

SERVIZIO SANITARIO REGIONALE EMILIA-ROMAGNA Azienda Ospedaliero - Universitaria di Modena

QUALITY ASSURANCE PROGRAMME

Gabriele Guidi Az. Ospedaliero-Universitaria di Modena Guidi.Gabriele@aou.mo.it Phone: +39 059 422 5699

QUALITY ASSURANCE (QA)


Quality assurance (QA)

- Quality assurance
- Quality system
- Quality standards
- Quality controls

Quality assurance in Radiotherapy

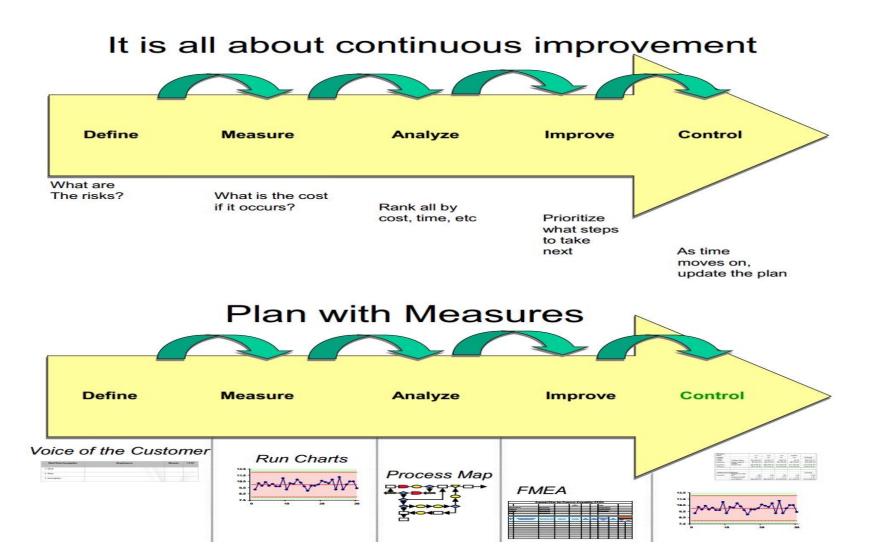
- Guidelines
- Medical Device QA
- Non-Medical Device QA
- Patients QA
- Present and future of RT QC
- Tests: frequency and tolerances
- Tools and other QA programs

Today I will not provide specific QA methods and tests...

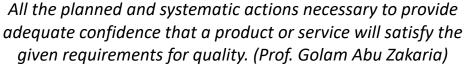
You should find (define) the tests and methods adequate and appropriate for your center, experiences, technologies and available tools ...look at the problems and guidelines!

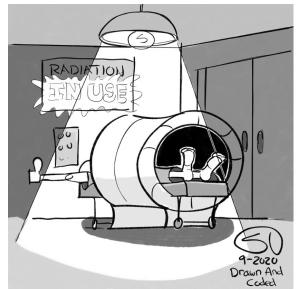
IDENTIFY OR PREVENT SOURCE OF ERRORS?

Look for:
Small or big errors?
Rare or frequent errors?
Random or systematic errors?
Unpredictable or newly errors?

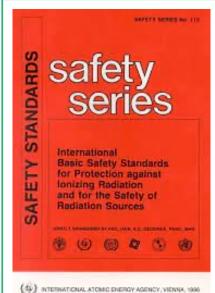

Matteo 7:3: "Why do you look at the speck of dust in your brother's eye, but fail to notice the log in your own eye?"

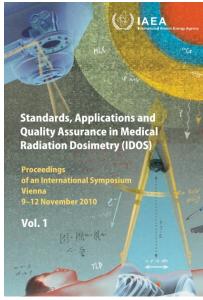
To be accurate once a year (Annual QA) or to be adequate everyday (Daily QA)?:

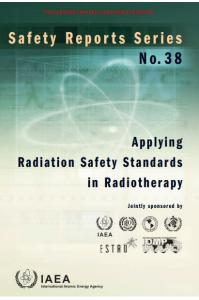


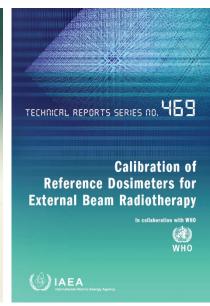

Simplify theory and QA Programme (i.e. Six Sigma)

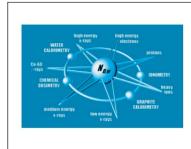
QUALITY ASSURANCE (QA)










QUALITY ASSURANCE (QA) – Sample Guidelines

TECHNICAL REPORTS SERIES No. 398

Absorbed Dose Determination in External Beam Radiotherapy An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water Sponsored by the IAEA, WHO, PAHO and ESTRO 🕒 🍪 😘 ESTRIÓ

INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 2000

AEA-TECDOC-1583

Commissioning of Radiotherapy Treatment Planning Systems: Testing for Typical External Beam Treatment Techniques

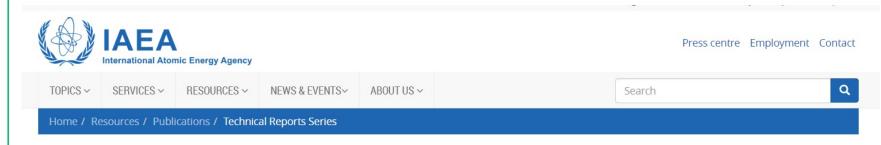
Report of the Coordinated Research Project (CRP) on Development of Procedures for Quality Assurance of Dosimetry Calculations in Radiotherapy

AEA-TECDOC-1585

Measurement Uncertainty A Practical Guide for Secondary Standards Dosimetry Laboratories

A IAEA

IAEA TECDOC SERIES


IAFA-TECDOC-1891

Regulatory Control of the Safety of Ion **Radiotherapy Facilities**

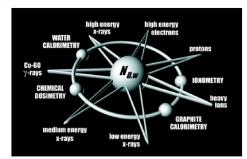
QUALITY ASSURANCE (QA) – Sample Guidelines

Publications advanced search

IAEA scientific and technical publications can be searched by multiple parameters: year of publication, topic and type. Use the facets to input your search criteria or the text field to search by title, keyword, ISBN, ISSN or series number.

Please, refer to recognized and registered international agencies and associations, not to occasional websites

Safety Reports Series



IAEA TRS-398

Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry based on Standards of Absorbed Dose to Water

Pedro Andreo, Dosimetry and Medical Radiation Physics Section, IAEA
David T Bunns, Bureau International des Poids et Measures (BIPM)
Klaus Hohlfeld, Physikalisch-Technische Bundesanstal (PTB), Braunschweig, Germany
M Sairlu Hug, Thomas Jefferson Univensity, Philadelphia, USA
Tatsuaki Kanai, National Institute of Radiological Sciences (NIRS), Chibu, Japan
Fedele Latano, Ente per le Nuowe Tecnologie L'Energia e L'Ambiente (ENEA), Rome, Italy
Vere Smyth, National Radiation Labontory (NIRL), Christchurch, New Zealand

Stefaan Vynckier, Catholic University of Louvain (UCL), Brussels, Belgium

PUBLISHED BY THE IAEA ON BEHALF OF IAEA, WHO, PAHO, AND ESTRO

INTERNATIONAL ATOMIC ENERGY AGENCY IAEA

Organize and Track the documentation

Possible definition (ISO Source):

A *Quality Management System* is a set of all connected and interdependent activities that influence the Quality of a product or service. Documents the processes, procedures and responsibilities for achieving quality policies and quality objectives.

The Quality Management System consists of:

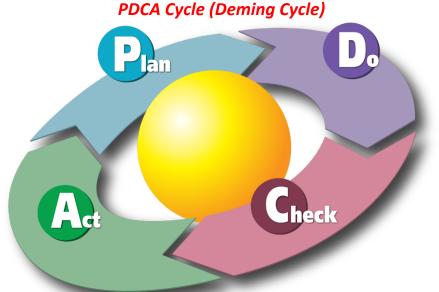
- An organizational structure
- The processes
- Responsibilities
- The procedure
- Resources
- People who know what to do
- People who know how to do it
- People who have the means to do it
- People motivate to do it because they have a common goal

QA SYSTEMS AND STANDARD

It's not just paper and operating instructions

QA PROGRAMME National or Local Regulatory, Quality System, Certification and Tools. (Examples)

Certification Office



Certification Office

National and Local Regulatory

E.g. Requirements in Italy and Emilia Romagna......

n.332 del 13.12.2017 periodico (Parte Seconda)

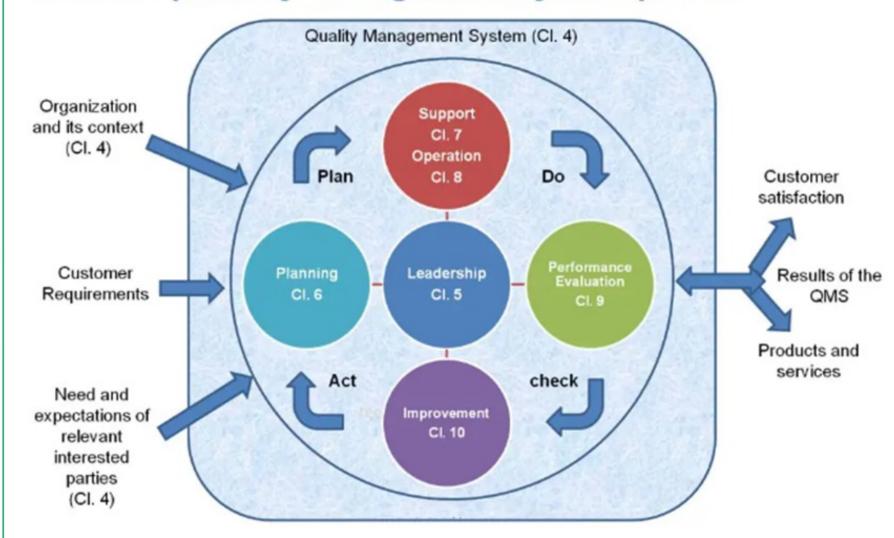
Regione Emilia-Romagna

DELIBERAZIONE DELLA GIUNTA REGIONALE 4 DICEMBRE 2017, N. 1943

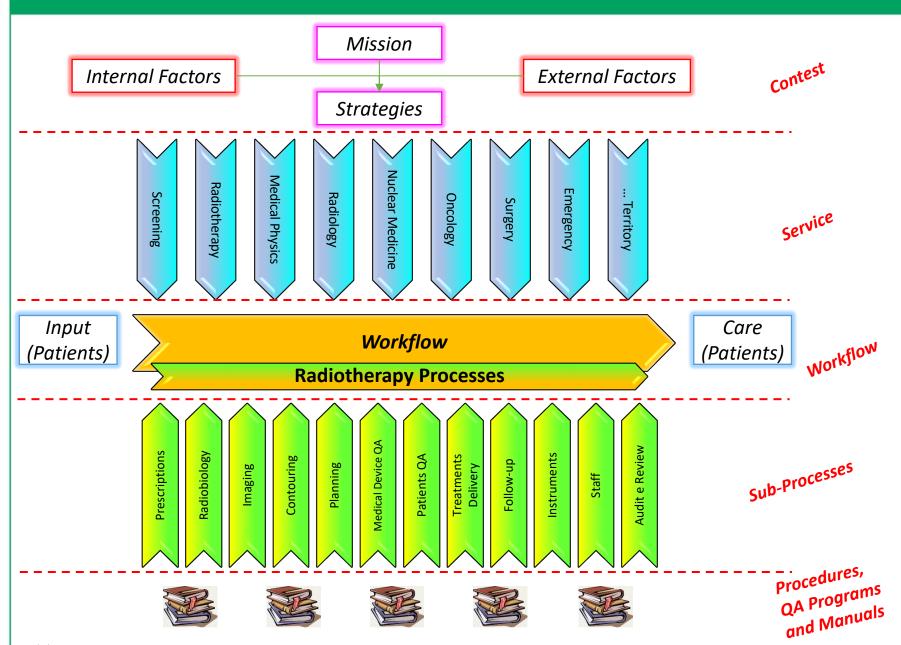
Approvazione requisiti generali e procedure per il rinnovo dell'accreditamento delle strutture sanitarie

LA GIUNTA DELLA REGIONE EMILIA-ROMAGNA

Requisiti specifici Fisica sanitaria


Estratto dalla delibera Giunta regionale n. 327 del 23 febbraio 2004 "Applicazione della L.R. n. 34/98 in materia di autorizzazione e di accreditamento istituzionale delle strutture sanitarie e dei professionisti alla luce dell'evoluzione del quadro normativo nazionale. Revoca di precedenti provvedimenti"

Requisiti specifici per l'accreditamento delle Strutture di fisica sanitaria


Example of an Organizational Model (i.e. Medical & Health Physics Service for radiotherapy)

ISO 9001 | Quality Management System | PDCA

Source ISO 9001:2015

Workflow, Processes, Sub-processes and Procedures

Documentation tracking (example)

SERVIZIO SANITARIO REGIONALE EMILIA-ROMAGNA Atienda Ospedalieno-Universitaria di Modena	TITOLO	P REV. Pag 1/n
---	--------	----------------------

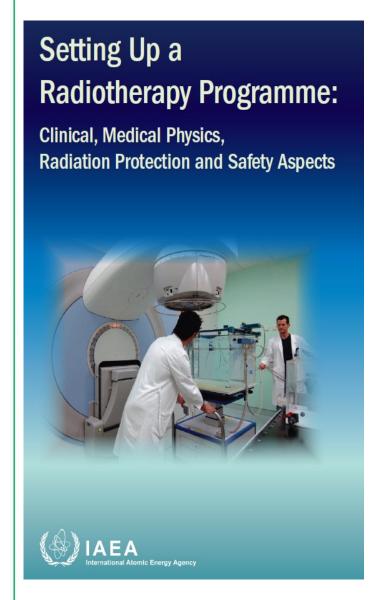
SOMMARIO

1. MODIFICHE	.1
2. OGGETTO E SCOPO	.1
2.1. OGGETTO	. 1
2.2. SCOPO	. 1
3. CAMPO DI APPLICAZIONE	.1
4. RESPONSABILITÀ	.1
5. INDICATORI APPLICABILI	.1
6. DOCUMENTI DI RIFERIMENTO	.1
7. DEFINIZIONI	
8. CONTENUTO	
8.1 GENERALITÀ	. 1
8.2 LOGIGRAMMA	
8.2 NOTE	1
9. ALLEGATI	1
21.1EE-W. 2	•

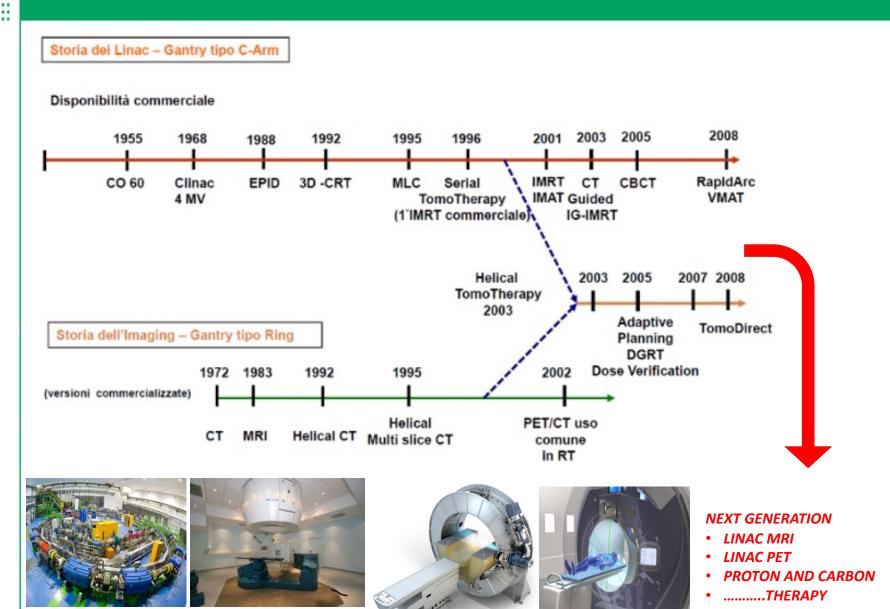
 (UO di	appartenenza)	
 (UO di	appartenenza)	
 (UO di	appartenenza)	
(LIO di	annartenenza)	

Lista di distribuzione:

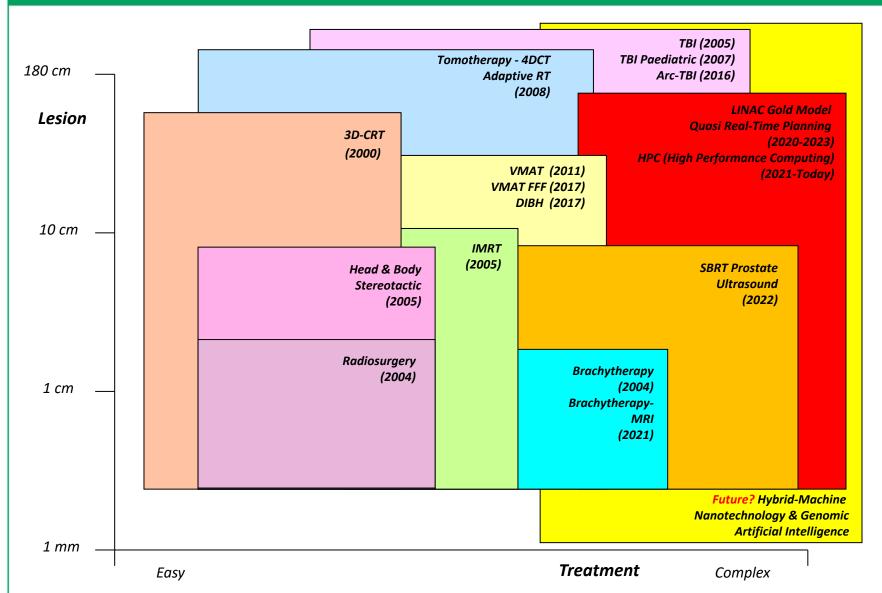
	_13	ш	ш	•	•	•	L	۰		•	L
	UO		 	 		 					
)	UO		 			 					
	UO			 							


Non è consentita la diffusione del presente documento all'esterno dell'Azienda in assenza di preventiva autorizzazione della Direzione Aziendale. Si intende valida la copia presente e pubblicata all'interno del sistema informativo aziendale; ogni documento cartaceo stampato e lasciato incustodito o non gestito all'interno dell'organizzazione, non essendo in maniera evidente sottoposto a criteri di rintracciabilità, ha valore puramente esemplificativo e potrebbe non corrispondere alla versione in vigore.

REDAZIO	NE		VERIFICA			APPROVAZ	IONE	
Data	Funzione	Visto	Data	Funzione	Visto	Data	Funzione	Visto



SETUP QA PROGRAMME AND DO IT!!



LINAC & IMAGING: EQUIPMENT'S EVOLUTION in RT

RADIOTHERAPY... ROADMAP

Radiotherapy Network & Facility

Hospital Network (Data Center)

Interoperable Network

MR 1.5T Philips MR 3.0T GE

Siemens Biograph 64 mCT

Toshiba Aquilion 16

Imaging

AI – HPC Research

Monaco

Oncentra-Brachy

Raystation

MyQA & PerFraction

Planning and QA systems

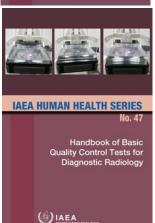
(Remote site) Hospital Treatment Machine

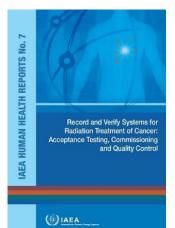
Network and Imaging

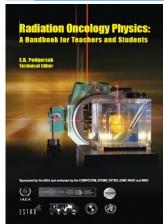
Hospital Network (Data Center)

Radiotherapy Network and Facility

MR 1.5T Philips MR 3.0T GE


Siemens Biograph 64 mCT




Toshiba Aquilion 16

Imaging

Is a WORLD
All in one day
Might is not possible

Treatment Planning Systems (Example)

Radiotherapy Network and Facility

AI – HPC Research

Monaco

Oncentra-Brachy

Raystation

MyQA & PerFraction

Planning and QA systems

- Multimodality Imaging
- IVDT (Density table vs. HU)
 - MRI calculation capability
 - Density override
- Quantitative imaging
 - PET, SUV, etc..
- Contouring
 - Manual
 - Automatic
 - Model Based
- Co-Registration
 - Rigid (MI, CC)
 - Deformable registration
 - Dose Accumulation
- Physics Modeling
- Algorithm (CCC or Monte Carlo)
- Planning (photon, electron, etc..)
- Reconstruction (DRR, Synthetic, ecc..)
- DVH, Report and QA
- Connectivity (DICOM, DICOMRT, R&V)
- Artificial Intelligence
 - Machine Learning
 - Deep Learning)
- Auto Planning, Adaptive RT Modules
- Radiobiology
- Cybersecurity and AI

Cybersecurity for AI

- Ransomware Impacting Healthcare
- Healthcare Industry Victimization by Ransomware
- · Data Leak Trends
- Cyber Attack of Health System
- New Ransomware Capabilities
- Mitigations

Al for Cybersecurity

- Mitigations
- Machine Learning
- Network Scanning
- AI based Anomaly Detection
- ...ask to your IT or Cybersecurity department...
- Know what we must do or avoid
- Know the problems and risks

LINAC and On-Board Imaging (i.e. example)

Radiotherapy Network and Facility

Hub Hospital Treatment Machine

- LINAC QA
 - · Geometry and mechanical
 - Energy (FF/FFF) and Dosimetric
 - Inter/interleafs
 - MLC Interdigitation
 - Doserate
 - Gantry rotation speed
 - · Safety and collision
 - Couch (Robotic and 6° freedom)
 - Complete procedure after interruption
 - TBI (Non-Standard conditions)
- VMAT, IMRT, dMLC, 3DCRT
 - MLC Interdigitation
 - Leafs speed
 - Penumbra
- CBCT/EPID/MVCT
 - Image Quality
 - Contrast/Uniformity
 - Bad Pixel Map
 - Image Density (IVDT)
 - Spatial resolutions
 - Geometric
 - Accuracy
 - Reconstructions
 - TBI imaging
 - Vivo Dosimetry

- Radiosurgery, SBRT
 - Positioning (frame vs. frameless)
 - Accuracy
 - Rotational of gantry and collimator
- TBI (Total Body Irradiation)
 - Instruments and device
 - Vivo Dosimetry and device
 - Delivery (Non-Standard conditions)
- Non-Homogeneity condition
 - Cerrobend Tray
 - Real-time monitor systems
- Non-medical device
 - Instruments
 - Barometers
 - IOS R&V
 - Monitors
 - Safety (Camera and Door Interlock)

Remote Site

Radiotherapy Network and Facility

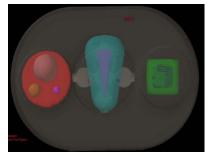
(Remote site) Hospital Treatment Machine

- Complete overview of the data from the Hub
- **Equal QA Program**
- **Equal accuracy and frequency** Remote sites are not treating patients B!!

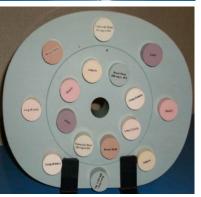


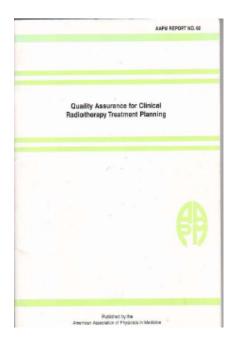
Issues to evaluate to have same performance

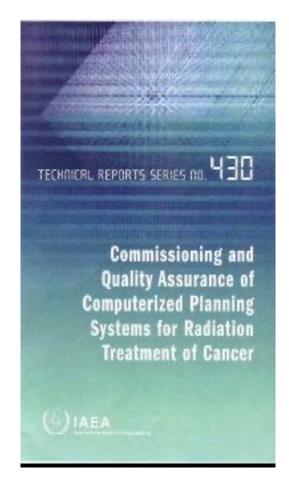
None specified



QA – QUALITY ASSURANCE INSTRUMENTS (i.e. Adaptive RT based on CBCT or phantom for gating verification)

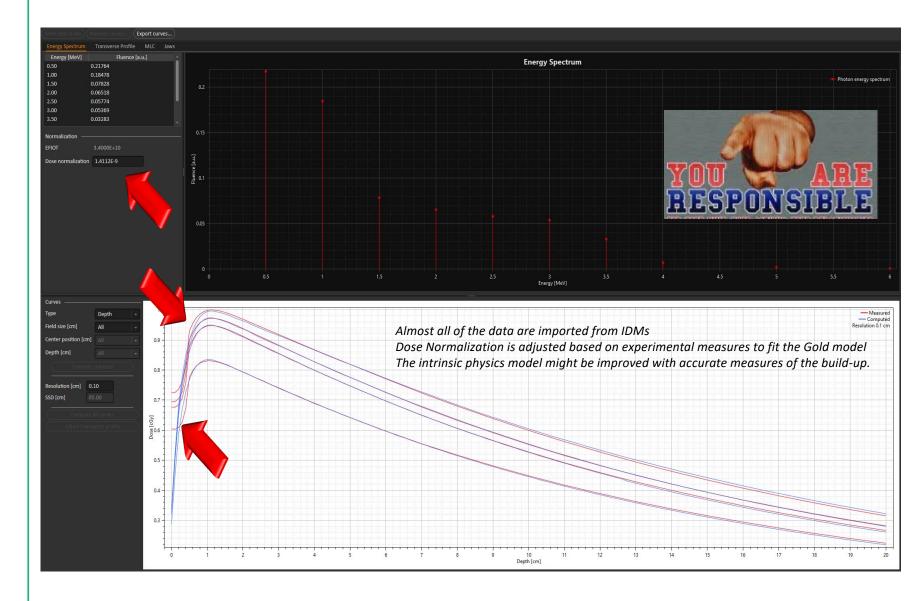

	Region	Homogenous, simple geometry	Complex geometry (wedge, inhomogeneity, asymmetry, blocks / MLC)	More complex geometries****
δ_1	Central beam axis data - high high dose, low dose gradient	2%	3%	4%
δ ₂ *	Build-up region of central axis beam, penumbra ragion of the profiles - high dose, high dose gradient	2 mm or 10%	3 mm or 15%	3 mm or 15%
δ_3	Outside central beam axis region - high dose, low dose gradient	3%	3%	4%
δ4**	Outside beam edges - low dose, low dose gradient	30% (3%)	40% (4%)	50% (5%)
RW ₅₀	Radiological width - high dose, high dose gradient.	2 mm or 1%	2 mm or 1%	2 mm or 1%
δ ₅₀₋₉₀	Beam fringe - high dose, high dose gradient	2 mm	3 mm	3 mm

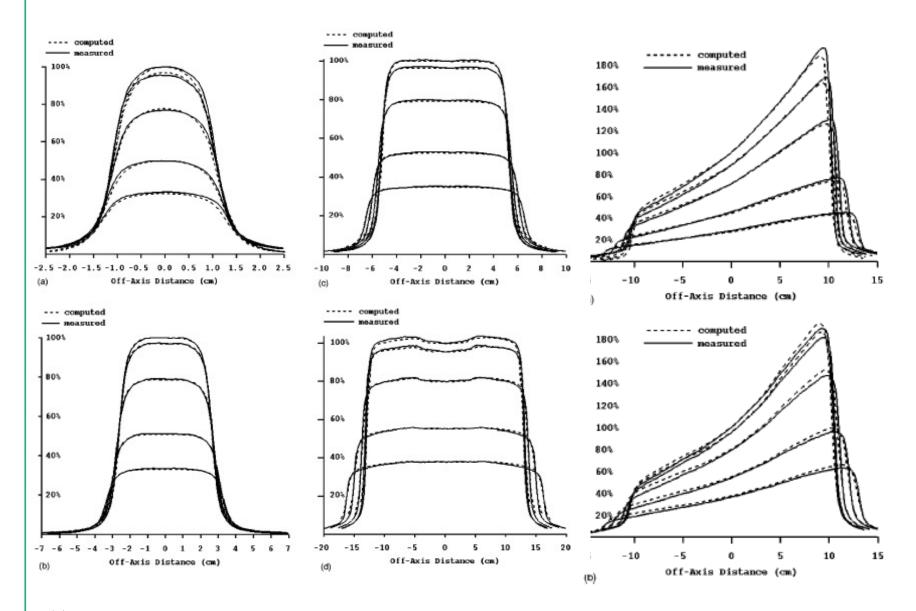




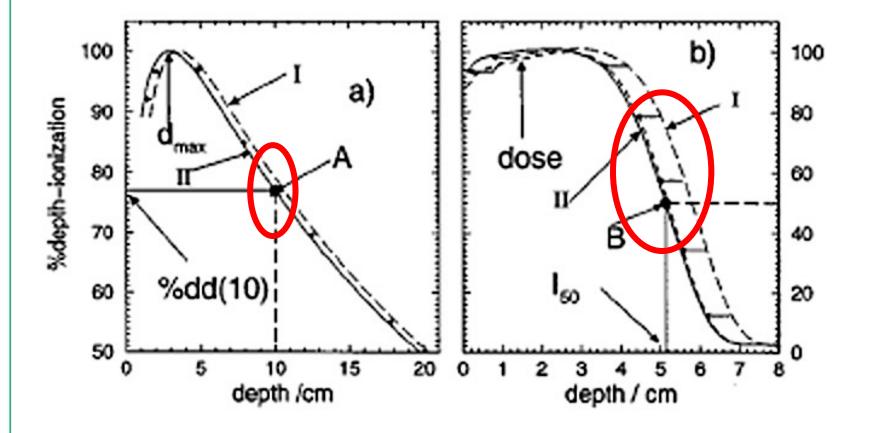
Treatment Planning Systems (Example Guideline)

- AAPM Report No. 62: Quality Assurance for Clinical Radiotherapy Treatment Planning (December 1998)
- Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning (2007)
- IAEA Technical Report Series No. 430 : Commissioning and Quality Assurance of Computerized Planning Systems for Radiation Treatment of Cancer (October 2004)
- IAEA TEC-DOC No 1540: Specification for Acceptance Testing of Radiotherapy Treatment Planning Systems
- IAEA TEC-DOC No.1583: Report of the Coordinated Research Project on Development of Procedures for Quality Assurance of Dosimetry Calculations in Radiotherapy





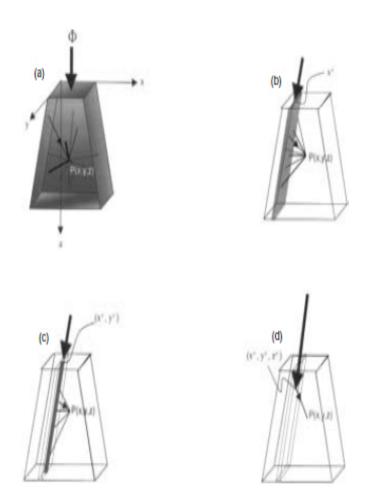
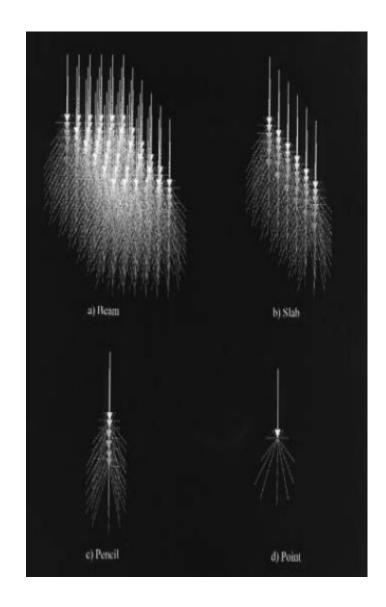
Physics Modeling (Beware of the Gold Models or pre-commissioned factory data)

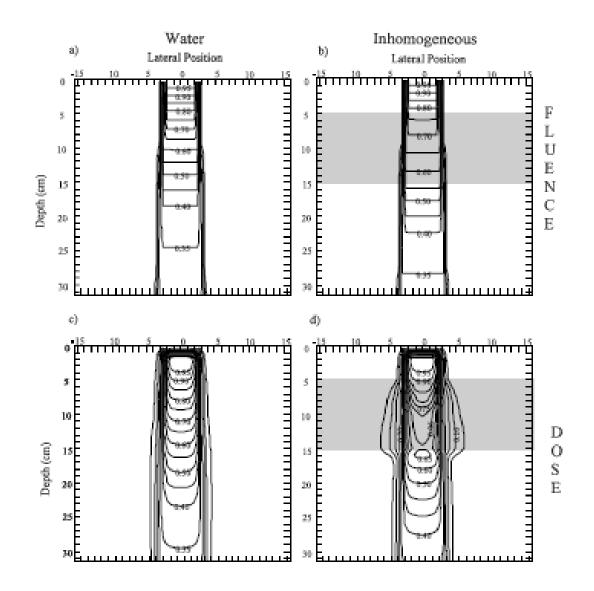


Modeling of the measures (Theory vs. Practice)

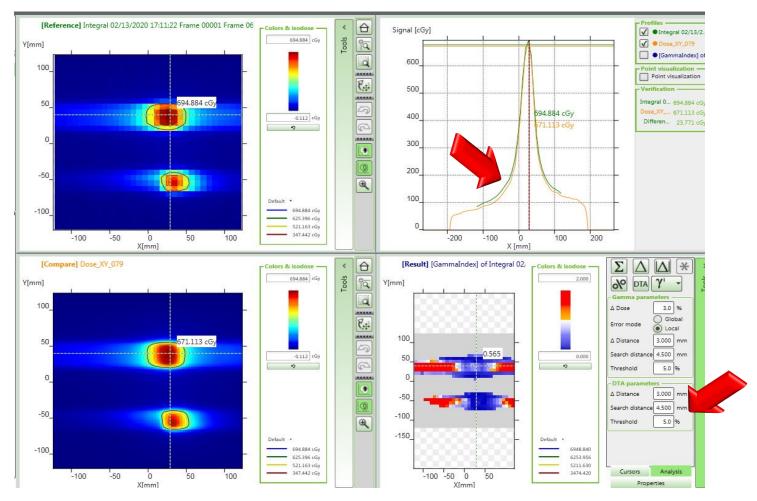
Effect of shifting depth-ionization data measured with cylindrical chambers upstream by 0.6 r_{cav} for photon beams and 0.5 r_{cav} for electron beams (with $r_{cav} = 1.0$ cm). For the electron beams, (b), further corrections are applied to obtain the %dd(x) curve shown.

SCATTER KERNEL

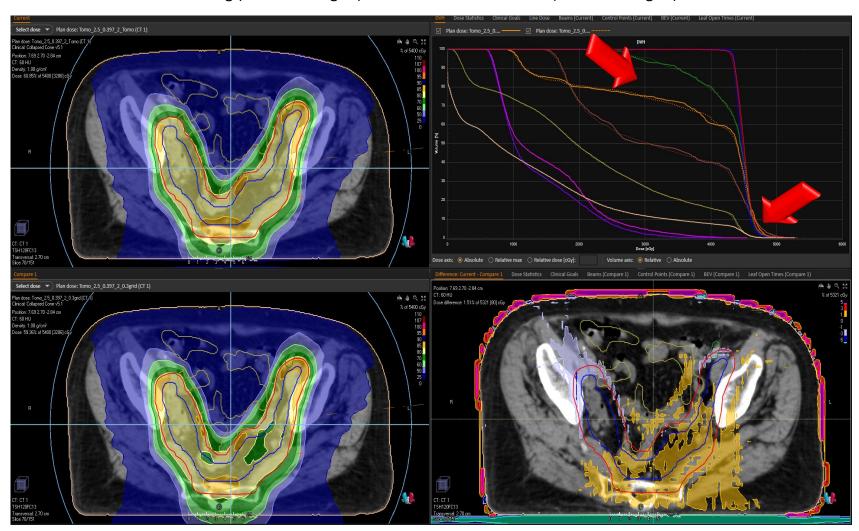

Figure 8.2

The summation of dose contribution from various scatter kernels, K. (a) Beam kernel, (b) Slab kernel, (c) Pencil beam kernel, (d) Point kernel. [Adapted with permission from reference [12].]



Fluence vs. Dose (Water vs. Inhomogeneous)

Dose profiles (High/Low dose range)


Using a threshold of dose related to the Maximum dose = 5%

- Though of little relevance, the low dose area still might be modeled more accurately in the physics model
- The gradient appears to be calculated and delivered correctly even for high doses and small volumes (SRS/SBRT conditions)
- A Threshold of 5% is certainly very conservative, in the relevant dose ranges, dosimetry results are excellent when previously discussed planning strategies are followed

Only minor dose distribution differences for different dose grids

Planning (0.5 cm dose grid) vs. Final Plan Recalculated (0.3 cm dose grid)

Might you do not appreciate by the DVH where is localized the dose difference? Faster does not mean necessarily accurate.

LINAC QA and Guideline (i.e. AAPM, IEC, IAEA)

Task Group 142 report: Quality assurance of medical accelerators^{a)}

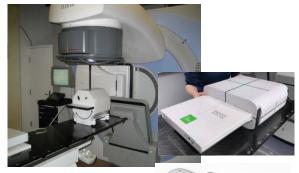
AAPM Task Group 198 Report: An implementation guide for TG 142 quality assurance of medical accelerators

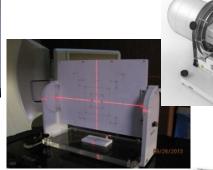
Joseph Hanley¹ | Sean Dresser² | William Simon³ | Ryan Flynn⁴ | Eric E. Klein⁵ | Daniel Letourneau⁶ | Chihray Liu⁷ | Fang-Fang Yin⁸ | Bijan Arjomandy⁹ | Lijun Ma¹⁰ | Francisco Aguirre¹¹ | Jimmy Jones¹² | John Bayouth¹³ | Todd Holmes¹⁴

Received: 6 May 2022 | Revised: 22 September 2022 | Accepted: 28 November 2022 |
DOI: 10.1002/mp.16150

AAPM SCIENTIFIC REPORT

MEDICAL PHYSICS


AAPM Task Group Report 306: Quality control and assurance for tomotherapy: An update to Task Group Report 148


Quan Chen¹ | Yi Rong² | Jay W. Burmeister^{3,4} | Edward H. Chao⁵ | Nathan A. Corradini⁶ | David S. Followill⁷ | X. Allen Li⁸ | An Liu⁹ | X. Sharon Qi¹⁰ | Hairong Shi¹¹ | Jennifer B. Smilowitz¹²

Are they still applicable to modern technologies?
Any updated guidelines?

i.e. LINAC QA

CQ-ACCELERATORI LINEARI LINAC

1. CONTROLLI GIORNALIERI	
1.1. DOSIMETRICI	5
1.1.1. Controllo dell'output per fotoni ed elettroni	5
1.2. MECCANICI	6
1.2.1. Localizzazione dei laser ed indicatore di distanza (Telemetro)	6
1.2.2. Indicatore dimensioni collimatore	
1.3. SICUREZZA	
1.3.1. Verifica del funzionamento delle sicurezze elettriche e meccaniche	
1.3.2. Interlock interruzione erogazione per l'apertura della porta del bunker	7
1.3.3. Sicurezza sulla chiusura della porta	
1.3.4. Sistemi audiovisivi	
1.3.4.1. Interfono	
1.3.4.2. Monitor	
1.3.5. Verifica dei dispositivi di avvertimento	
1.3.5.1. Acustici	
1.3.5.2. Luminosi	
1.3.6. Dispositivi di verifica specifici: SIEMENS – PRIMUS	
1.3.6.1. Spia verde di RESET che segnala il vuoto	
1.3.6.2. Spie gialle del modulatore	7
1.3.6.3. Spie verdi di alimentazione	
1.3.6.4. Livello dell'acqua	
1.3.6.5. Pressione dell'acqua	
1.3.6.6. Temperatura	
1.3.6.7. Pressione del gas	٥
1.3.6.8. Spia verde che indica la purezza del filtro	٥
1.3.6.9. Spie verdi di camera monitor e vacuum power	
1.3.6.10. Spia verde del filamento	٥
1.3.6.11. Spie rosse dell'elettromagnete e del magnete di deflessione	
1.4. IMAGING 1.4.1. Posizionamento e riposizionamento	٥
2. CONTROLLI SETTIMANALI	
2.1. DOSIMETRICI 2.1.1. Controllo dell'output per gli elettroni	
2.2. MLC	
2.2.1. Picket Fence test	
3.1. DOSIMETRICI	
3.1.1. Controllo dell'output per i fotoni	
3.1.2. Controllo dell'output per l'iotorii	10
3.1.3. Costanza del Dose Rate	I ل
3.1.4. Costanza del profilo dei fotoni	
3.1.5. Costanza del profilo del fotorii	
3.1.6. Costanza dell'energia dei fotoni e degli elettroni	
3.1.7. Filtri dinamici Controllo Wedge factor	
5.1.7. Filat dilattici condollo Wedge Iactor	

3.2. ME	CCANICI	. 13
3.2.1.	Centratura croce di campo (posizione dell'isocentro meccanico)	13
3.2.1.1.	Distanza Laser/telemetro/check pointer	13
3.2.1.2.	Indicatore angoli collimatore	14
3.2.1.3.		14
3.2.2.	Coincidenza Luce/Campo radiante	14
3.2.3.	Indicatori posizione collimatori e verifica coincidenza luce/raggi (asimmetrici)	16
3.3. ML	C	
3.3.1.	Controllo MLC	
3.3.2.	Setting dei collimatori/lamelle (da effettuare solo su acceleratori ELEKTA)	19
3.3.3.	Picket fence test (0°, 90°, 180°, 270°)	19
3.4. IM	AGING	19
3.4.1.	Risoluzione spaziale, contrasto, rumore e scaling	19
4. SEME	STRALI	20
4.1. DO	SIMETRICI	20
4.1.1.	Accessori TBI (diodi)	20
5. ANNU	JALI	20
5.1. Pre	messe sull'utilizzo della strumentazione	20
5.2. Mis	ure Relative	20
	ure assolute	
5.4. Equ	ilibrio delle camere di ionizzazione	21
5.5. DO	SIMETRICI	
5.5.1.	Dimensione del campo, flatness e simmetria per i fotoni	21
5.5.2.	Flatness e simmetria per gli elettroni	
5.5.3.	Calibrazione output fotoni ed elettroni (IAEA TRS-398)	24
5.5.4.	Output factors fotoni con e senza filtro	
5.5.5.	Output factors elettroni	25
5.5.6.	Qualità del fascio fotoni (PDD ₁₀ o TPR ²⁰ ₁₀)	
5.5.7.	Qualità del fascio di elettroni (R ₈₀ e/o R ₅₀)	26
5.5.8.	Linearità Monitor Units fotoni	
5.5.9.	Linearità Monitor Units Elettroni	
5.5.10.	Costanza output fotoni vs. dose rate	
5.5.11.	Costanza output elettroni vs. Dose rate	
5.5.12.	Controllo angolo dei filtri universali (Elekta)	
5.5.13.	Costanza output fotoni vs. angolo Gantry	
5.5.14.	Costanza output elettroni vs. angolo Gantry	
5.5.15.	Costanza output fotoni ed elettroni off axis vs. Gantry	29
5.5.16.	Costanza TPR ²⁰ 10 in condizioni TBI	29
5.5.17.	Calibrazione output TBI	
	CCANICI	
5.6.1.	Rotazione isocentrica collimatore	
5.6.2.	Rotazione isocentrica Gantry	
5.6.3.	Rotazione isocentrica lettino	
5.6.4.	Sag lettino	
	C	
5.7.1.	Trasmissione MLC intra e inter lamelle	
Tabe	lle Riassuntive dei limiti di accettabilità	.32

Define QA, frequency, tolerance, timing and personnel ...

TABLE IV Time, staffing, and equipment requirements for annual QA.

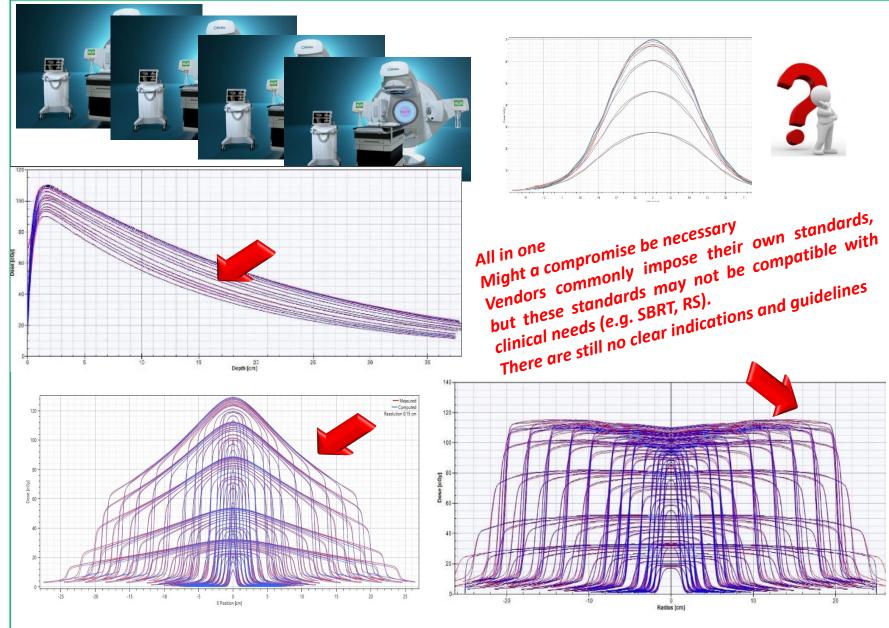
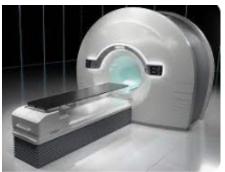

Procedure	Tolerance Non-IMRT/IMRT/SRS	Typical measuring device	Time required (range)	Personne
Dosimetry			10011	
Photon Flatness Change from Baseline	±1%	Large water tank	60-120 min	QMP
Photon Symmetry Change from Baseline	±1%	Large water tank	60-120 min	QMP
Electron Flatness Change from Baseline	±1%	Large water tank	60-120 min	QMP
Electron Symmetry Change from Baseline	±1%	Large water tank	60-120 min	QMP
Photon/Electron Output Calibration ³⁸	± 1% (Absolute)	Small/large water tank. ADCL Calibrated Ionization Chamber/ Electrometer	120–180 min	QMP
Spot Check of Field Size-Dependent Output Factors for Photon (2 or more field sizes)	±2% for field sizes < 4 × 4 cm ² , ±1% for field sizes ≥ 4 × 4 cm ²	lonization Chamber/ Electrometer, solid phantom or water phantom	30–60 min	QMP
Output Factors for Electron Applicators (spot check of one applicator/energy)	± 2% from baseline	lonization Chamber/ Electrometer, solid phantom or water phantom	60–90 min	QMP
Photon Beam Quality (PDD ₁₀ or TMR _{20:10})	± 1% from baseline	Large water tank	30-60 min	QMP
Electron Beam Quality (R _{s0})	± 1 mm	Large water tank	60-90 min	QMP
Physical Wedge Transmission Factor constancy	± 2%	lonization Chamber/ Electrometer, solid phantom or water phantom	30-60 min	QMP
Photon Monitor Unit Linearity (Output Constancy)	± 2%≥5 MU ± 5% (2–4) MU, ± 2% ≥5 MU ± 5% (2–4) MU, ± 2% ≥5 MU	lonization Chamber/ Electrometer, solid phantom or water phantom	30-60 min	QMP
Electron Monitor Unit Linearity (Output Constancy)	± 2% ≥ 5 MU	lonization Chamber/ Electrometer, solid phantom or water phantom	30-60 min	QMP
Photon Output Constancy vs Dose Rate	± 2% from clinical dose rate	lonization Chamber/ Electrometer, solid phantom or water phantom	30-60 min	QMP
Photon Output Constancy vs Gantry Angle	± 1% of the value acquired at gantry 0	lonization Chamber/ Electrometer. 2D/3-D Diode array	30-90 min	QMP

TABLE VII Time/Staffing/En	uipment requirements for Imaging QA.

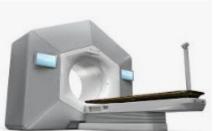
Procedure	Tolerance Non-SRS/SBRT SRS/ SBRT	Typical measuring device	Time required (range)	Personnel
Daily	tuba m			
Planar kV and MV (EPID) im	aging			
Collision interlocks	Functional	NA	5 min	RTT
Positioning/repositioning	≤2 mm / ≤2 mm/≤1 mm day of SRS	Phantom containing radiopaque markers.	10–15 min	RTT
Imaging and treatment coordinate coincidence	≤2 mm / ≤2 mm/≤1 mm day of SRS	Phantom containing radiopaque markers.	Included above.	RTT
Cone beam CT (kV and MV)				
Collision interlocks	Functional	NA	5 min	RTT
Positioning/repositioning	≤2 mm / ≤2 mm/≤1 mm day of SRS	Phantom containing radiopaque markers.	10–15 min	RTT
Imaging and treatment coordinate coincidence	≤2 mm / ≤2 mm/≤1 mm day of SRS	Phantom containing radiopaque markers.	Included above.	RTT
Monthly				
Planar MV imaging (EPID)				
Imaging and treatment coordinate coincidence	≤2 mm / ≤1 mm	Phantom containing radiopaque markers.	15–20 min	QMP or Designee
Scaling	≤2 mm / ≤1 mm	Object of known dimensions	5 min	QMP or Designee
Spatial resolution	≥ Baseline	Manufacturer supplied test phantom	5–10 min	QMP or Designee
Contrast	≥ Baseline	Manufacturer supplied test phantom	5–10 min	QMP or Designee
Uniformity and noise	≥ Baseline	Manufacturer supplied test phantom	5–10 min	QMP or Designee
Planar kV imaging				
Imaging and treatment coordinate coincidence	≤2 mm / ≤1 mm	Phantom containing radiopaque markers.	15–20 min	QMP or Designee
Scaling	≤2 mm / ≤1 mm	Object of known dimensions	5 min	QMP or Designee
Spatial resolution	≥ Baseline	Manufacturer supplied test phantom	5–10 min	QMP or Designee
Contrast	≥ Baseline	Manufacturer supplied test phantom	5–10 min	QMP or Designee
Uniformity and noise	≥ Baseline	Manufacturer supplied test phantom	5–10 min	QMP or Designee
Cone beam CT (kV and MV)				
Geometric distortion	≤2 mm / ≤1 mm	phantom of known and dimensions	15–20 min	QMP or Designee
Spatial resolution	≥ Baseline	Object of known dimensions	5 min	QMP or Designee
Contrast	≥ Baseline	Manufacturer supplied test phantom	5–10 min	QMP or Designee
HU constancy	± 40 HU from baseline	Manufacturer supplied test phantom	5–10 min	QMP or Designee

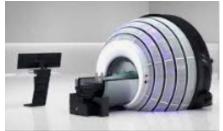
Beam Matching – No.4 LINAC (6,10,15 MV FF and FFF)



IMAGING QA

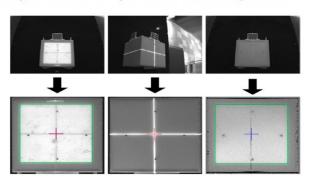
	Application-ty	pe tolerance
Procedure	non-SRS/SBR	SRS/SBRT
Dı	nily ^a	
Planar kV and MV (EPID) imaging		
Collision interlocks	Functional	Functiona
Positioning/repositioning	≤2 mm	≤1 mm
Imaging and treatment coordinate coincidence (single gantry angle)	≤2 mm	≤1 mm
Cone-beam CT (kV and MV)		
Collision interlocks	Functional	Functional
Imaging and treatment coordinate coincidence	≤2 mm	≤1 mm
Positioning/repositioning	≤1 mm	≤1 mm
Mod	nthly	
Planar MV imaging (EPID)		
Imaging and treatment coordinate coincidence (four cardinal angles)	≤2 mm	≤1 mm
Scaling ^b	≤2 mm	≤2 mm
Spatial resolution	Baseline	Baseline
Contrast	Baseline	Baseline
Uniformity and noise	Baseline	Baseline
Planar kV imaging ^d		
Imaging and treatment coordinate coincidence (four cardinal angles)	≤2 mm	≤1 mm
Scaling	≤2 mm	≤1 mm
Spatial resolution	Baseline	Baseline
Contrast	Baseline Baseline	Baseline Baseline
Uniformity and noise	Baseline	Baseline
Cone-beam CT (kV and MV)		
Geometric distortion	≤2 mm	≤1 mm
Spatial resolution	Baseline	Baseline
Contrast	Baseline Baseline	Baseline Baseline
HU constancy Uniformity and noise	Baseline	Baseline
Anna	ral (A)	
Planar MV imaging (EPID)		
Full range of travel SDD	±5 mm	±5 mm
Imaging dose ^e	Baseline	Baseline
Planar kV imaging		
Beam quality/energy	Baseline	Baseline
Imaging dose	Baseline	Baseline
Cone-beam CT (kV and MV)		
Imaging dose	Baseline	Baseline

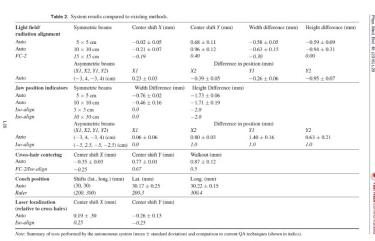

We are doing daily imaging of the patients for setup and Adaptive RT purposes.
Which is the best QA frequency and tolerance?
What are you planning with the next generation of Hybrid-Machine?



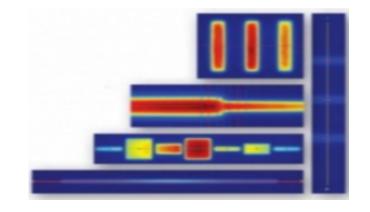
SOMETIME OBJECTS AND PHANTOM CAN HELP THE WORK-LIFE

IOP Publishing Institute of Physics and Engineering in Medicine


Physics in Medicine & Biology


Phys. Med. Biol. 61 (2016) L29-L37

doi:10.1088/0031-9166/61/17/L29


Fast Track Communication

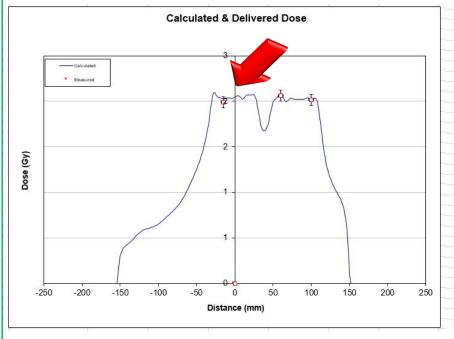
Automating quality assurance of digital linear accelerators using a radioluminescent phosphor coated phantom and optical imaging

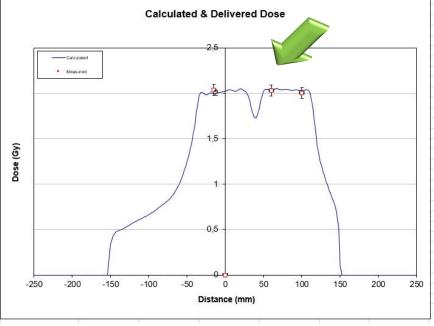
IMAGING QA (forgot something?)

Dicom or Non-Dicom monitor for Adaptive RT? Frequently are provided TV Conversions, instead medical device monitor Might the non-medical devices could hide some unexpected issues

US (Ultrasound device)
Spatial alignment, repositioning and image quality

Surface tracking, robotic couch and LINAC and Imaging device isocenter should be aligned.





Calibration of the Output after the Upgrade

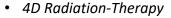
Measured	IEC X	Calculated Plan	Calculated fraction	Var. %
Dose (Gy)	Position (mm)	Dose in ROI 0,05 cm ³	Dose in ROI 0,05 cm ³	
1,9901	-15,0	9859	1,972	0,92
2,0609	60,0	10414	2,083	-1,06
2,0162	100,0	10140	2,028	-0,59

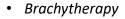
Measured	IEC X	Calculated Plan	Calculated fraction	Var. %
Dose (Gy)	Position (mm)	Dose in ROI 0,05 cm ³	Dose in ROI 0,05 cm ³	
2,0353	-15,0	10076	2,0152	0,99
2,0323	60,0	10288	2,0576	-1,25
2,0047	100,0	10097	2,0194	-0,73

Relative variations were compliant with the machine specification requirements, but asymmetrical along the profile. Absolute dose was therefore more asymmetrical than expected (2Gy)

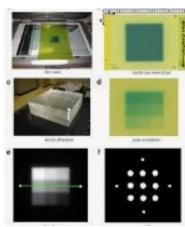
Accurate recalibration, always within Service Engineering requirements, improves dosimetrical results

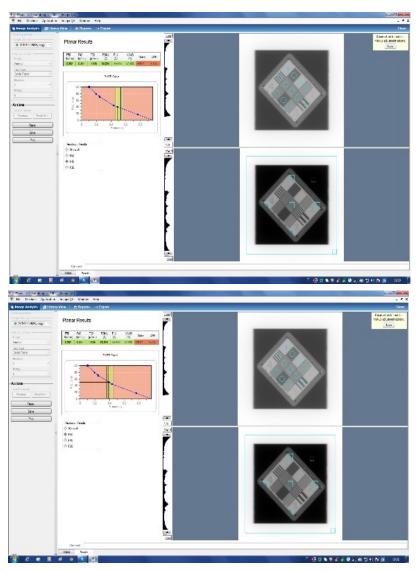
Software, 3rd Part device, Brachytherapy, Other systems (i.e. example)

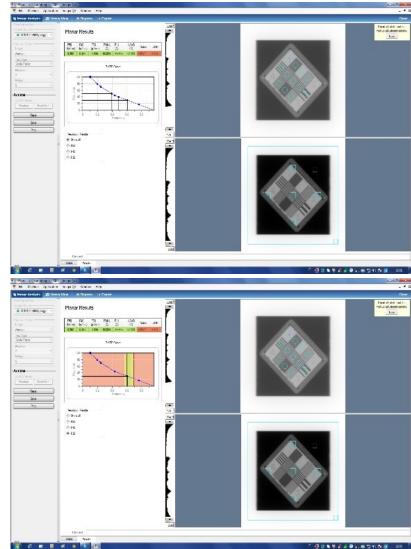

Radiotherapy Network and Facility

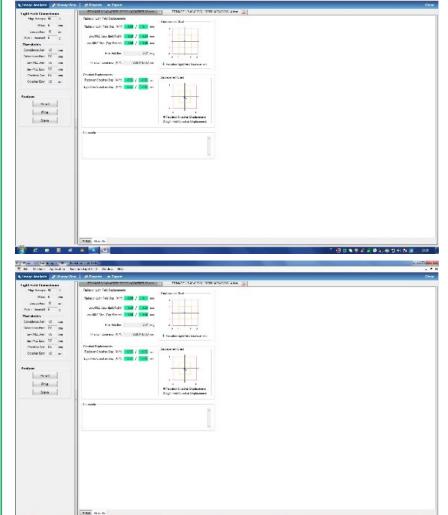


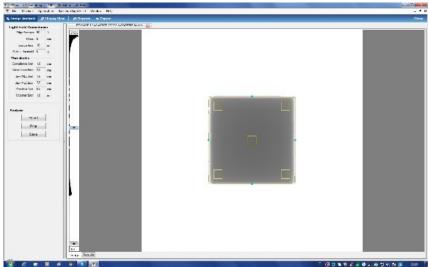
Hub Hospital Treatment Machine

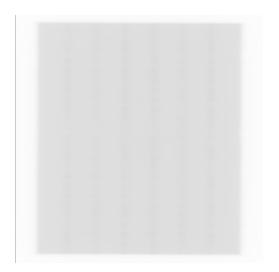

- Breath synch
- Beam on/off and delivery (DIBH)
- Ramp-up of the beam-on
- Surface tracking systems
- Complete procedure after interruption
 - 3DCRT
 - IMRT, dMLC or Sliding Windows
 - VMAT
 - Radiosurgery, SBRT
- Isocenter junction
 - Junction of the beam and divergence
- Log files connectivity and Software analysis
- Unpredictable cases (near missing or errors)
- Connectivity with IOS
-radiation therapy


- Delivery Systems
- Positioning and accuracy
- Source calibration
- Applicator reconstruction
- Instruments
- CT/MR compatibility
- CT/MR Calculations
- Registration, Contouring
- Dose Accumulation
- Safety and Interlocks
- Monitor
- Vivo Dosimetry

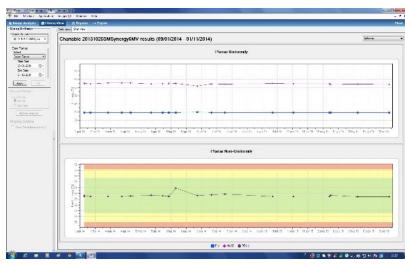


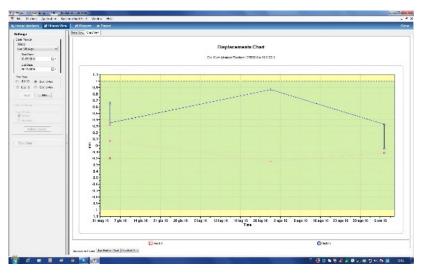

DEFINE THE BASELINE AND REPEAT FREQUENTLY (AS LOW AS REASONABLE) THE QA TEST

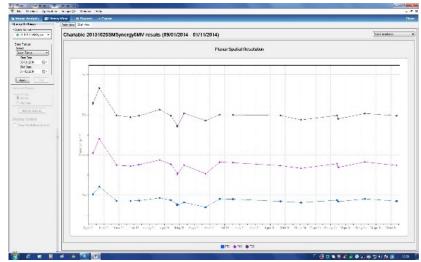




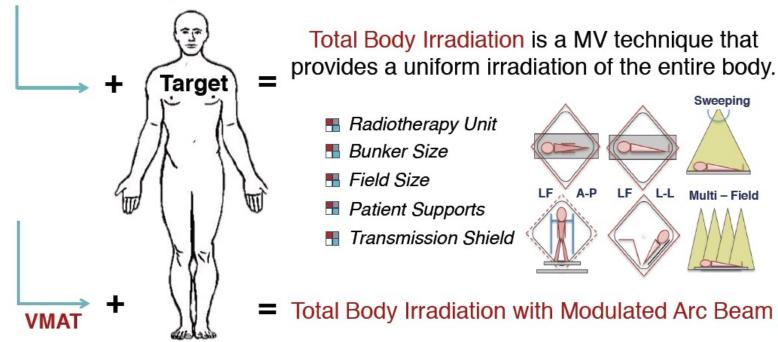
i.e. Isocenter and MLC position (Picket, Fence) Tests




「個日本等企業等の無力化物展 008



QA on practice – Setting a baseline and comparing trends



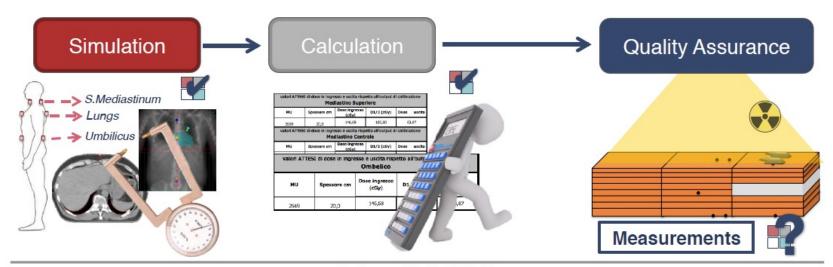
TBI-Arc (Total Body Irradiation)

Total Body Irradiation – Introduction

Clinical RT Techniques

- **3D-CRT:** Direct radiation beams to conform the shape of the target.
- IMRT: Manipulation of beam to conform the target by varying intensities.
- **IGRT:** Incorporation of imaging techniques during treatment session.
- VMAT: Delivery of Radiation from a continuous rotation of the source.

TBI QA Programme



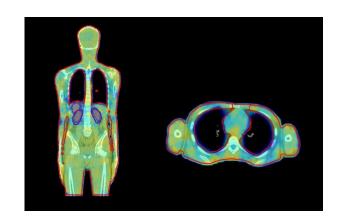
Quality Assurance Programme

SCOPE of QA Program

→ To prevent:

- Stress and Anxiety;
- Mistakes;
- Malfunction or defects on the dosimetry system;
- Malfunction on RT machine.
- To evaluate:
 - Internal processes and procedures are functioning;
 - Human resources handle with the assigned tasks.

Gutierrez, Maria Victoria

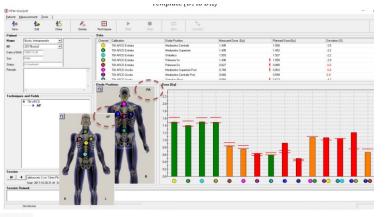


TBI QA Programme (Vivo Dosimetry)

Object	Parameter to control	Modality of the control		
LINAC or telecobalt	Dose	Control of constancy		
Personalize beam medifices (protection, shields, compensators, bolus)	Attenuation of the shields Consistency of compensators and bolus	Dosimetric measures		
Positioning devices	Geometric parameters (distance from the source, height from the pavement etc.)	Metric control		
In vivo dosimetry	Sensitivity	Calibration in terms of absorbed dose or control relative to the response		
Basic dosimetriy	Dose in standard phantom at reference depth	Audit or external confrontation in TBlconditions; calibration according to international protocols		
LINAC or telecobalt	OAR profiles	Dosimetric measures in standard phantom in TBI condition		
LINAC or telecobalt	PDD or TPR	Dosimetric measures in standard phantom in TBI condition		
Treatment planning	Dose in anthropomorhic phantom	Dosimetric measures		

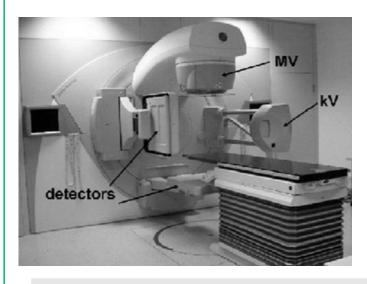
with lung type inhomogeneity: absolute in TBI condition

values and dose distribution.


In vivo dosimetry system

Entrance and exit dose and algorithm of calculation at half thickness

Dosimetric measures


in TBI condition

system (TPS)

...i.e. QA FOR TREATMENT MACHINE USING EPID

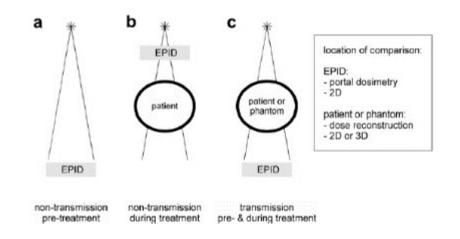


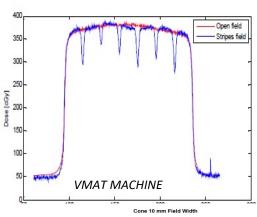
Table 2 List of key references on non-transmission based dose verification methods Objective of verification or subject of the Verification procedure Type of verification Key references study QA of treatment machine QA Prisciandaro [93] Radiation-light field congruence Dirkx [52,53], Budgell [80,87] Linac output, beam profile flatness and QA symmetry MLC leaf position for step-and-shoot fields Baker [84], Yang [95], Samant [96], QA Parent [97] Vieira [86] MLC leaf position and absolute output for QA low MU segmented fields MLC leaf position during dynamic QA Vieira [98], Partridge [99], Chang [88] treatment

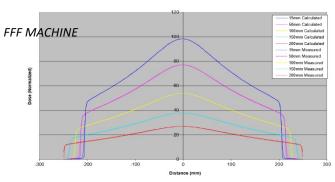
How do you support a No-Coplanar beam using EPID/CBCT? Why do we not support the transit dosimetry for those patients?

i.e. POTENTIAL QA AND ERROR DETECTED

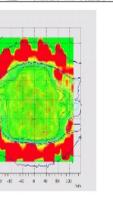
Table 4
Overview of the various errors that can be detected with EPID dosimetry

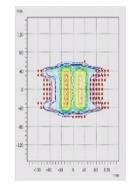
Potential errors	Pre-treatment	Treatment verification						
	2D/3D	2D		3D	2D			3D
	No phantom	Behind phantom	Inside phantom	Inside phantom	Before patient	Behind patient	Inside patient	Inside patient
Machine						11,	100	
Wedge presence and direction	Yes (systemati	c errors)			Yes (syste	ematic and r	andom errors)	
Presence of segment	Yes (systemati	c errors)			Yes (syste	ematic and r	andom errors)	
MLC leaf position/speed	Yes (systemati	c errors)					andom errors)	
Leaf sequencing	Yes (systemati	c errors)			Yes (syste	ematic and r	andom errors)	
Collimator angle	Yes (systemati	c errors)			Yes (syste	ematic and r	andom errors)	
Beam flatness and symmetry	Yes (systemati	c errors)			Yes (syste	ematic and r	andom errors)	
Linac output during treatment	No				Yes			
Gantry angle	No	Possible	Possible	Possible	No	Possible	Possible	Possible
Plan	1.00				4	1.00	3.000.000	
Transmission through leaves	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Steep dose gradients	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
TPS modelling parameters for MLC	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Delivery of wrong patient plan	Yes (if same p treatment)	lan is used fo	or verification	and	Yes	Yes	Yes	Yes
Dose calculation in phantom or patient	No	No	Yes	Yes	No	No	Yes	Yes

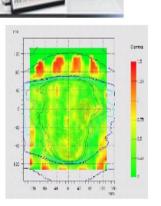

...DURING THE COMMISSIONING YOU NEED TO VERIFY THE TOLERANCE.... AND DEFINE THE FUTURE BASELINE


The NCS report has been downloaded on 29 Mar 2017

Code of Practice for the Quality Assurance and Control for Volumetric Modulated Arc Therapy

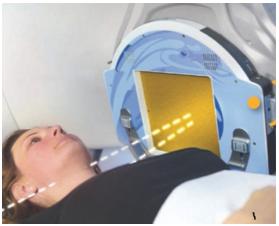

NEDERLANDSE COMMISSIE VOOR STRALINGSDOSIMETRIE


Report 24 of the Netherlands Commission on Radiation Dosimetry February 2015



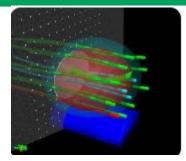
pilog	o mi sure eseguite c	on 2DArray	in Solido (1	RW3) e Octa	vius		Local dose	Selected dose	Selected dose
							%	%	Dose prescriz. (Gy)
		TPS	Tecnica	Fantoccio	Piano	N°Fascio/Gantry Angle			
ID	Paziente								
	TG119HN	MONACO	IMRT	Octavius		11	97,7	100	0,33
	TG119HN	MONACO	IMRT	Octavius		12	94	98,7	0,29
	TG119HN	MONACO	IMRT	Octavius		13	95	98,6	0,22
	TG119HN	MONACO	IMRT	Octavius		14	99,2	100	0,45
	TG119HN	MONACO	IMRT	Octavius		15	89,4	89,4	0,28
	TG119HN	MONACO	IMRT	Octavius		16	91,5	99,2	0,53
	TG119HN	MONACO	IMRT	Octavius		17	89,5	92,3	0,13
	TG119HN	MONACO	IMRT	Octavius		18	87,7	98,1	0,30
	TG119HN	MONACO	IMRT	Octavius		19	90,1	97,5	0,38
	TG119HN	MONACO	IMRT	Octavius		ALL	97,8	81.6	2,91
	F	MONACO	dMLC	RW3		1	100	100	2,43
	F	MONACO	dMLC	RW3		2	100	100	2,09
	F	MONACO	dMLC	RW3		3	100	100	3,27
	F	MONACO	dMLC	RW3		4	95,5	100	2,21
	F	MONACO	dMLC	RW3		5	100	100	3,88
	F	MONACO	dMLC	RW3		6	98,5	100	2,29
	F	MONACO	dMLC	RW3		7	100	100	1,67
	F	MONACO	dMLC	RW3		8	100	100	2,90
	F	MONACO	dMLC	RW3		9	98,9	100	1,69
-	F	MONACO	dMLC	RW3		ALL	99,1	100	22,42
	TG119 Cshape	MONACO	VMAT	RW3		41	64	63,7	0,16
	TG119 Cshape	MONACO	VMAT	RW3		42		78,6	0,14
	TG119 Cshape	MONACO	VMAT	RW3		43	75,9	92,7	0,16
	TG119 Cshape	MONACO	VMAT	RW3		ALL		67	0,45
	5	MONACO	TAMV	RW3	57.57.55.5	31		98,6	0,79
	5	MONACO	VMAT	RW3		32	85.8	98.9	0,75
	S	MONACO	VMAT	RW3		ALL		95,8	1,53
	68229	MONACO	VMAT	Octavius		51		96,1	0,56
	68229	MONACO	VMAT	Octavius		52		90,2	0,56
	68229	MONACO	VMAT	Octavius		53	75.2	95	0.49

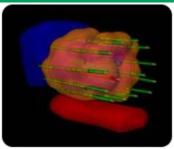
AGREEMENT TPS-PLAN-DELIVERY

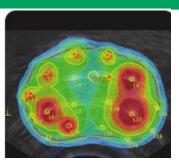

What can happen if the instruments are not calibrated

ALTERNATIVE - INDEPENDENT REAL-TIME BEAM MONITOR SYSTEM

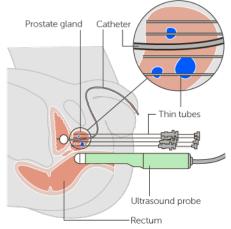
- Possible QA of the LINAC
- Pre-Treatment QA activities
- Error prevention instead of error management
- Intra-fractional verification system
- Real-Time user interaction
- Automated monitoring of every single treatment fraction
- Patient delivery and safety improved in real-time
- In-Vivo evaluation







Brachytherapy QA



Cancer Research UK

Table 1.1 Type and number of accidents reported in brachytherapy treatments (see IAEA 2000).

Accident caused by	Number of cases	
Dose calculation error	6	
Error in quantities and units	2	
Incorrect source strength	7	
Equipment failure	4	
Other	13	
Total	32	

Brachytherapy QA

Home | Directory | Career Services | Continuing Education | BBS | Contact

of PHYSICISTS IN MEDICINE

PUBLICATIONS

WHAT DOES A **RETIRED** AAPM REPORT MEAN? Login AAPM Search for a report: Brachytherapy submit | Show All | Show All Tabular | Explore by committee? Public & Media

Report Medical Physicist 377.B Membership TG377 Students

Improving Health

Through Medical Physics

International

AAPM BTSC Report 377.B: Physicist brachytherapy training in 2022 - A survey of therapeutic medical physics residents 'Brachytherapy' found in Title, Summary, Committee/Notes, Keywords

Meetings Report Education 267 Quality & Safety

Report

372

WGDCAB

Report

377

TG377

TG303

AAPM Task Group Report 267: A joint AAPM GEC-ESTRO report on biophysical models and tools for the planning and evaluation of brachytherapy 'Brachytherapy' found in Title, Summary, Committee/Notes, Keywords

Government Affairs TG267

Publications

- Medical Physics Journal
- Journal of Applied Clinical Medical Physics
- Newsletter
- WPSC Newsletter e-News
- Research Spotlight
- Physics Today
- CT Protocols
- MRI Homogeneity Testing Resources
- Medical Physics Practice Guidelines Radiation and

AAPM BTSC Report 377: Physicist Brachytherapy Training in 2021—A survey of therapeutic medical physics residency program directors 'Brachytherapy' found in Title, Committee/Notes, Keywords

AAPM WGDCAB Report 372: A joint AAPM, ESTRO, ABG, and ABS report on

commissioning of model-based dose calculation algorithms in brachytherapy

'Brachytherapy' found in Title, Summary, Committee/Notes, Keywords

Report MEDICAL PHYSIC AAPM task group report 303 endorsed by the ABS: MRI implementation in HDR 303

brachytherapy—Considerations from simulation to treatment 'Brachytherapy' found in Title, Summary, Committee/Notes, Keywords

Quality Control of Brachytherapy Equipment, 2004 (ESTRO)

Description	Minimum require		
	Test frequency	Action level	
Safety systems			
Warning lights	daily/3M°	-	
Room monitor	daily/3M*		
Communication equipment	daily/3M*		
Emergency stop	3M		
Treatment interrupt	3M	-	
Door interlock	3M		
Power loss	3M		
Applicator and catheter attachment	6M		
Obstructed catheter	3M		
Integrity of transfer tubes and applicators	3M	-	
Timer termination	daily	2	
Contamination test	A		
Leakage radiation	Α		
Emergency equipment (forceps, emergency safe,	daily/3M		
survey meter)			
Practising emergency procedures	A		
Hand crank functioning	A		
Hand held monitor	3M/A**		
Physical parameters			
Source calibration	SE	>5 %	
Source position	daily/3M*	>2 mm	
Length of treatment tubes	A	>1 mm	
Irradiation timer	Α	>1 %	
Date, time and source strength in treatment unit	daily		
Transit time effect	Α		

CONCEPT – Take Home Messages

Expert Brainstorming- Multiple-criteria decision

Wrong Workflow or Healthcare Model – Error investigation

Decision Maker

Results: Simplify and prevent accident

Take Home Messages

Organization of the Quality System in Radiotherapy

- Vision of the process and service provided
- Codified structure and responsibility
- Documentary collection, training and performance monitoring
- Detail of the operating instructions
- Sustainable and viable organizational models
- Improvement actions, Audits and Reviews
- Awareness of the quality of work and information support available

Risks of miss-interpretation of QA Programme

- Implementation and description of impractical or unsustainable processes
- Detailed but unreliable walkthrough description (Review)
- Inconsistency between «Best-Practice» and «Clinical-Practice»
- Useless production of documents with staff repulsion to correct use
- Lack of awareness of the quality of work

SERVIZIO SANITARIO REGIONALE

EMILIA-ROMAGNA

Azienda Ospedaliero - Universitaria di Modena

"That's too much!!!"

(Praha 2009)

