

Automation in Radiotherapy Planning: current Approaches and Future Perspectives

Ph.D Anna Zawadzka Medical Physic Department, MSCNRIO Warsaw, Poland

ICTP/School on Medical Physics for Radiation Therapy: Dosimetry, Treatment Planning and Delivery for Advanced Applications
15.09.2025

Modern Radiotherapy Approaches

IMRT - Intensity modulated radio therapy

IGRT - Image-guided radiotherapy

SGRT - Surface-guided radiotherapy

ART - Adaptive radiotherapy

OART - Online Adaptive Radiotherapy

Stratified or personalized radiotherapy.

of all these methods → High-quality & efficient treatment planning

Is Plan Quality Crucial?

Randomized trials of combined modality Treatment

- Each modality assumed correctly delivered or
- Incorrect RT delivery may be wash out by randomization
- Absolute outcomes \(\perp\), but comparative efficacy between regimens remains valid

Tirapazamine + Cisplatin in HNSCC Trial

- 861 patients, 82 centers, 16 countries
- RT: 70 Gy / 35 fractions / 7 weeks (both arms)
- CT: dose calculation & GTV coverage verification
- Techniques: 2 opposing fields / 3D conformal / IMRT (2010)
- Planning: 2D (53%) vs. 3D (47%)

After treatment some non-compliant treatment plans discovered (dose coverage, delineation, treatment prolongation). The deviation rate CIS (24.3%) and CIS/TPZ (26.5%).

Is Plan Quality Cruc

Randomized trials of col

- Each modality assum
- Incorrect RT delivery r
- Absolute outcomes \(\pers\), regimens remains val

Tirapazamine + Cisplat

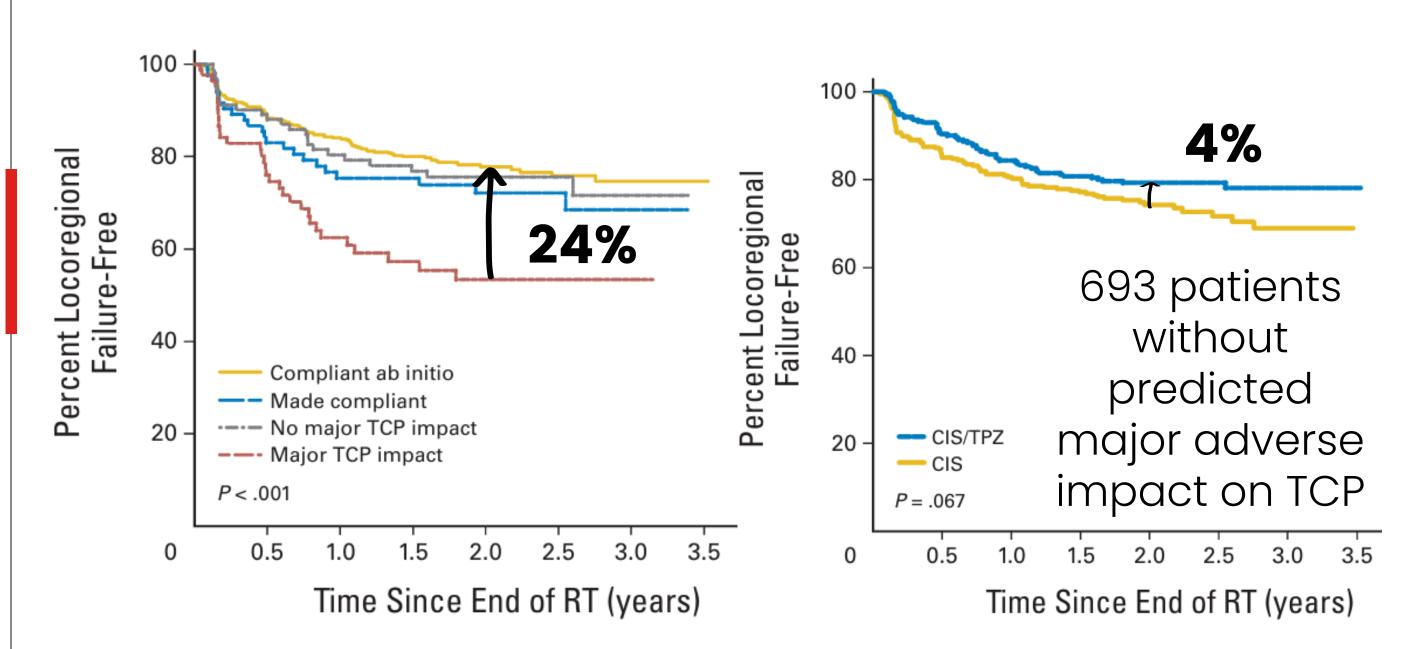
- 861 patients, 82 centers
- **RT**: 70 Gy / 35 fractions
- CT: dose calculation &
- Techniques: 2 opposing
- Planning: 2D (53%) vs. 3

After treatment some non-(dose coverage, delineation The deviation rate CIS (24.3)

Planning Error

Is Plan Quality Crucial?

Power to detect **10% improvement** in 2-year Overall Survival (OS) attributable to Tirapazamine (TPZ)



Is Plan Quality Crucial?

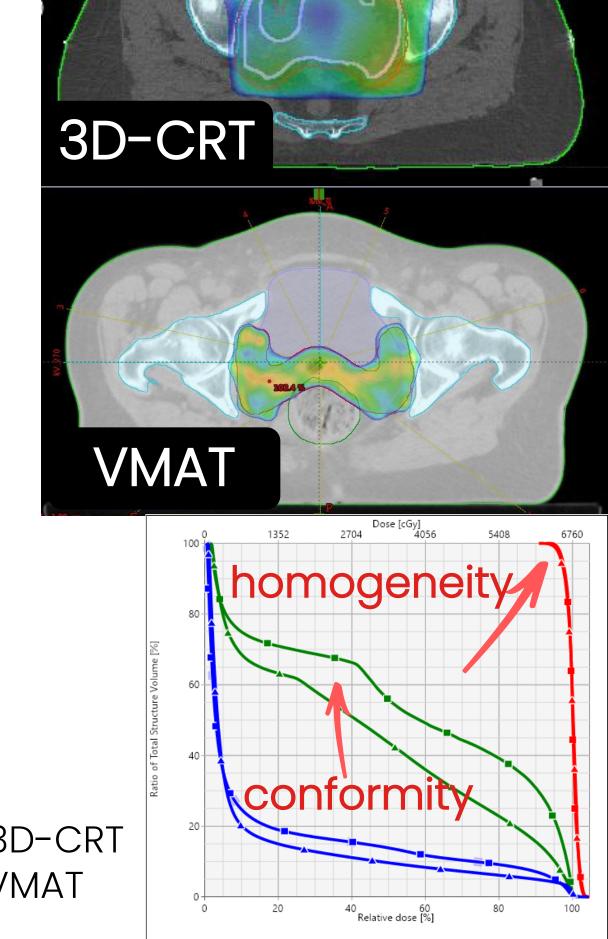
- Poor RT can outweigh benefits of concurrent chemotherapy
- Comparisons of combined modalities may be compromised by poor RT
- Quality varies across countries but the mor imortant
- Correlates with center size:
 - 5.4% poor RT plans → ≥20 patients/center
 - ≥ 29.8% poor RT plans → <5 patients/center
- Trial participation should be limited to high-volume sites

Quality Assurance in Trials

- Test the center, not just individual RT plans
- Ensures consistent standards and reliability across sites

Have Dynamic Techniques Accelerated Planning?

- Inverse planning: complex balance → tumor coverage vs. OAR sparing
- Highly computerized, but still resource-intensive manual, labor-intensive, planner-dependent
- Requires expertise & experience for high-quality plans



Why automation?

Advantages of automation

- Increased efficiency & consistency
- Reduced inter-planner variability
- Fewer errors
- Supports Adaptive Radiotherapy (ART)

Why automation?

Potential Risks of automation

Main automation approaches (Treatment Planning Focus)

- Knowledge-Based Planning (KBP)
- Protocol-Based Automatic Iterative Optimization (PB-AIO)
- Multicriteria Optimization (MCO)
- Fully Automated Planning
- Adaptive Radiotherapy (ART & oART)

KNOWLEDGE-BASED PLANNING (KBP)

Knowledge-Based Planning (KBP)

- prior knowledge use knowledge from prior cases to predict the outcome of a new case
- learn the relationships between anatomical structures and dose distributions
 - provides one or more dose metrics as a starting points for plan optimization
 - → predict DVHs as a starting point for plan optimization
 - predicts achievable dose for new patients with similar anatomy
- improve the speed, efficiency and reduce variability in treatment planning

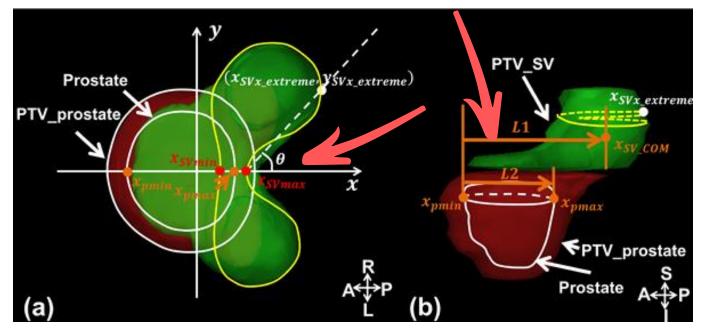
Knowledge-Based Planning (KBP) - Methods

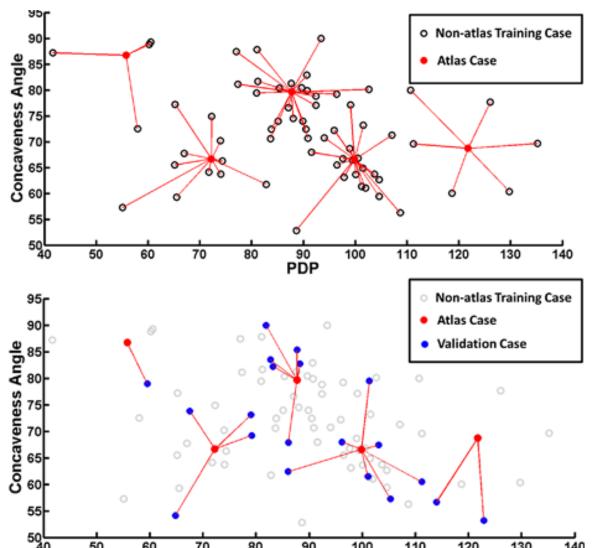
- atlas-based approach
 - selects the closest matching patient(s)
 - better starting point
- model-based approach DVH-guidance statistical or ML trained on a database of prior highquality plans
 - statistical methods Support vector regression, multivariate linear regression, Logistic Regression etc.
 - → machine learning (ML) method random forests, support vector machines (SVMs), neural networks

KBP atlas-based approach

- Adaptive Radiotherapy (ART) inter-fractional variation for a single patient -> refines adaptive plans using a reference (single atlas) plan
- Inter-patient variation reference case from a library

Example



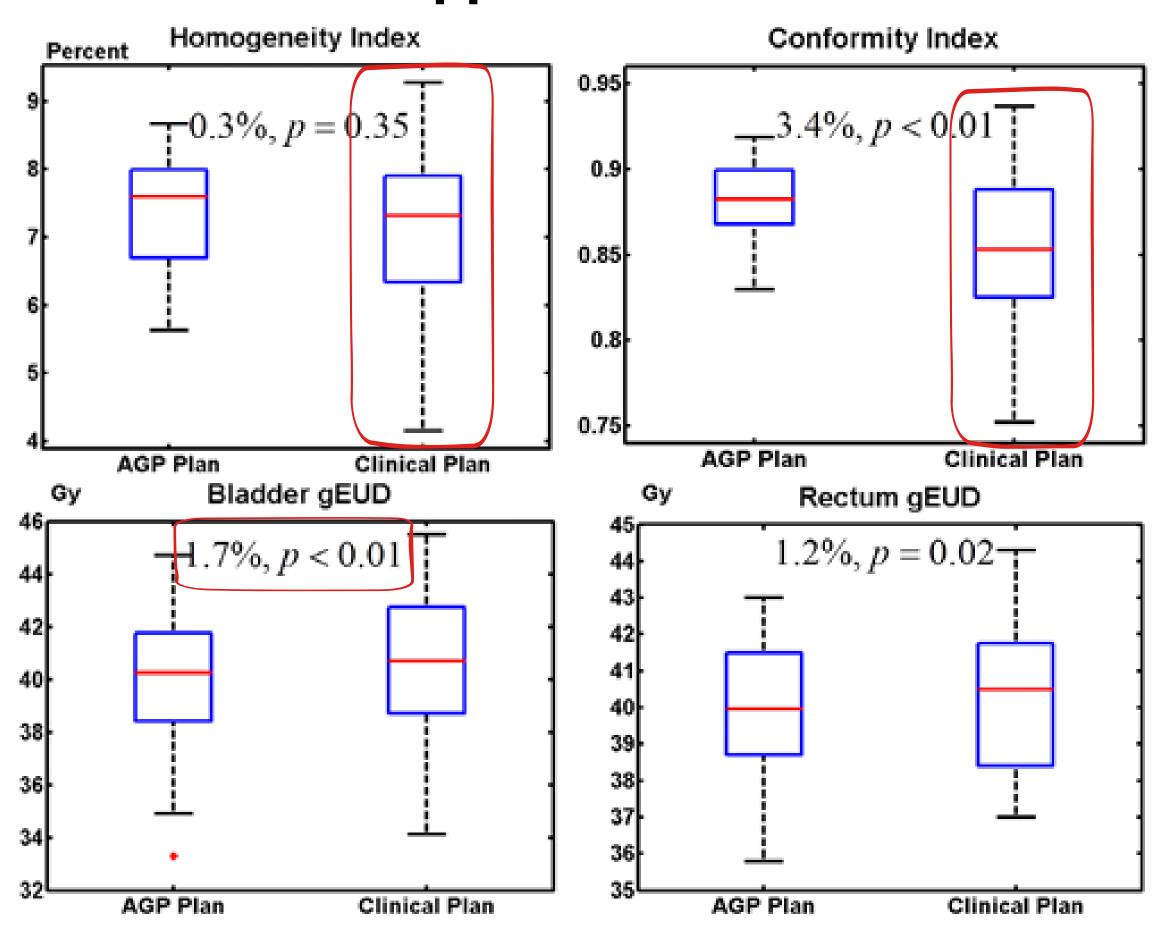


14/76

goals imported into Eclipse TPS

Sheng et al. Phys. Med. Biol. 60 (2015) 7277–7291 doi:10.1088/0031-9155/60/18/7277

KBT atlas-based approach



Knowledge-Based Planning (KBP)

Traditional KBP methods

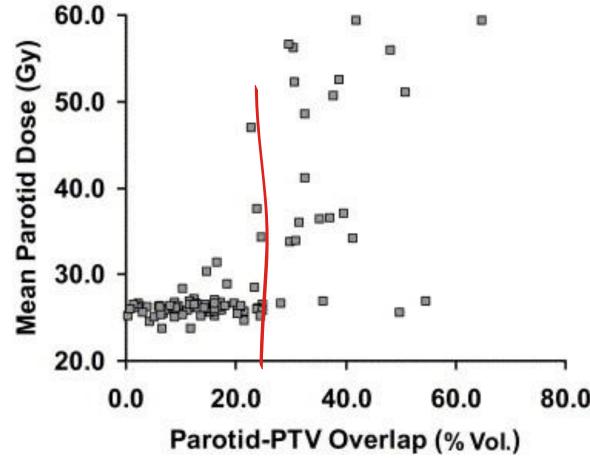
1. anatomical and geometrical features distance to target structures, volumes of target and OAR, BEV, overlap PTV-OAR, ML-based approach, shape analysis etc.)

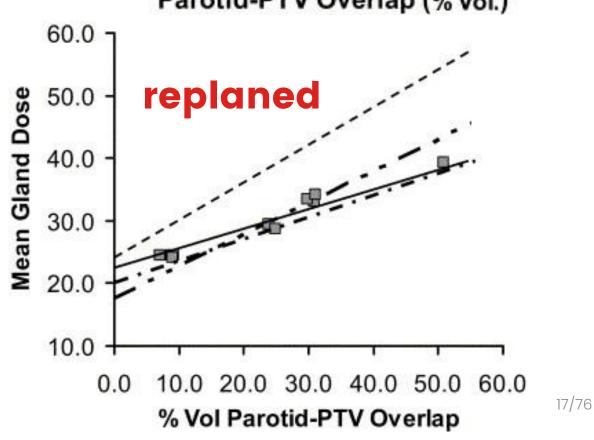
Commonly reported geometric and plan features

- OAR, PTV volume, shape
- OAR distance to PTV
- Target, OARs overlap volumes
- Volume of OAR out-of-field
- OVH overlap volume histogram
- DTH OAR distance to PTV histograms
- BEV (Projection-based method)

Example

- Prediction of the achievable parotid sparing
 -> parotid size and proximity to the PTV (Hunt, 2006)
- $\bigcirc MPD[Gy] = \frac{\%V_{IN} \cdot D_{IN}}{100} + \frac{\%V_{OUT} \cdot D_{OUT}}{100}$





Dimensionality Reduction in KBP

- Use most discriminative features, not all variables
- Feature extraction & selection streamline prediction models
- PCA (Principal Component Analysis):
 - → Reduces correlated dataset → fewer uncorrelated variables, reduces dimensionality
 - → Keeps most informative variables
- Commonly applied in KBP dose prediction studies

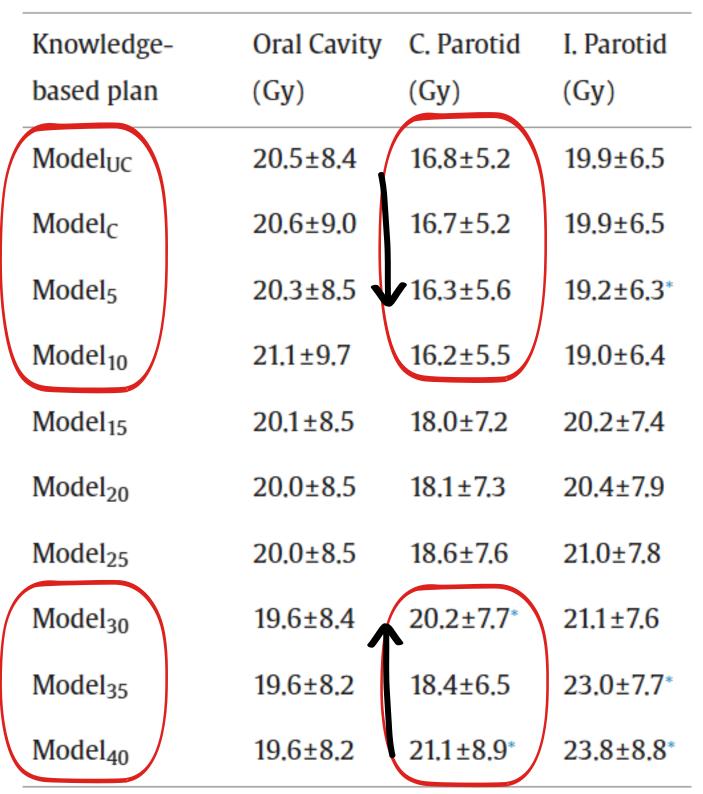
Knowledge-Based Planning (KBP)

Traditional KBP methods

- anatomical and geometrical features
 distance to target structures, volumes of target and OAR, BEV,
 overlap PTV-OAR, ML-based approach, shape analysis etc.)
- 2. build a mathematical or statistical model to predict dosimetry features to new case
 - I) prediction of one or more DVH metrics
 - II) prediction of the entire DVH (RapidPlan, Varian, Eclipse, 2014)
 - III) voxel-based dose prediction

Outliers and Database Size

- Outliers can compromise model performance
- Geometric outliers prostate vs prostate with nodes
- Dosimetric outliers possible reduction OAR dose without PTV compromising – re– planning needed
- Clinic without standardized contouring and planning techniques may have many dosimetric outliers



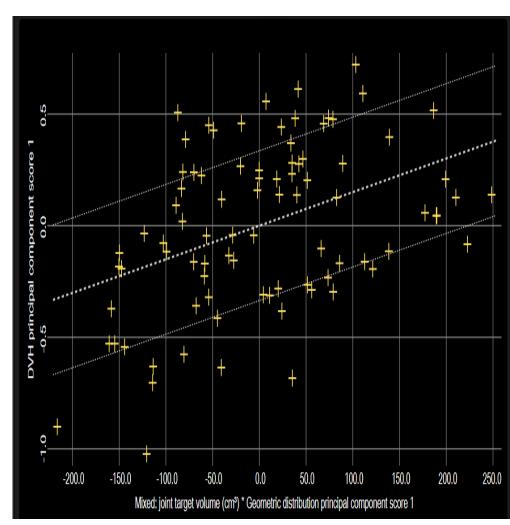
UC – uncleaned, C – cleaned, 5-40 outliers

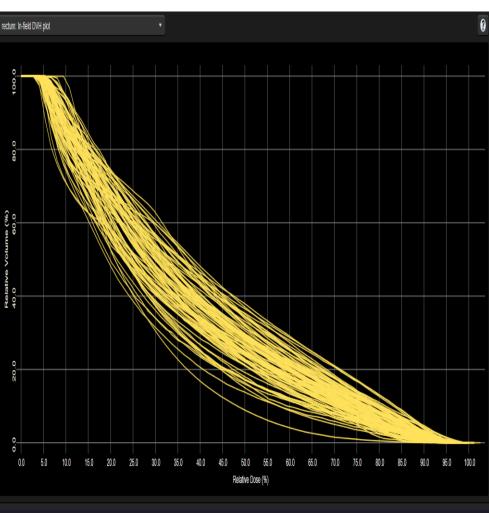
Diversities of application

- Fully automate Rapid Plan treatment planning of 10 different cancer sites (Chung et al., 2025)
- Photon → Proton: DVH prediction as patient selection tool (Delaney et al. 2017)
- Cooperative models: Sharing between institutes in prostate cancer (Schubert et al., 2017)
- Clinical trials: NRG-HN001 Rapid Plan model used for QA, improving OAR sparing in re-optimized trial plans (Giaddui et al., 2020)

RapidPlan Model Creation

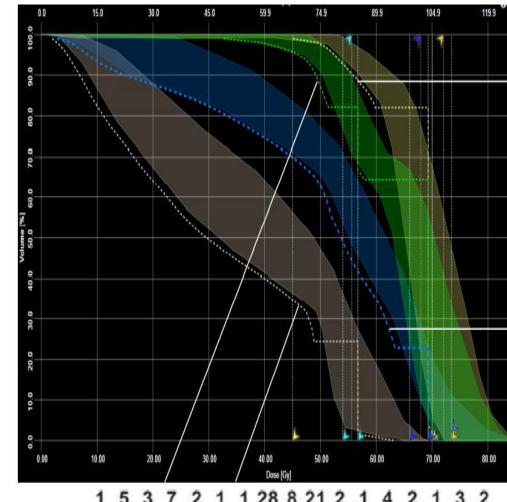
- 1. Data Collection (manual)
 - User selects and imports highquality treatment plans
- 2. Feature Extraction (automatic)
 - System extracts geometric & dosimetric features from dataset.
 - Performs dimensionality reduction (PCA) automatically.
- 3. Model Training (automatic)
 - Regression/statistical learning links features with DVHs.
 - System generates dose-volume predictions + optimization objectives.
- 4. Validation (manual + automatic)
 - User selects independent cases.
 - System runs predictions → user verifies accuracy.

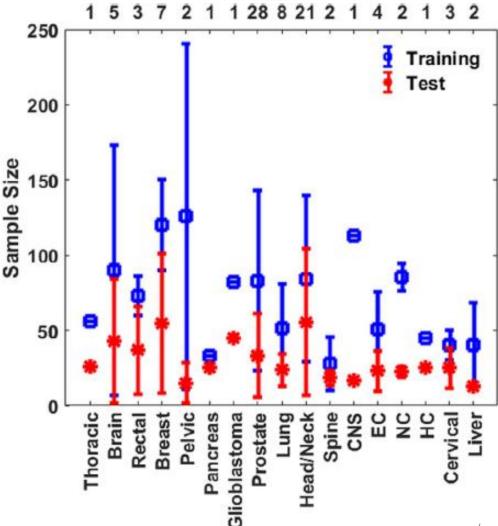




RapidPlan Model Creation

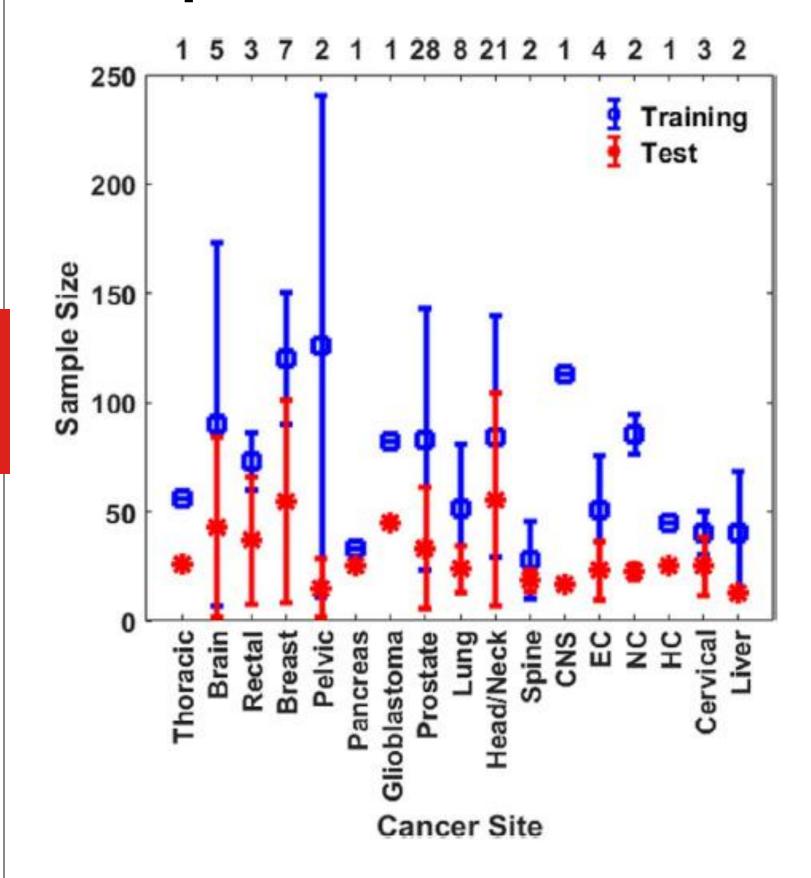
- 1. Data Collection (manual)
 - User selects and imports highquality treatment plans
- 2. Feature Extraction (automatic)
 - System extracts geometric & dosimetric features from dataset.
 - Performs dimensionality reduction (PCA) automatically.
- 3. Model Training (automatic)
 - Regression/statistical learning links features with DVHs.
 - System generates dose-volume predictions + optimization objectives.
- 4. Validation (manual + automatic)
 - User selects independent cases.
 - System runs predictions → user verifies accuracy.





Cancer Site

Sample size



- minimum number of plans required for model creation - 20
- with high-quality plans in training 25–30 plans prostate (Fogliat, 2014) and HN (Tol, 2015) may produce a clinically acceptable plan
- Depends on expected robustness

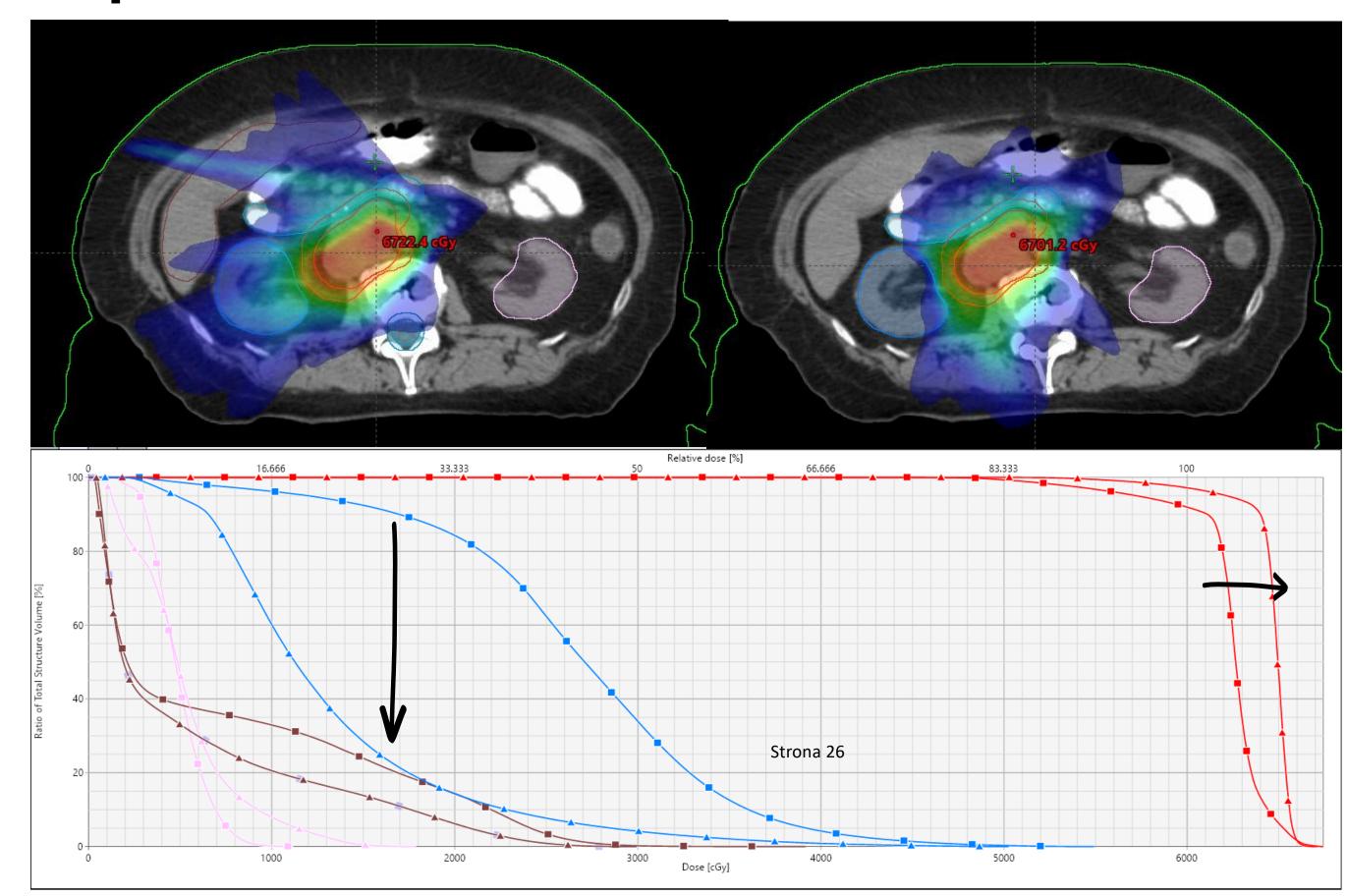
Efficiency

- nasopharyngeal cancer: 64 minutes vs. 295 minutes
 (Change)
- malignant pleural mesothelioma 20 min. vs. 4 hours (Dumane, 2021)

Table 1. Average times for manual and automated planning for each anatomical site.

Model name	Average time	Average time	Percentage decrease in
	manual planning (min)	RapidPlan planning (min)	planning time
CNS	178	38	78.7%
LungSBRT	185.3	38.3	79.3%
Oesophagus	100	40	60.0%
LiverSBRT	622	28.75	95.4%
Rectum	1137.5	53.89	95.3%
Anus	720	40	94.4%
Gynae	805	50	93.8%
Bladder	300	42.5	85.8%
Prostate	390.7	44	88.7%
Prostate + LN	456.7	91	80.1%
Average	489.5	46.6	90.5%

Rapid Plan - Model



Knowledge-Based Planning (KBP)

Traditional KBP methods

- 1. anatomical and geometrical features distance to target structures, volumes of target and OAR, BEV, overlap PTV-OAR, ML-based approach, shape analysis etc.)
- 2. build a mathematical or statistical model to predict dosimetry features to new case
 - I) prediction of one or more DVH metrics
 - II) prediction of the entire DVH (RapidPlan, Varian, Eclipse, 2014)
 - III) voxel-based dose prediction

Deep learning (DL)-based KBP methods

Key difference: traditional vs. DL

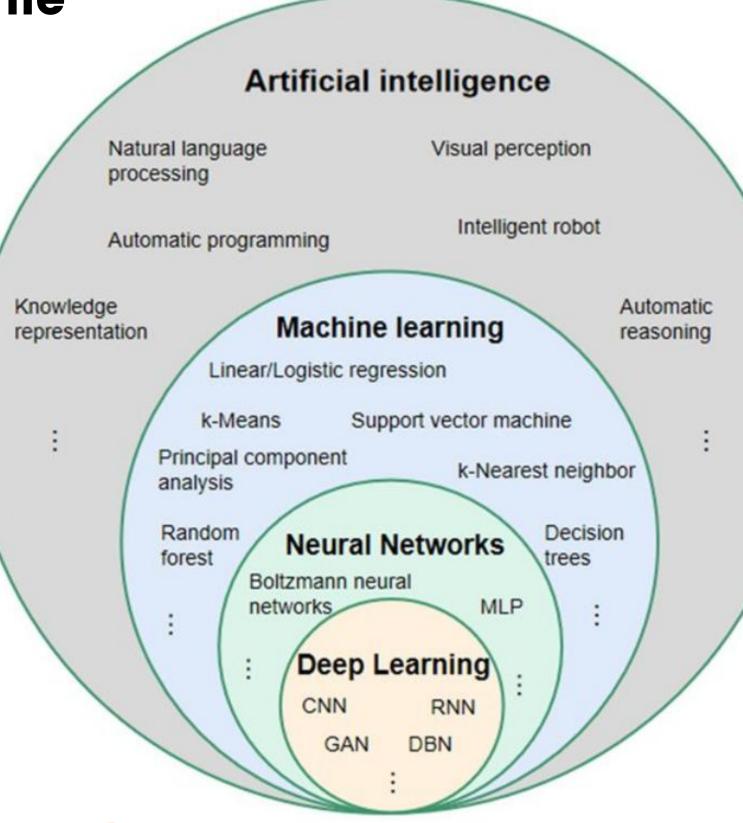
- traditional -> uses handcrafted prior knowledge
- DL -> learns patterns directly from raw data

Szybkie wprowadzenie

MLP multilayer perception

convolutional neural network (U-Net, ResNet-50)

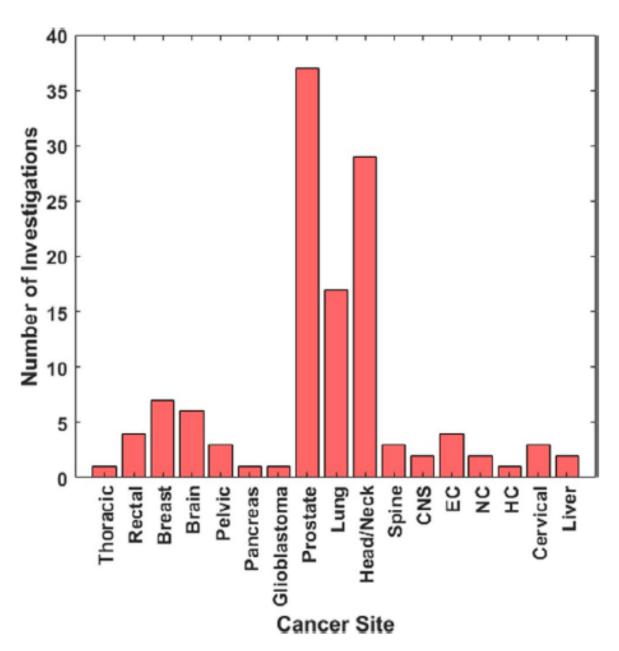
- DBN
 deep belief network
- GANgenerativeadversative network
- RNN
 recurrent neural
 network

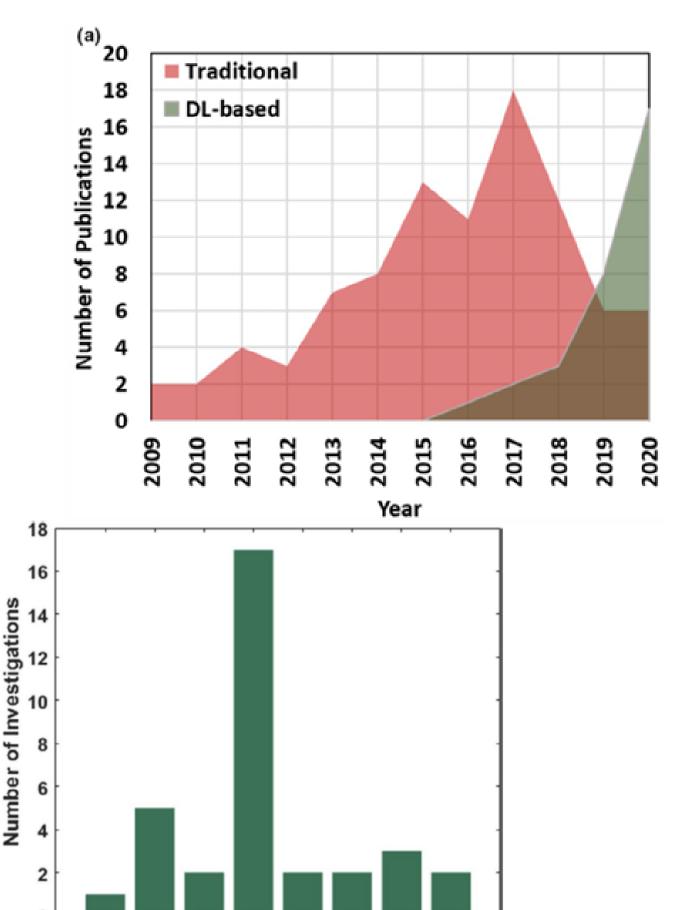


Machine learning (ML)
Deep learning (DL)

Knowledge-Based Planning (KBP)

August 2020





NC

В

Rectal

Breast

Head/Neck

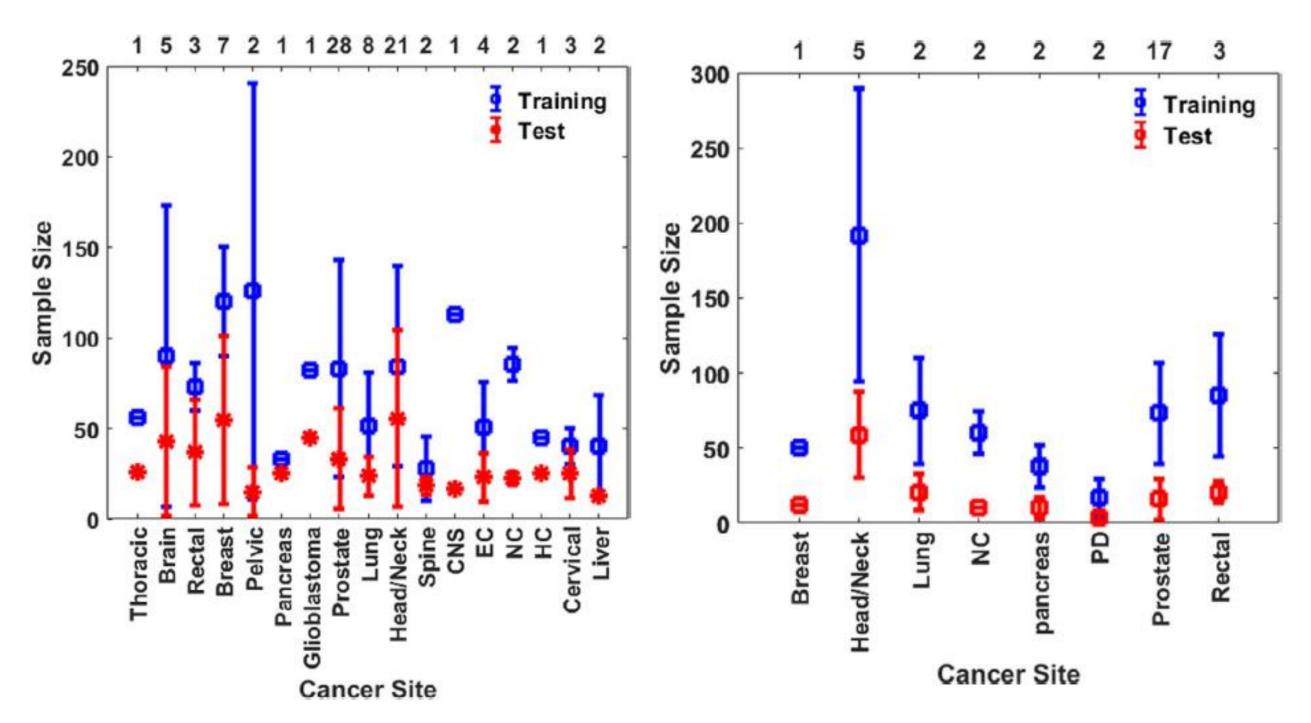
Lung

Prostate

Cancer Site

Pancreas

Sample size



- Small datasets in DL can be challenging as it may result in overfitting.
- Data Augmentation, dropout layer, estimation based on the training and the validation curves etc.

Advantages

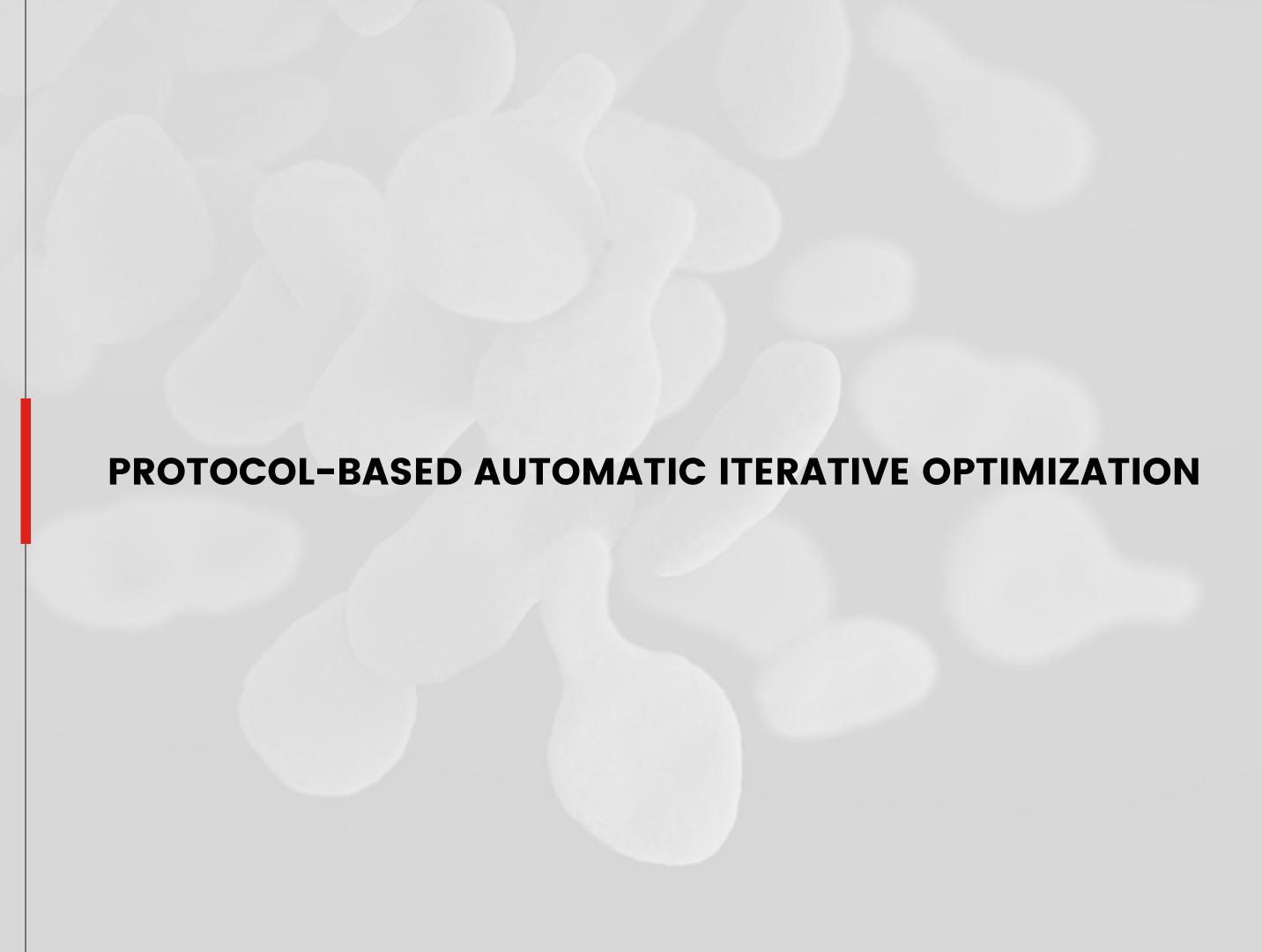
- Reduce inter-planner variability
- Facilitates standardization across centers

Limitation

- Predictions only for implemented ROIs
- **OVHs lack spatial information** → voxel-based methods
- Plan quality strongly depends on quality of past plans

Challenges

- Outliers in training data
- ☑ Database size & quality
- Generalization to unusual anatomies
- Validation & QA of models
- Interpretability of predictions



Protocol-Based Auto-Planning

Idea

- Uses clinical rules/protocols coded as algorithm
 (Example: IMRT/VMAT plans per QUANTEC, RTOG guidelines)
- Does not require prior plans

Advantages

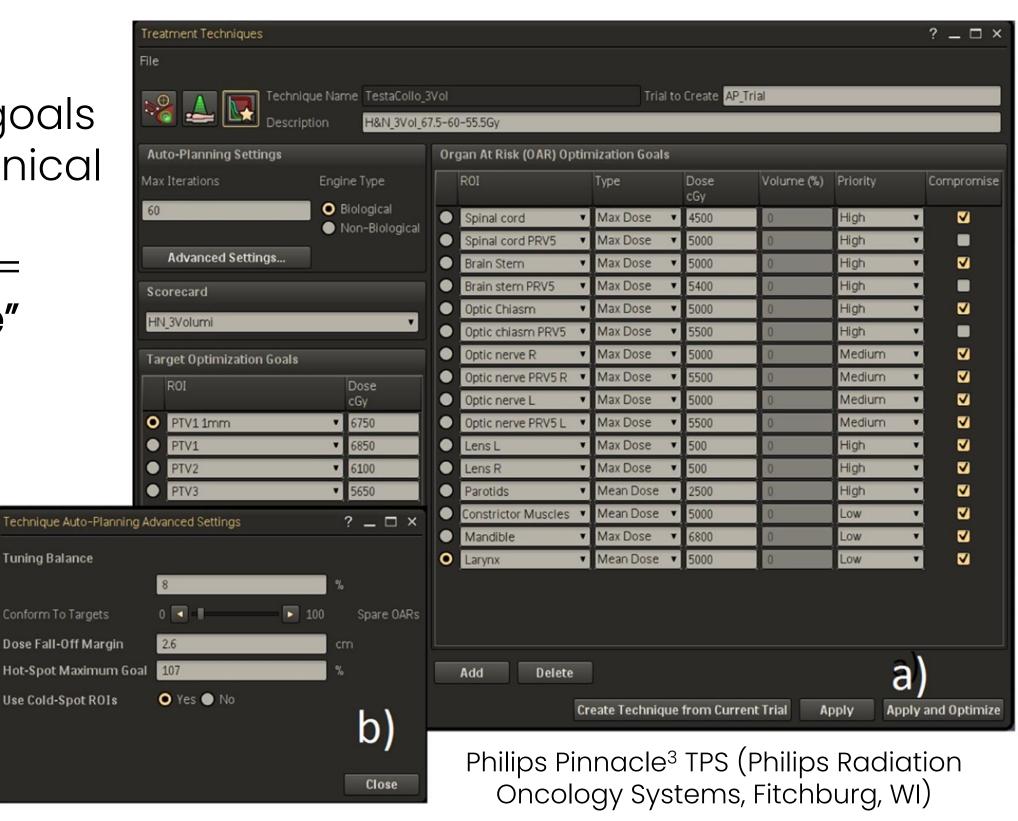
- Transparent rules are explicit
- Easy to adapt to local standards

Limitations

- Less flexible in complex cases
- Struggles with unusual clinical scenarios

Pinnacle³ Auto-planning

User-defined goals aligned with clinical dosimetry standards = "Technique" template



Pinnacle³ Auto-planning

The user

- Template with target prescriptions and OAR goals (clinical protocol)
- OAR priorities weighted by clinical importance

The software

- Creates helper structures (rings, overlaps) to guide optimization
- Controls dose fall-off, homogeneity, hot/cold spots
- Provides initial optimization criteria
- Runs iterative optimization cycles to meet protocol goals
- a global Plan Quality Index (PQI)

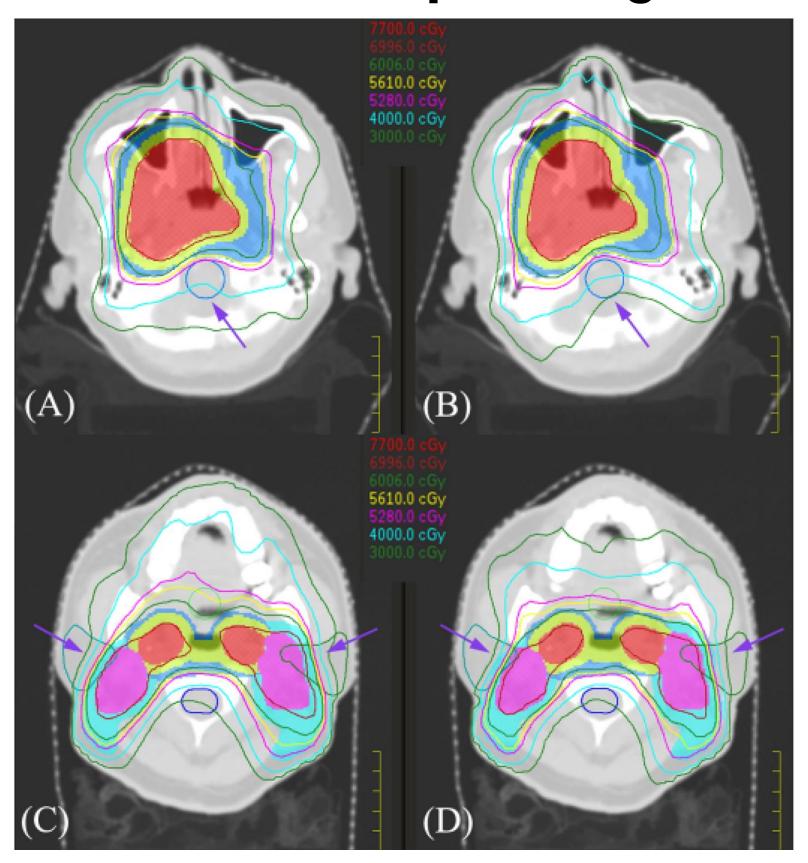
What makes it "Auto-Planning" is the **automation of goal generation, structure creation, and iterative refinement**, not a new optimizer per se.

Pinnacle³ Auto-planning

Table 1	The	starting	technique	(AP	1).
---------	-----	----------	-----------	-----	-----

		D	V		
ROI	Goal Type	(Gy)	(%)	Priority	Compromise
PTV_70	Target Dose	70		-	-
PTV_70+1 mm	Target Dose	70		-	-
PTV_56	Target Dose	57		-	-
Parotid (L and R)	Mean Dose	23		High	Yes
Parotid (L and R)	Max DVH	10	50	Medium	Yes
Cord	Max Dose	40		High	No
Cord + 5 mm	Max Dose	50		High	No
Brainstem	Max Dose	48		Medium	No
Brainstem + 3 mm	Max Dose	50		Medium	No
Oral cavity	Max Dose	28		High	Yes
Mandible	Max Dose	71		High	Yes
Inferior Pharyngeal Constrictor	Mean Dose	39		Medium	Yes
Superior/Middle Pharyngeal Constrictor	Mean Dose	51		Medium	Yes
Glottic and Supraglottic Larynx	Mean Dose	48		Low	Yes
Submandibular glands	Mean Dose	39		Low	Yes
Cerebellum	Max DVH	50	1	Low	Yes
Ring tuning structure around PTVs	Max Dose	71		Medium	Yes
Ring tuning structure around PTVs	Max DVH	56	25	Medium	Yes

Pinnacle³ Auto-planning

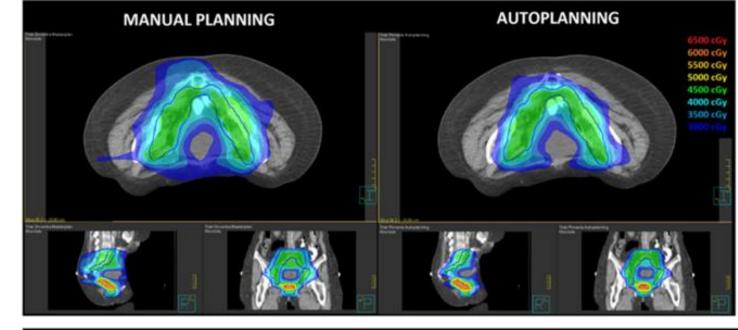


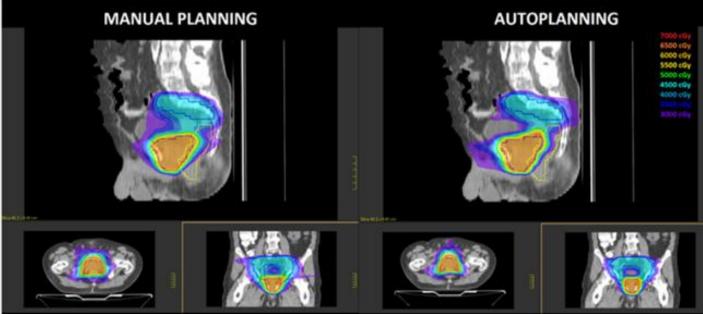
For locally advanced NPC, Auto-Planning could generate VMAT plans with similar or superior plan quality compared to manual VMAT plans for most patients

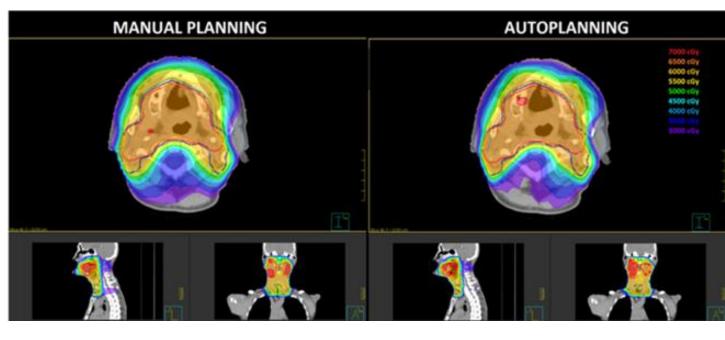
manual approach could be preferred in stage IV patients, due to a better control of the balance between the OARs and targets by an experienced physicist

Pinnacle³ Auto-planning

- Produces high-quality, clinically acceptable plans
- Improves overall treatment quality
- † Dose conformity
- ↓ Integral dose (6-10%)
- Maintains target coverage
- Cuts planning time
 to 60–80 min (~½)
- 94% of plans scored equal or better in clinical review

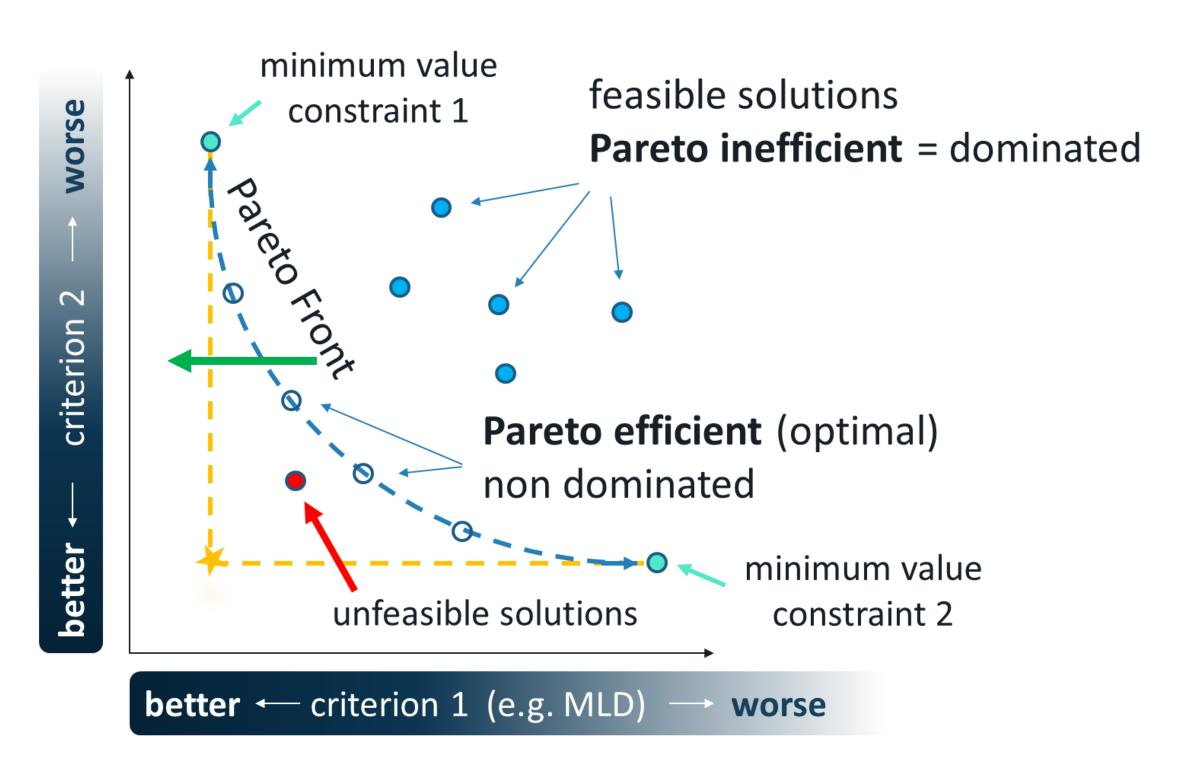




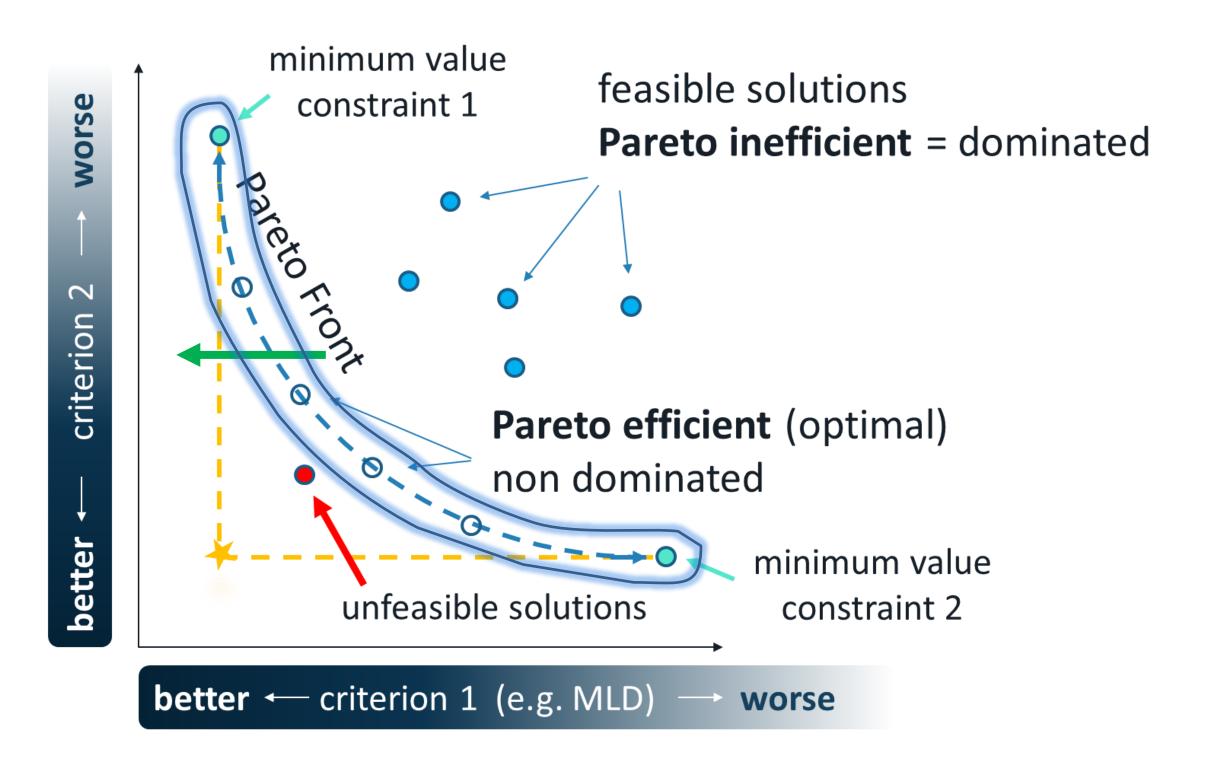


MULTICRITERIA (MULTOBJECTIVE) OPTIMIZATION (MCO)

Multi Criteria Optimization (MCO)



Multi Criteria Optimization (MCO)



Multi Criteria Optimization (MCO)

minimum value constraint 1 worse criterion better unfeasible better + criterion 1

feasible solutions

Pareto inefficient = dominated

Pareto optimality:

Defines a set of optimal tradeoffs between competing objectives

Supports decision-making by selecting the most suitable compromise

a priori and a posteriori MCO

MCO a posteriori

Idea:

Algorithms optimize multiple objectives simultaneously (tumor coverage, OAR sparing)

How it works:

☑ Generates a set of plans showing trade-offs between criteria → user selects the most appropriate.

Advantages:

- Interactive selection of the best compromise
- Greater clinician control over the final plan

Limitations:

- Still requires human input
- Can be time-consuming with many criteria

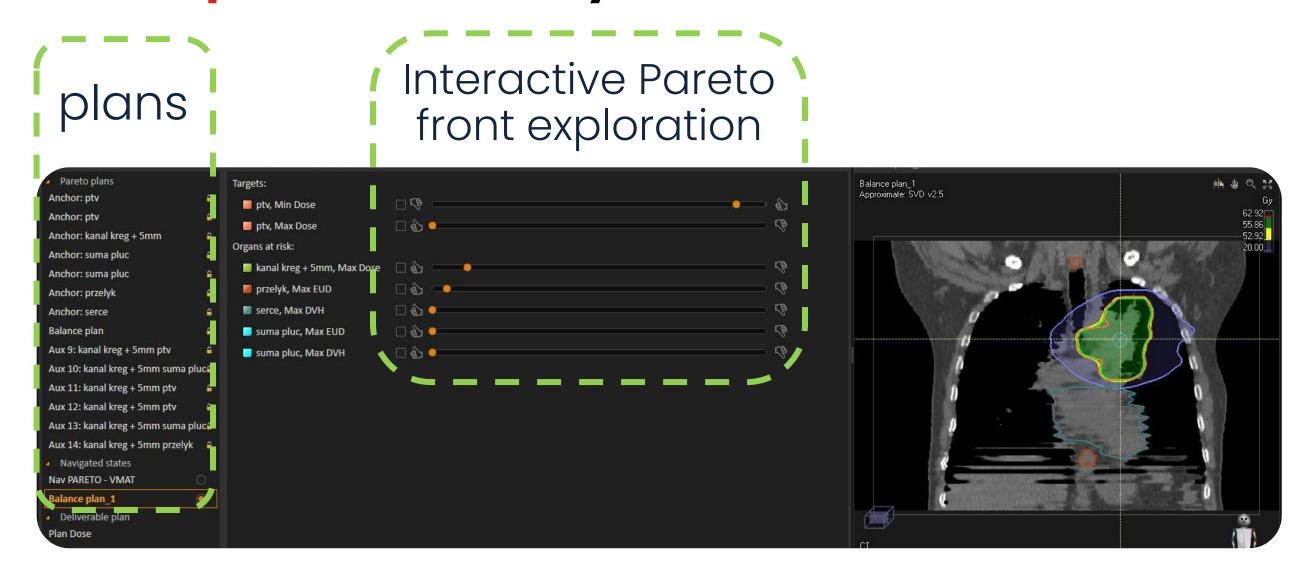
Possible limitation of a posteriori MCO

- FMO fluence only (no machine parameters), fast
- DMPO includes machine parameters (MLC leaf positions, segment weights, etc.) higher computational cost

if FMO

- Plans may be near Pareto-optimal in fluence space, not machine parameters
- Deliverable plan created via direct aperture optimization
- Conversion may cause dosimetric discrepancies (McGarry, Kyroudi)
- Usually minor, but can be significant for small targets / low-density tissue → manual fine-tuning may be required

MCO a posteriori - RayStation TPS



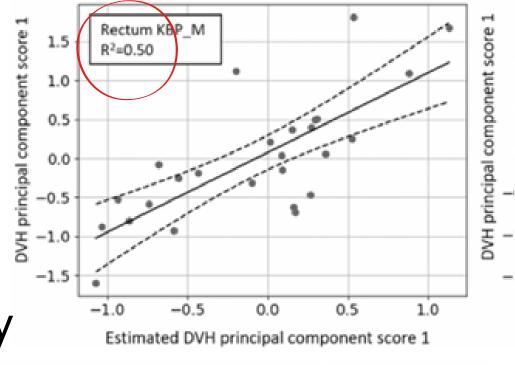
- ✓ Define tradeoff objectives (feasible space)
- ✓ Constraints (feasible space)
- ✓ A posteriori MCO clinical implementations
- ✓ Navigation-based

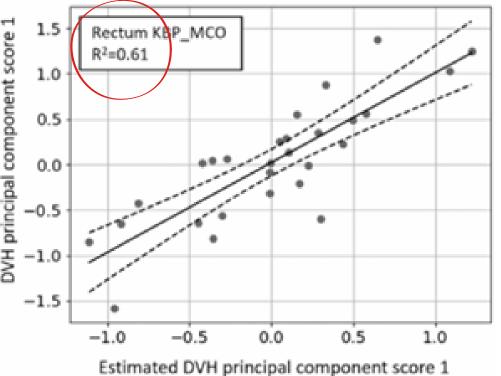
MCO a posteriori – Eclipse TPS

The effect of integrating KBP with MCO in treatment Planning for prostate SBRT

✓ KBP & MCO → both improve plan quality vs. manual

- ✓ KBP + MCO → fewer outliers, better model stats & DVH predictions, but no major influence on plan quality
- Learning curve steeper for MCO than KBP
- MCO integrates directly into planning, no model training needed
- Both KBP and MCO shorten planning time -> KBP achieves greater time reduction
- ✓ Large centers → KBP, Small centers → MCO

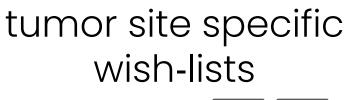


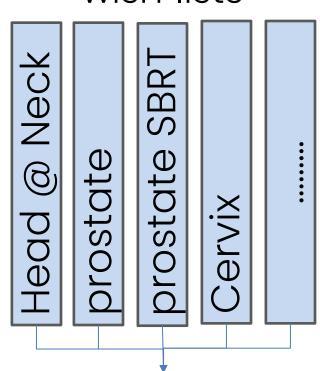


Breedveld S Heijmen B

MCO a priori Erasmus-iCycle

Acts as a pre-optimizer for the TPS (eg. Monaco, Elekta)





▼ TPS (Monaco): generates a deliverable segmented plan that mimics the iCycle dose distribution

commercial TPS:

- Monaco (Elekta linacs)
- Multiplan (Cyberknife)

delineated CT skans | Erasmus iCycle | Patient-specific template | Commercial TPS | Automatically generated plan

fully Automated MCO

Table 1. An example wish-list for automated plan generation with Erasmus-iCycle for localised prostate cancer patients

Constraints				
	Volume	Туре	Limit	
	PTV	Max dose	105% of D _{Px}	
	PTV	Mean dose	101% of D _{Px}	
	Rectum & anus	Max dose	102% of D _{Px}	
	PTV shell 50mm	Max dose	50% of D _{Px}	
	Unspecified tissues	Max dose	105% of D _{Px}	
Objectives				
Priority	Volume	Туре	Goal	Parameters
1	PTV	↓LTCP	0.8	$D_{Px} = 78$ Gy, $\alpha = 0.8$
2	Rectum	↓EUD	20Gy	k = 12
3	OAR 2	↓EUD	10Gy	k = 8
4	PTV shell 5mm Skin ring 20mm	↓Max dose ↓Max dose	80% of D _{Px} 20% of D _{Px}	
5	Rectum	↓Mean dose	5Gy	
6	Anus	↓Mean dose	5Gy	
7	Bladder	↓Max dose	5Gy	
8	PTV shell 15mm PTV shell 25mm	↓Max dose	50% of D _{Px} 30% of D _{Px}	
9	Left & right femoral heads	↓Max dose	50% of D _{Px}	

 $[\]alpha$, cell sensitivity; EUD, equivalent uniform dose; k, volume effect; LTCP, logarithmic tumour control probability; PTV, planning target volume; D_{Px} , prescribed dose.

The priorities assigned to the objectives are used in the a priori MCO, guaranteeing for each patient generation of a pareto-optimal plan with clinically favorable balances between all treatment objectives. (Courtesy: A.W. Sharfo).

- Optimize each objective in order of priority
- Reach goal if possible; if not, use best achieved value as constraint
- Move to next objective

Constraints				
	Volume	Туре	Limit	
	PTV	Max dose	105% of D _{Px}	
	PTV	Mean dose	101% of D _{Px}	
	Rectum & anus	Max dose	102% of D _{Px}	
	PTV shell 50mm	Max dose	50% of D _{Px}	
	Unspecified tissues	Max dose	105% of D _{Px}	
Objectives				
Priority	Volume	Туре	Goal	Parameters
1	PTV	↓LTCP	0.8	$D_{Px} = 78Gy, \alpha = 0.8$
2	Rectum	↓eud	20Gy	k = 12
3	OAR 2	↓eud	10Gy	k = 8
4	PTV shell 5mm Skin ring 20mm	↓Max dose ↓Max dose	80% of D _{Px} 20% of D _{Px}	
5	Rectum	↓Mean dose	5Gy	
6	Anus	↓Mean dose	5Gy	

- Optimize each objective in order of priority
- Reach goal if possible; if not, use best achieved value as constraint
- Move to next objective

Constraints				
	Volume	Туре	Limit	
	PTV	Max dose	105% of D _{Px}	
	PTV	Mean dose	101% of D _{Px}	
	Rectum & anus	Max dose	102% of D _{Px}	
	PTV shell 50mm	Max dose	50% of D _{Px}	
	Unspecified tissues	Max dose	105% of D _{Px}	
Objectives				
Priority	Volume	Туре	Goal	Parameters
1	PTV	↓LTCP	0.8 V	$D_{Px} = 78Gy, \alpha = 0.8$
2	Rectum	↓eud	20Gy 2	k = 12
3	OAR 2	↓eud	10Gy	k = 8
4	PTV shell 5mm Skin ring 20mm	↓Max dose ↓Max dose	80% of D _{Px} 20% of D _{Px}	
5	Rectum	↓Mean dose	5Gy	
6	Anus	↓Mean dose	5Gy	

- Optimize each objective in order of priority
- Reach goal if possible; if not, use best achieved value as constraint
- Move to next objective

Constraints				
	Volume	Туре	Limit	
	PTV	Max dose	105% of D _{Px}	
	PTV	Mean dose	101% of D _{Px}	
	Rectum & anus	Max dose	102% of D _{Px}	
	PTV shell 50mm	Max dose	50% of D _{Px}	
	Unspecified tissues	Max dose	105% of D _{Px}	
Objectives				
Priority	Volume	Туре	Goal	Parameters
1	PTV	↓LTCP	0.8 V	$D_{Px} = 78Gy, \alpha = 0.8$
2	Rectum	↓eud	20Gy V 2	k = 12
3	OAR 2	↓eud	10Gy V 3	k = 8
4	PTV shell 5mm Skin ring 20mm	↓Max dose ↓Max dose	80% of D _{Px} 20% of D _{Px}	
5	Rectum	↓Mean dose	5Gy	
6	Anus	↓Mean dose	5Gy	

- Optimize each objective in order of priority
- Reach goal if possible; if not, use best achieved value as constraint
- Move to next objective

Constraints				
	Volume	Туре	Limit	
	PTV	Max dose	105% of D _{Px}	
	PTV	Mean dose	101% of D _{Px}	
	Rectum & anus	Max dose	102% of D _{Px}	
	PTV shell 50mm	Max dose	50% of D _{Px}	
	Unspecified tissues	Max dose	105% of D _{Px}	
Objectives				
Priority	Volume	Туре	Goal	Parameters
1	PTV	↓LTCP	0.8	$D_{Px} = 78Gy, \alpha = 0.8$
2	Rectum	↓eud	20Gy V	k = 12
3	OAR 2	↓eud	10Gy	k = 8
4	PTV shell 5mm Skin ring 20mm	↓Max dose ↓Max dose	80% of D _{Px} V 4	
5	Rectum	↓Mean dose	5Gy	
6	Anus	↓Mean dose	5Gy	

- Optimize each objective in order of priority
- Reach goal if possible; if not, use best achieved value as constraint
- Move to next objective

Constraints				
	Volume	Туре	Limit	
	PTV	Max dose	105% of D _{Px}	
	PTV	Mean dose	101% of D _{Px}	
	Rectum & anus	Max dose	102% of D _{Px}	
	PTV shell 50mm	Max dose	50% of D _{Px}	
	Unspecified tissues	Max dose	105% of D _{Px}	
Objectives				
Priority	Volume	Туре	Goal	Parameters
1	PTV	↓LTCP	0.8	$D_{Px} = 78Gy, \alpha = 0.8$
2	Rectum	↓EUD	20Gy	k = 12
3	OAR 2	↓EUD	10Gy	k = 8
4	PTV shell 5mm Skin ring 20mm	↓Max dose ↓Max dose	80% of D _{Px} 20% of D _{Px}	
5	Rectum	↓Mean dose	5Gy V	
6	Anus	↓Mean dose	5Gy	

Step 1

- Optimize each objective in order of priority
- Reach goal if possible; if not, use best achieved value as constraint
- Move to next objective

Step 2

Objectives that met goals in Step 1 are further optimized to maximum potential

Constraints				
	Volume	Туре	Limit	
	PTV	Max dose	105% of D _{Px}	
	PTV	Mean dose	101% of D _{Px}	
	Rectum & anus	Max dose	102% of D _{Px}	
	PTV shell 50mm	Max dose	50% of D _{Px}	
	Unspecified tissues	Max dose	105% of D _{Px}	
Objectives				
Priority	Volume	Туре	Goal	Parameters
1	PTV	↓LTCP	0	$D_{Px} = 78$ Gy, $\alpha = 0.8$
2	Rectum	↓EUD	20 7 /y	k = 12
3	OAR 2	↓EUD	1 0	k = 8

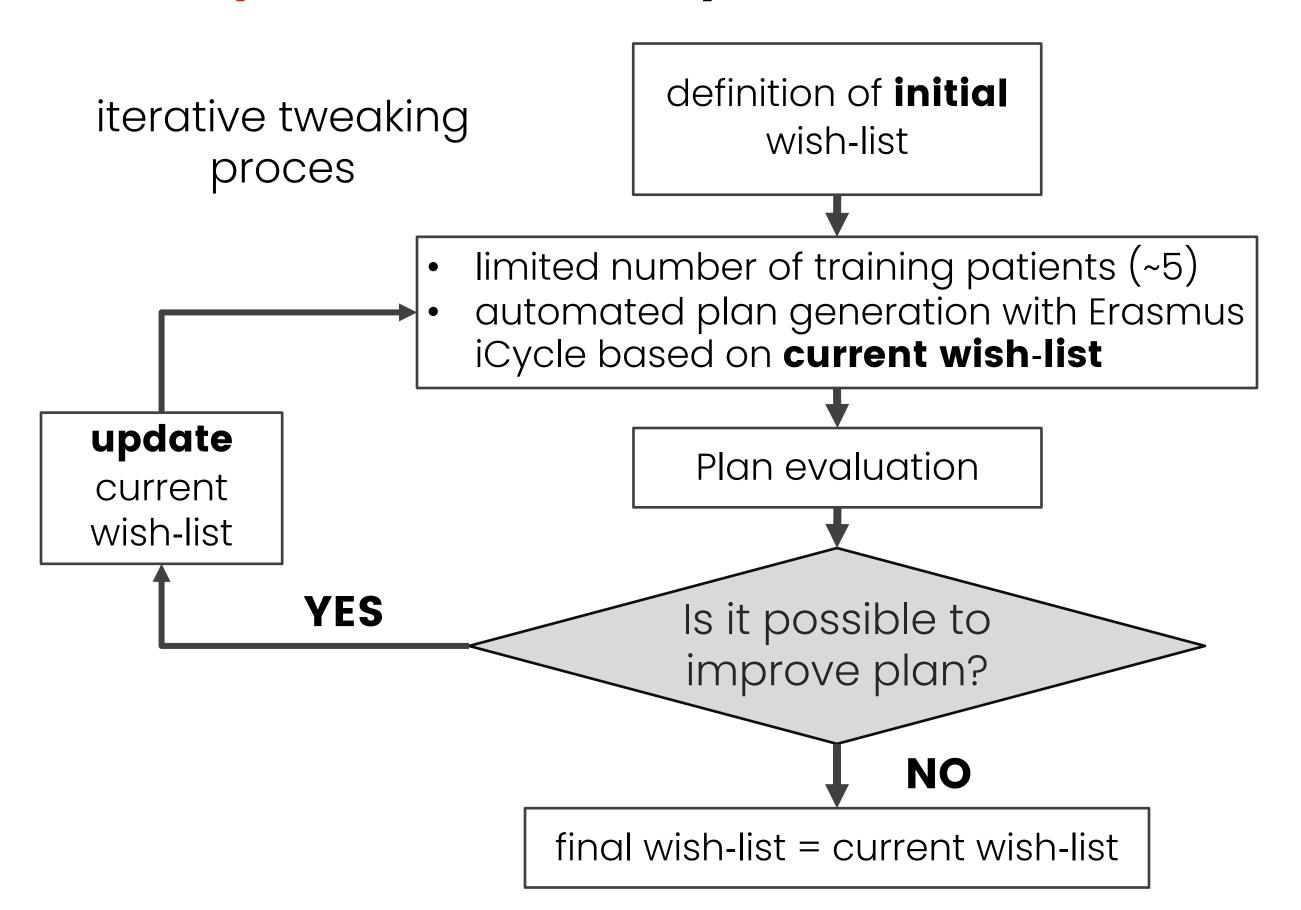
Step 1

- Optimize each objective in order of priority
- Reach goal if possible; if not, use best achieved value as constraint
- Move to next objective

Step 2

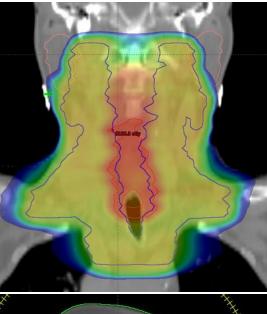
Objectives that met goals in Step 1 are further optimized to maximum potential

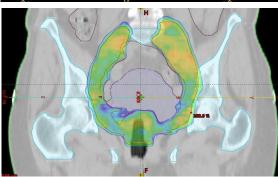
Constraints				
	Volume	Туре	Limit	
	PTV	Max dose	105% of D _{Px}	
	PTV	Mean dose	101% of D _{Px}	
	Rectum & anus	Max dose	102% of D _{Px}	
	PTV shell 50mm	Max dose	50% of D _{Px}	
	Unspecified tissues	Max dose	105% of D _{Px}	
Objectives				
Priority	Volume	Туре	Goal	Parameters
1	PTV	↓LTCP	0.8	$D_{Px} = 78$ Gy, $\alpha = 0.8$
2	Rectum	↓eud	20Gy	k = 12
3	OAR 2	↓eud	10Gy	k = 8



Literature

- Breedveld S, Storchi P, Voet P, Heijmen B. iCycle: A novel algorithm for multi-criteria IMRT treatment planning. (Phys Med Biol, 2012)
- profile optimization for generation of coplanar and noncoplanar IMRT plans (Breedveld, Med Phys, 2012)
- head and neck (Med Phys, 2012)
- prostate SBRT (Phys Med Biol, 2012)
- IMPT Treatment (Phys Med Biol, 2013)
- Fully automated MCO Plan Generation (Phys Med Biol 2013)
- Prostate (IJROBP, 2014)
- Robotic Prostate SBRT (IJROBP, 2015)
- Cervical cancer (Radiother Onco, 2015)
- Spinal metastases (Radiation Oncology, 2017)
- HDR brachytherapy for prostate cancer (Phys Med Biol 2019)
- MR-Linac rectal cancer (Acta Onco, 2020)





MCO a priori Erasmus-iCycle

- Erasmus-iCycle plans showed better target coverage and sparing of OARs
- In 97% of cases, automatically generated plans were selected for treatment because of the superior quality (Phys. Med. Biol 2013)

Radiotherapy and Oncology

Volume 203, February 2025, 110662

Original Article

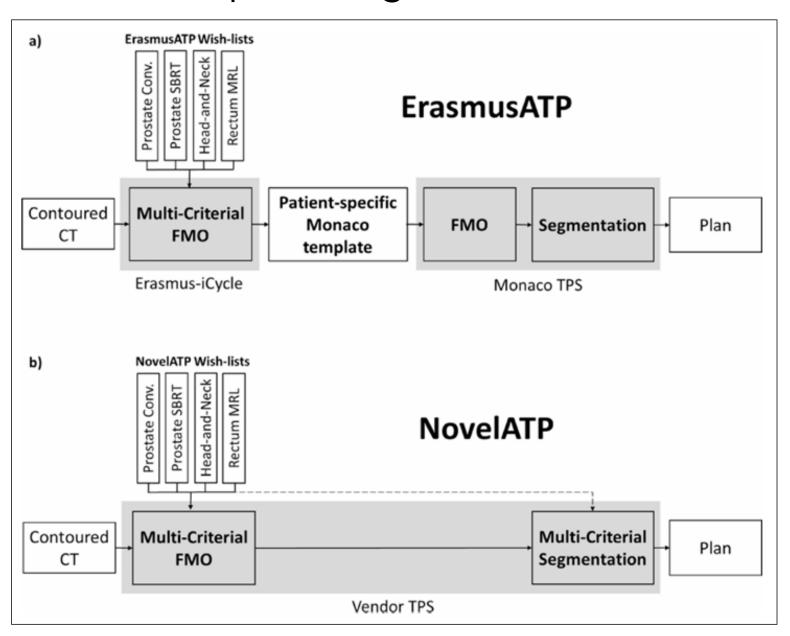
Deep learning dose prediction to approach Erasmus-iCycle dosimetric plan quality within seconds for instantaneous treatment planning

Joep van Genderingen ^a $\stackrel{\triangle}{\sim}$ Dan Nguyen ^b, Franziska Knuth ^a, Hazem A.A. Nomer ^a, Luca Incrocci ^a, Abdul Wahab M. Sharfo ^a, András Zolnay ^a, Uwe Oelfke ^c, Steve Jiang ^b, Linda Rossi ^a, Ben J.M. Heijmen ^a, Sebastiaan Breedveld ^a

- Developed as an academic platform
- Served as a precursor to MCO and automation
- Inspired features later adopted in commercial TPS

Elekta Monaco Templates

- iCycle concept applied in Monaco
- plan generated with out any human interference (mimicking the Erasmus-iCycle dose distribution)
- the final plan is generated with a CE marked TPS MONACO



NovelATP - new autoplanning application

FMO – fluence map optimization

Elekta Monaco Templates

MCO FMO – ErasmusATP vs. NovelATP

- 1. Both are wish-list driven & conceptually similar
- 2. Differ in implementation:
 - NovelATP uses new code, solver, patient model
 - Wish-list cost functions differ between systems
 - Segmentation of FMO plans
 - ErasmusATP → wish-list only in FMO
 - NovelATP → wish-list in FMO & segmentation

ART

Adaptive Radiotherapy (ART) with Automation

1. Off-line

Previously discuses solutions

2. On-line (oART)

New tools

Idea

 Daily plan modification based on patient anatomy changes

Automation Supports

- Fast re-planning
- Auto-contouring of organs
- Auto-plan generation per clinical criteria

Significance

Enables real-time personalized treatment

Commercial On-Couch Adaptive RT Systems

1. Varian Ethos

- CBCT-based oART platform
- Integrated Al contouring & auto-planning
 2. Elekta Unity (MR-Linac)

- MRI guidance + daily plan adaptation
- Real-time soft tissue visualization

3. Elekta Evo (CT-Linac)

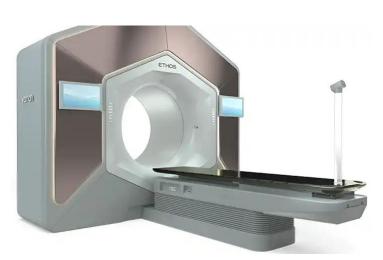
- Al-enhanced CT imaging
- Adaptive workflows for Elekta

4. Accuray Radixact + Cenos

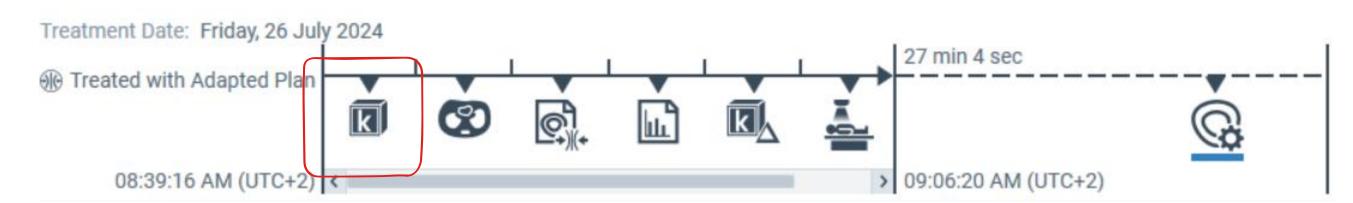
- Online adaptive solution (pending FDA)
- Supports re-planning with daily kVCT

5. Accuray Radixact with ClearRT

- Daily kVCT imaging for plan adaptation
- Synchrony® for motion adaptation

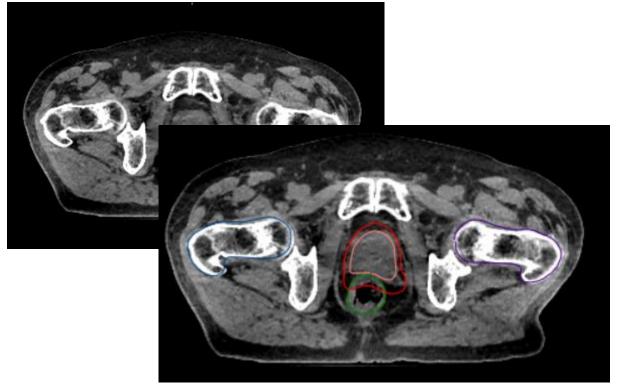


- Daily CBCT → captures patient's current anatomy
- Rigid & deformable registration with reference CT



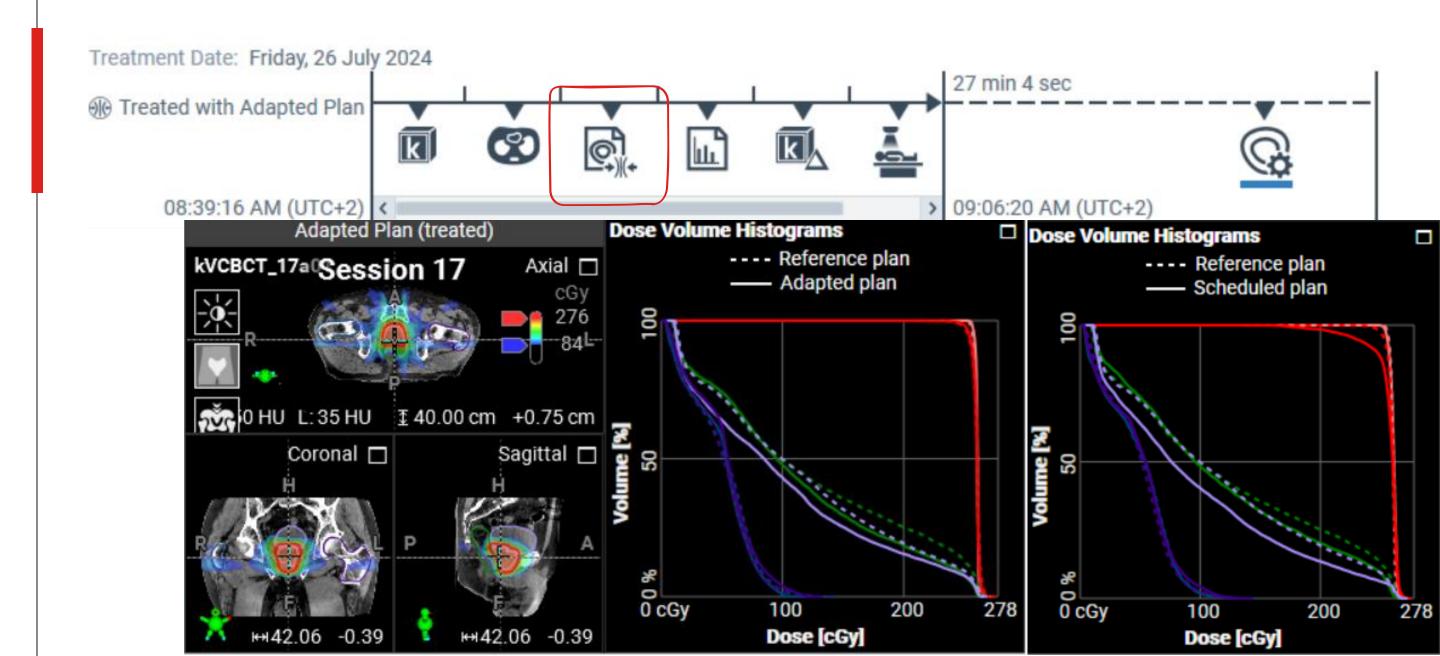
- Daily CBCT → captures patient's current anatomy
- Rigid & deformable registration with reference CT
- ◆ Al auto-contouring of targets & OARs → manual edits if needed
- Synthetic CT generation (no longer in use since Ethos v2.0)



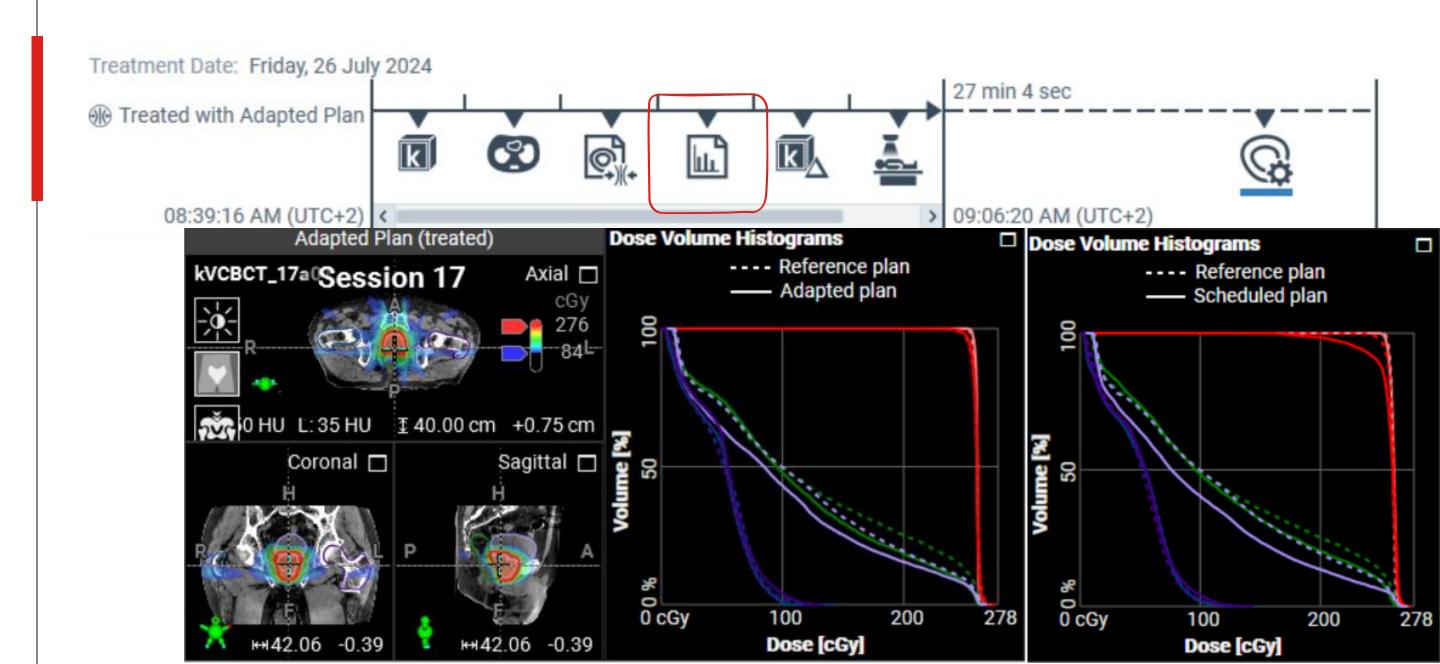


Anatomical region	Anatomical site includes at least one of theses structures	Al segmentation model	Influencer structures created via Al segmentation		
Pelvis	Prostate	Prostate	Prostate, rectum, bladder, bowel, seminal vesicles		
Pelvis	Uterus	Cervix	Uterus, rectum, bladder, bowel		
Pelvis	Bladder, rectum	Unisex pelvis	Rectum, bladder, bowel		
Abdomen	Pancreas, duodenum, liver, stomach	Unisex abdomen	Duodenum, pancreas, liver, stomach		
Other	Al segmentation is not available.				

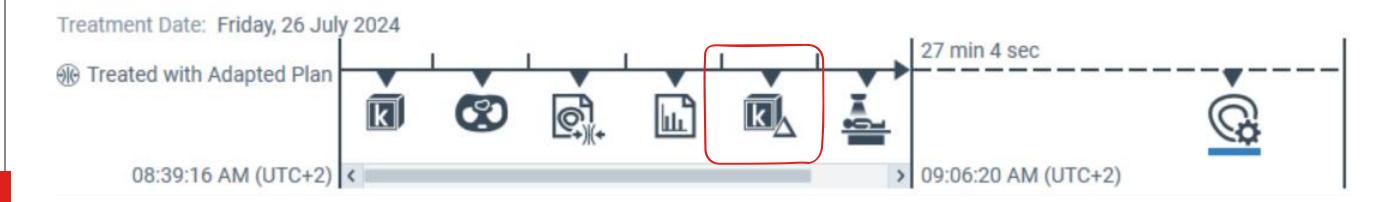
- Automated re-planning using predefined clinical goals
- Plan selection → scheduled vs adapted

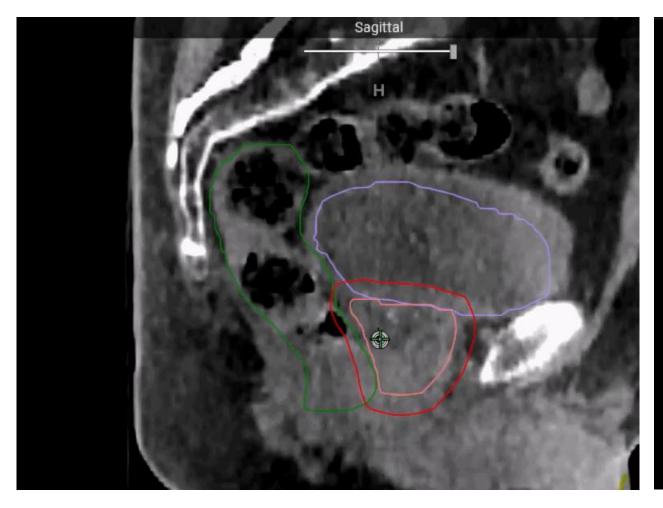


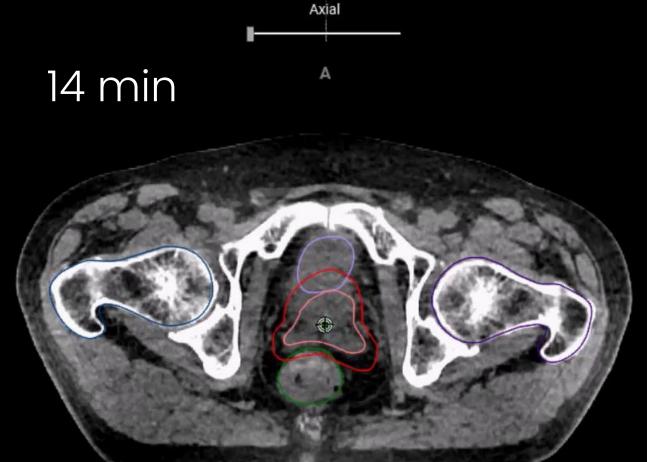
- Automated re-planning using predefined clinical goals
- Plan selection → scheduled vs adapted
- Plan QA & approval done while patient is on couch



Optional verification CBCT before treatment delivery







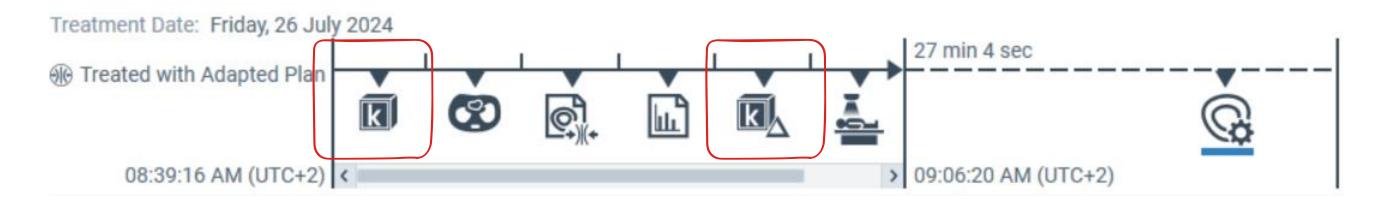
Treatment delivery with adapted plan in the same session

Lack of table rotations, breathing control, SGRT



oART - sesion time

	time [min:s] average ± SD
all tumor sites	20:00 ± 09:10
prostate	12:50 ± 03:30
gynecology	26:20 ± 08:00
bladder	13:00 ± 04:00



Auto-Planning Systems

- Philips Pinnacle Auto-Planning template-based optimization
- RayStation Auto-Planning scripting + automated optimization
- Elekta Monaco Templates MCO, template-based optimization
- Academic iCycle fully automated MCO pre-optimizer, integrated with Monaco
- Varian Ethos scripting + KBP, adaptive auto-planning

Automation in TPS Varian vs Elekta vs Philips vs RaySearch

TPS	Key Automation Module	API	Strengths	Limitations
Elekta Monaco Unity	Monaco Auto-Planning Unity MR-Linac (online ART)	Monaco Script API (limited)	Biological optimization, MR integration, real- time ART	Less open API, complex configuration
Philips Pinnacle	Auto-Planning (template-based)	Python	Simplicity, automatic templates, extensive clinical experience	Development limited
RaySearch RayStation	RS Scripting API Auto-Planning MCO	Python	Flexibility, easy AI/ML integration, strong community	Needs strong clinical validation, less widespread than Eclipse
Varian Eclipse	ESAPI RapidPlan	C#	Large clinical base ARIA integration	Closed ecosystem
Varian ETHOS	online ART	_		

Why automation?

Advantages of automation

- Increased efficiency & consistency
- Reduced inter-planner variability
- Fewer errors
- Supports Adaptive Radiotherapy (ART)

Why automation?

Potential Risks of automation

Human related

- 1. Reduced oversight → less clinical attention
- 2. Errors from Over-Reliance (Automation Bias) → blind trust without expert verification

System related

- 3. Bias in training data (AI/KBP) → incorrect or inadequate plans
- 4. Validation & QA Challenges
- 5. Lack of Transparency (Black Box AI)
- 6. System Errors & Error Propagation

Why automation?

Potential Risks of automation

Future

- 7. Loss of individualization → overly generic, less patient-specific plans
 Unusual anatomy / rare tumors → risk of poorer plans
- 8. Skill degradation → reduced manual expertise among planners.
 - All current implementations of automated planning require a high-level of manual planning knowledge for configuration.
- 9. Technical failures / bugs → delays or incorrect plans
- 10. Legal & ethical issues → unclear responsibility (system vs. clinician)

Summary

- Automation evolved from rule-based methods to Aldriven solutions
- KBP, MCO, Auto-Planning, and oART improve plan quality, efficiency, and consistency
- Commercial systems (Eclipse, RayStation, Pinnacle, Monaco, Ethos, Unity, Evo, Cenos) provide diverse automation pathways
- Benefits: reduced variability, knowledge sharing, faster workflows, real-time personalization
- Challenges: data quality, transparency, validation, maintaining clinical oversight
- Future: deeper AI integration → fully personalized, adaptive Treatment with one mouse klick

Thank you

anna.zawadzka@nio.gov.pl