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[t seems there is no problem in modern
physics for which there are on record as
many false starts, and as many theories
which overlook some essential feature, as
In the problem of the thermal conductivity
of non-conducting [materials].

Rudolph E. Peierls [ca. 1960]
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sensitive to the form of the potential. The widely used
Green-Kubo relation [14] does not serve our purposes,
because 1n first-principles calculations it 1s impossible to
uniquely decompose the total energy into individual con-
tributions from each atom.
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how come”?’

how Is 1t that a formally exact theory of the
electronic ground state cannot predict all
measurable adiabatic properties?
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the linear-response theory of transport
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B\ conservation e(r.t) =—V-j(r t)




gauge invariance of heat transport
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gauge invariance of heat transport

any two conserved densities that differ by the divergence of a
(bounded) vector field are physically equivalent

the corresponding conserved fluxes differ by a total time
derivative, and the transport coefficients coincide
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sensitive to the form of the potential. The widely used
Green-Kubo relation [14] does not serve our purposes,
because in first-principles calculations it 1s impossible to
uniquely decompose the total energy into individual con-
tributions from each atom.

choose any local representation of the energy that
iIntegrates to the correct value and whose
correlations decay at large distance — the
conductivity computed from the resulting current
will be independent of the chosen representation.
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multi-component systems
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50% ethanol
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multi-component systems

Conserved currents are adiabatically decoupled from the myriad

fast atomic modes, while retaining mutual interaction

conserved quantities:
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fast atomic modes, while retaining mutual interaction

j * conserved quantities:

[A energy
[A water mass

[J ethanol mass

Ak /O (D) J(0)) dt

kK = N/Aum: Schur complement
of /\MM WA

=1/(A1)ee




multi-component systems




multi-component systems

1 N2
_— /\ EM
/{' T2 ( EE /\MM >




multi-component systems

1 N\
— /\ EM
Y 7—2 ( EE /\MM>

convective Invariance




impact on ML MD simulations
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the nuts and bolts of gauge invariance

the physical requirement that a local representation of the energy must possess IS
that i1t gives rise to the physical forces from some reference accurate level of theory
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the physical requirement that a local representation of the energy must possess IS
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ne condition that two such local representations the same atomic forces Is that
ne sum of the difference of the local representation of the atomic forces vanishes

Zf;J(R) = 0; fi, = f/2J - fllJ
J

IS this enough to guarantee equality of the transport coefficients?
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the nuts and bolts of gauge invariance

TJ’ dt= DI(R TV d
/O ()dt= D(R(t)) + Zexoo)/o (t)dt

\——

periodic, bounded does contribute to Agg, but not to K

> =Y o
J@RJ_ J@RJ kKl — K2
= .
de; (AEg # Nzg, in general)
50 for |R — Ry > R,
OR




conclusions

o different local representations of a system’s potential energy that yield
the same atomic forces give rise to the same heat conductivity

e the resulting energy-energy diagonal elements of the Onsager matrix,
though, may differ

e the correct multi-component formula for the heat conductivity must
always be used when computing the thermal conductivity of a system
with diffusing mass currents

e |long-range forces should behave the same way, but | am not sure | know
why
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