potential PET-MAD

e This is a pretty robust setup: works for PET-MAD in the deep extrapolative regime with a
simulation of BMIM-Cl at 500K

e See by yourself https://atomistic-cookbook.org/examples/pet-mad-nc/pet-mad-nc.html

1.50 1 5
1.25 A 4 -
1.00 + <
< =37
G 0.75 - =
O (@)
[« Q 2 4
0.50 - g ,
— conservative
0.25 1 1 A —— direct
— MTS,M=8
0.00 - 0
0 2 4 6 8 0 2000 4000 6000 8000
r/ A t/ps
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Fast and furious

o If we give up energy conservation, we might at least get more than a 2x speedup. Can we
predict (q,p)(t + At) starting from (q, p)(¢t)? With large strides?

o Train on 100k MD trajectories generated with PET-MAD — FlashMD

- FlashMD
Embed.|
H MLP -[ﬁi(T+AT)——| CcoM I——> pi(t + A7)
@ rh; Ipi
u GNN  [hi N
MLP PET,
u (PET) MLP -[Am(z +47) -|-| COM H———Aq;(z +47)
a=49-q I — - -
19651 < Teur (Z,)—-l% ] Prediction with UQ Optional filters
@@} M |H bey; MVE ,~,l Energy rescaling
— L feats Thermo/barostat
L Owve +OLLpR —> 0 Random rotation

™ D
Chong
Bigi, Chong, Kristiadi, MC, arxiv:2505.19350
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Fast and furious

o If we give up energy conservation, we might at least get more than a 2x speedup. Can we
predict (q,p)(t + At) starting from (q, p)(¢t)? With large strides?

o Train on 100k MD trajectories generated with PET-MAD — FlashMD
e Universal MD with 16-64 fs time steps!

T [K]
770 665 585
1 1 1 1 1
[ ]
10! 4° : : s °
[ ]
5 10° 5 .
¢) H .
[ ]
1071 4 °
e MD(2fs) °
® FlashMD (16 fs) ..
Bigi
1072 T T T T T 9
1.3 1.5 1.7 ”
1000/T [K™1] L
A\'A
Chong

Bigi, Chong, Kristiadi, MC, arxiv:2505.19350
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Fast and furious

o If we give up energy conservation, we might at least get more than a 2x speedup. Can we
predict (q,p)(t + At) starting from (q, p)(¢t)? With large strides?

o Train on 100k MD trajectories generated with PET-MAD — FlashMD

e Universal MD with 16-64 fs time steps!

FlashMD FlashMD
(8 fs) (16 fs)

0 l
A‘A
Chong
Bigi, Chong, Kristiadi, MC, arxiv:2505.19350
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Fast and furious

o If we give up energy conservation, we might at least get more than a 2x speedup. Can we
predict (q,p)(t + At) starting from (q, p)(¢t)? With large strides?

o Train on 100k MD trajectories generated with PET-MAD — FlashMD
e Universal MD with 16-64 fs time steps!

| FlashMD | FlashMD
(16 fs) (64 fs)
g
5 4 @ x E n ..~.
a y LB S
4 mz 4 S | ;
(]
T ] 4
SRR CFFREEE & = : v el
] B {5 2 -
T T T T T T T T T Bigi
1 B 3 2 1 B 3 2 1
Layer ﬁ
™ Do
Chong

Bigi, Chong, Kristiadi, MC, arxiv:2505.19350
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atomistic-cookbook.org/examples/flashmd/flashmd-demo.html

Long-stride trajectories with a

AI(110) surface dynamics

universal FlashMD model

Authors:
Michele Ceriotti @ceriottm

This example demonstrates how to run long-stride molecular dynamics using the universal FlashMD
model. FlashMD predicts directly positions and momenta of atoms at a later time based on the current
positions and momenta. It is trained on MD trajectories obtained with the PET-MAD universal potential.
You can read more about the model and its limitations in this preprint.

# sphinx_gallery_thumbnail_path = '../../examples/flashmd/flashmd-scheme.png

Start by importing the required libraries. You will need the PET-MAD potential, as well as FlashMD and
a recent version of i-PI.

pip install pet-mad flashmd ipi

import chemiscope

from flashmd import get_universal_model

from flashmd.ipi import get_npt_stepper, get_nvt_stepper
from ipi.utils.parsing import read_output, read_trajectory
from ipi.utils.scripting import InteractiveSimulation

from pet_mad.calculator import PETMADCalculator

A rannh echamatie af tha architartiira af ElachMD ie chnwm halaw Farh madal ie trained far a enarific



Thank you!

cosmo.epfl.ch % @labcosmo
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http://cosmo.epfl.ch
https://bsky.app/profile/labcosmo.bsky.social

Thank you!
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Last-layer ensembles are size-consistent

o Atomistic potentials are often sums of atom-centered predictions y (A) = >, oV (A))
e How do atomic errors propagate to structure errors?

ML L XXX X )

22 Michele Ceriotti cosmo.epfl.ch

X L
%o 0o
....
000 o

' @ O 00 @

Kellner & MC, MLST (2024)
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Last-layer ensembles are size-consistent

o Atomistic potentials are often sums of atom-centered predictions y (A) = >, oV (A))
e How do atomic errors propagate to structure errors?
e Mixed behavior for a water model in the NVT ensemble

22

100 4
> S
2 )
g g 10—1 4
= S
ﬂ - ﬂ total
-3 J .
10 32 ® 25 bias
64 ® 512 residual
[ 128 (ov(A))n Vs 102 —— empirical
107 4 i (|AVV(A)A|I)N —-=-- predicted
1071 100 32 64 128 256 512
ov(A) [eV] Nk,0

Kellner & MC, MLST (2024)

Michele Ceriotti cosmo.epfl.ch Simulation Recipes from the Parrinello Family Cookbook



Last-layer ensembles are size-consistent

o Atomistic potentials are often sums of atom-centered predictions y (A) = >, oV (A))
e How do atomic errors propagate to structure errors?
o Mixed behavior for a water model in the NVT ensemble

o Well-calibrated force prediction

|Afia(A)] [eV/A]

22

0r,(A)
slice 1l
slice 2

or,(A) [eV/A]

Michele Ceriotti cosmo.epfl.ch

10°

p(Afig|A)
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—--~ predicted
o — slicel
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10—1 i
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-3 Vi,
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Afia(A)

Kellner & MC, MLST (2024)
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Last-layer ensembles extrapolate well

e Accuracy degrades for out-of-sample predictions, but is good enough to select structures for

active learning

100 | DPOSE - /;;/‘
— ~ < 1
Dr0] g
3=
< 1072 4 “ "
2 s s
s e PIMD
1073 - FPS
o Surface
107! 10°
ov(A) [eV]
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Kellner & MC, MLST (2024)
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Last-layer ensembles extrapolate well

e Accuracy degrades for out-of-sample predictions, but is good enough to select structures for

active learning

e Incremental training improves UQ calibration as well as prediction accuracy

23

Michele Ceriotti cosmo.epfl.ch
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UQ for acid-base equilibria

e Energetics described with a DFTB baseline and a MLP correction. Accelerated by multiple time
stepping

o PIGLET thermostatting & ring-polymer contraction for the quantum sampling, Plumed-driven
metadynamics applied to the centroid

Hybrid DFT
correction
l

Hybrid DFT
full

multiple
time step

centroid

PLUMED

Kapil, Behler, MC, JCP (2016); Zamani et al., Adv. Mater. (2020); Rossi et al., JCTC (2020)
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UQ for acid-base equilibria

e Energetics described with a DFTB baseline and a MLP correction. Accelerated by multiple time
stepping

o PIGLET thermostatting & ring-polymer contraction for the quantum sampling, Plumed-driven
metadynamics applied to the centroid

e Metadynamics sampling of the dissociation of CH;SO,OH.

20

(jow/) Abiaug 2914

IS

00 02 08 10 12 14
NO
Kapil, Behler, MC, JCP (2016); Zamani et al., Adv. Mater. (2020); Rossi et al., JCTC (2020)
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UQ for acid-base equilibria

e Energetics described with a DFTB baseline and a MLP correction. Accelerated by multiple time
stepping
o PIGLET thermostatting & ring-polymer contraction for the quantum sampling, Plumed-driven
metadynamics applied to the centroid
e Metadynamics sampling of the dissociation of CH;SO,OH.
o UQ for the free-energy profile!
25 o

15+

10

FE [kJ/mol]

0 T T T T T T
0.5 0.6 0.7 0.8 0.9 1.0

Imbalzano et al., JCP (2021)

24 Michele Ceriotti cosmo.epfl.ch Simulation Recipes from the Parrinello Family Cookbook



Going MAD

e Training set generation based on Maximum Atomic Diversity.
Internally consistent DFT details - aim for DFT accuracy with < 100k structures

Subset name Description # structures # atoms

MC3D Bulk crystals from the Materials Cloud 3D crystals 33596 738484

MC3D-rattled Rattled analogs of the original MC3D crystals, 30044 599675
with Gaussian noise added to all atomic positions

MC3D-random Artificial structures from MC3D with randomized 2800 25095
atomic species from 85 elements

MC3D-surface Surface slabs generated from MC3D by cleaving 5589 205185
along random low-index crystallographic planes

MC3D-cluster Nanoclusters (2-8 atoms) cut from MC3D and 9071 44829
MC3D-rattled environments

MC2D 2D crystals from the Materials Cloud 2676 43225

SHIFTML-molcrys  Curated SHIFTML molecular crystals from the 8578 852044

Cambridge Structural Database
SHIFTML-molfrags Neutral molecular fragments from SHIFTML 3241 72120
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Going MAD

e Training set generation based on Maximum Atomic Diversity.
Internally consistent DFT details - aim for DFT accuracy with < 100k structures

I MC3D [ MC3D-rattled I MC2D Il SHIFTML-molcrys
=3 MC3D-random I MC3D-clusters [ MC3D-surfaces I SHIFTML-molfrags

é%§§;@§§

10 8
10"
L
107k g
10°F 8 ’
| . ‘
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Going MAD

e Training set generation based on Maximum Atomic Diversity.
Internally consistent DFT details - aim for DFT accuracy with < 100k structures

MC3D MC3D-random MC3D-rattled MC3D-clusters
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Going MAD

e Training set generation based on Maximum Atomic Diversity.
Internally consistent DFT details - aim for DFT accuracy with < 100k structures
Diverse data space, covering more ground than much larger datasets
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Going MAD

e Training set generation based on Maximum Atomic Diversity.

Internally consistent DFT details - aim for DFT accuracy with < 100k structures
o Diverse data space, covering more ground than much larger datasets
e The latent variables provide a general framework for data analytics
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Going MAD

e Training set generation based on Maximum Atomic Diversity.

Internally consistent DFT details - aim for DFT accuracy with < 100k structures
o Diverse data space, covering more ground than much larger datasets
e The latent variables provide a general framework for data analytics
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Going MAD

e Training set generation based on Maximum Atomic Diversity.

Internally consistent DFT details - aim for DFT accuracy with < 100k structures
o Diverse data space, covering more ground than much larger datasets
e The latent variables provide a general framework for data analytics
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PET-MAD - Accuracy across materials (and molecular) space

o Consistent benchmarking shows competitive performance with 100x less data

Energy Error [meV/atom] PETMAD
MC3D-
MC3D- rattled —e— MACE-MP-0 L
e —eo— Orb-v2 (non-conservative)
MC3D
—e— MatterSim-5M
gAucr:faaEé —e— SevenNet-I3i5
, 102 10°
10!
MAD
MC3D- .
cluster Mazitov
SHIFTML-
molfrags
MC2D y
SHIFTML- Big
molcrys Mazitov, Bigi et al., arXiv:2503.14118;

https://atomistic-cookbook.org/examples/pet-mad/pet-mad.html
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PET-MAD - Accuracy across materials (and molecular) space

o Consistent benchmarking shows competitive performance with 100x less data
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PET-MAD - Accuracy across materials (and molecular) space

o Consistent benchmarking shows competitive performance with 100x less data
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PET-MAD - Accuracy across materials (and molecular) space

o Consistent benchmarking shows competitive performance with 100x less data
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PET-MAD - Accuracy across materials (and molecular) space

o Consistent benchmarking shows competitive performance with 100x less data
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PET-MAD - Accuracy across materials (and molecular) space

o Consistent benchmarking shows competitive performance with 100x less data
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PET-MAD - Accuracy across materials (and molecular) space

e Consistent benchmarking shows competitive performance with 100x less data
e Fast, unconstrained architecture
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PET-MAD - Accuracy across materials (and molecular) space

o Consistent benchmarking shows competitive performance with 100x less data
e Fast, unconstrained architecture
e Prediction of complex properties,
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PET-MAD - Accuracy across materials (and molecular) space

o Consistent benchmarking shows competitive performance with 100x less data
e Fast, unconstrained architecture
e Prediction of complex properties,
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PET-MAD - Accuracy across materials (and molecular) space

o Consistent benchmarking shows competitive performance with 100x less data
e Fast, unconstrained architecture

e Prediction of complex properties, simple fine-tuning,
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PET-MAD - Accuracy across materials (and molecular) space

o Consistent benchmarking shows competitive performance with 100x less data
e Fast, unconstrained architecture

o Prediction of complex properties, simple fine-tuning, model errors with shallow ensembles
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