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Modern Radiotherapy Approaches
IMRT - Intensity modulated radio therapy
IGRT - Image-guided radiotherapy
SGRT - Surface-guided radiotherapy
ART - Adaptive radiotherapy
oART - Online Adaptive Radiotherapy
Stratified or personalized radiotherapy.

of all these methods → High-quality & efficient
treatment planning

2/76



Is Plan Quality Crucial?
Randomized trials of combined modality Treatment
 

Each modality assumed correctly delivered or
Incorrect RT delivery may be wash out by randomization
Absolute outcomes ↓, but comparative efficacy between 
regimens remains valid

Tirapazamine + Cisplatin in HNSCC Trial
• 861 patients, 82 centers, 16 countries
• RT: 70 Gy / 35 fractions / 7 weeks (both arms)
• CT: dose calculation & GTV coverage verification
• Techniques: 2 opposing fields / 3D conformal / IMRT (2010)
• Planning: 2D (53%) vs. 3D (47%)
After treatment some non-compliant treatment plans discovered 
(dose coverage, delineation, treatment prolongation).
The deviation rate CIS (24.3%) and CIS/TPZ (26.5%).
https://doi.org/10.1200/JCO.2009.27.4498 3/76
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Is Plan Quality Crucial?
Power to detect 10% improvement in 2-year Overall 
Survival (OS) attributable to Tirapazamine (TPZ)

693 patients 
without 

predicted 
major adverse 
impact on TCP

24%
4%
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Is Plan Quality Crucial?
Poor RT can outweigh benefits of concurrent 
chemotherapy
Comparisons of combined modalities may be 
compromised by poor RT
Quality varies across countries but the mor imortant 
Correlates with center size:

5.4% poor RT plans → ≥20 patients/center
29.8% poor RT plans → <5 patients/center

Trial participation should be limited to high-volume sites

Quality Assurance in Trials
Test the center, not just individual RT plans
Ensures consistent standards and reliability across sites
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Have Dynamic Techniques 
Accelerated Planning?

Inverse planning: complex 
balance → tumor coverage 
vs. OAR sparing

Highly computerized, but 
still resource-intensive
manual, labor-intensive, 
planner-dependent

Requires expertise & 
experience for high-quality 
plans
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Why automation?
Advantages of automation

Increased efficiency & consistency

Reduced inter-planner variability

Fewer errors

Supports Adaptive Radiotherapy (ART)
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Why automation?
Potential Risks of automation
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Main automation approaches
(Treatment Planning Focus)

Knowledge-Based Planning (KBP)

Protocol-Based Automatic Iterative Optimization 

(PB-AIO)

Multicriteria Optimization (MCO)

Fully Automated Planning

Adaptive Radiotherapy (ART & oART)
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KNOWLEDGE-BASED PLANNING (KBP)



Knowledge-Based Planning (KBP)
prior knowledge - use knowledge from prior cases to 
predict the outcome of a new case

learn the relationships between anatomical structures 
and dose distributions

➔ provides one or more dose metrics as a starting 
points for plan optimization

➔ predict DVHs as a starting point for plan optimization
➔ predicts achievable dose for new patients with 

similar anatomy

improve the speed, efficiency and reduce variability in 
treatment planning 
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Knowledge-Based Planning (KBP) - Methods
atlas-based approach
- selects the closest matching patient(s)
- better starting point 

model-based approach - DVH-guidance
statistical or ML trained on a database of prior high-
quality plans

➔ statistical methods
Support vector regression, multivariate linear regression, 
Logistic Regression etc.

➔machine learning (ML) method
random forests, support vector machines (SVMs), neural 
networks
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KBP atlas-based approach
Adaptive Radiotherapy (ART) - inter-fractional variation 
for a single patient -> refines adaptive plans using a 
reference (single atlas) plan
Inter-patient variation - reference case from a library

Example

goals imported into Eclipse TPS

Sheng et al. Phys. Med. Biol. 60 (2015) 7277–7291
doi:10.1088/0031-9155/60/18/7277 14/76



KBT atlas-based approach
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Knowledge-Based Planning (KBP)
Traditional KBP methods

1. anatomical and geometrical features
distance to target structures, volumes of target and OAR, BEV, 
overlap PTV-OAR, ML-based approach, shape analysis etc.)
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Commonly reported geometric and plan features 
OAR, PTV - volume, shape 
OAR distance to PTV
Target, OARs - overlap volumes
Volume of OAR out-of-field
OVH - overlap volume 
histogram
DTH -  OAR distance to PTV 
histograms
BEV (Projection-based method)

Example
Prediction of the achievable 
parotid sparing
-> parotid size and proximity to 
the PTV (Hunt, 2006)

𝑀𝑃𝐷[𝐺𝑦] =
%𝑉𝐼𝑁∙𝐷𝐼𝑁

100
+

%𝑉𝑂𝑈𝑇∙𝐷𝑂𝑈𝑇

100

https://doi.org/10.1016/j.ijrobp.2006.05.028 17/76
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Dimensionality Reduction in KBP
Use most discriminative features, not all variables

Feature extraction & selection streamline prediction 
models

PCA (Principal Component Analysis):

➔ Reduces correlated dataset → fewer uncorrelated 
variables, reduces dimensionality

➔ Keeps most informative variables

Commonly applied in KBP dose prediction studies
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Knowledge-Based Planning (KBP)
Traditional KBP methods

1. anatomical and geometrical features
distance to target structures, volumes of target and OAR, BEV, 
overlap PTV-OAR, ML-based approach, shape analysis etc.)

2.build a mathematical or statistical model to predict 
dosimetry features to new case
I ) prediction of one or more DVH metrics
II) prediction of the entire DVH (RapidPlan, Varian, Eclipse, 2014)
III) voxel-based dose prediction

19/76



Outliers and Database Size
Outliers can compromise 
model performance
Geometric outliers – 
prostate vs prostate with 
nodes 
Dosimetric outliers – 
possible reduction OAR 
dose without PTV 
compromising - re-
planning needed

Clinic without 
standardized contouring 
and planning techniques 
may have many 
dosimetric outliers

Delaney Int J Radiat Oncol Biol Phys. 2016;94:469-477. https://doi.org/10.1016/j.ijrobp.2015.11.011

UC – uncleaned, C – cleaned, 5-40 outliers
20/76
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Diversities of application 
Fully automate Rapid Plan treatment planning of 10 
different cancer sites (Chung et al., 2025)

Photon → Proton: DVH prediction as patient selection tool 
(Delaney et al. 2017)

Cooperative models: Sharing between institutes in 
prostate cancer (Schubert et al., 2017)

Knowledge transfer: Prostate model from experienced → 
less experienced centers to homogenize plan quality 
(Good et al., 2013)

Clinical trials: NRG-HN001 Rapid Plan model used for QA, 
improving OAR sparing in re-optimized trial plans 
(Giaddui et al., 2020)
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RapidPlan Model Creation
1. Data Collection (manual)

• User selects and imports high-
quality treatment plans

2. Feature Extraction (automatic)
• System extracts geometric & 

dosimetric features from dataset.
• Performs dimensionality reduction 

(PCA) automatically.
3. Model Training (automatic)

• Regression/statistical learning 
links features with DVHs.

• System generates dose–volume 
predictions + optimization 
objectives.

4. Validation (manual + automatic)
• User selects independent cases.
• System runs predictions → user 

verifies accuracy. 22/76
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Sample size
minimum number of 
plans required for 
model creation -  20

with high-quality 
plans in training
25–30 plans prostate 
(Fogliat, 2014) and  
HN (Tol, 2015) may 
produce a clinically 
acceptable plan

Depends on 
expected robustness

Momin, J Appl Clin Med Phys, 2021. https://doi.org/10.1002/acm2.13337 24/76
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Efficiency
nasopharyngeal cancer: 64 minutes vs. 295 minutes
(Change)
malignant pleural mesothelioma 20 min. vs. 4 hours 
(Dumane, 2021)

Junior et al., 2022,  https://doi.org/10.23925/1984-4840.2022v24i1/4a7 25/76



Rapid Plan - Model
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Knowledge-Based Planning (KBP)
Traditional KBP methods

1. anatomical and geometrical features
distance to target structures, volumes of target and OAR, BEV, 
overlap PTV-OAR, ML-based approach, shape analysis etc.)

2.build a mathematical or statistical model to predict 
dosimetry features to new case
I ) prediction of one or more DVH metrics
II) prediction of the entire DVH (RapidPlan, Varian, Eclipse, 2014)
III) voxel-based dose prediction

Deep learning (DL)-based KBP methods
Key difference: traditional vs. DL

- traditional -> uses handcrafted prior knowledge
- DL -> learns patterns directly from raw data
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Szybkie wprowadzenie
MLP
multilayer perception

CNN
convolutional neural 
network (U-Net, 
ResNet-50)
DBN
deep belief network
GAN
generative 
adversative network
RNN
recurrent neural 
network

Diagnostics 2021, 11, 1523. doi.org/10.3390/diagnostics11091523

Machine learning (ML)
Deep learning (DL) 28/76



Knowledge-Based 
Planning (KBP)

29/76Momin, J Appl Clin Med Phys, 2021. https://doi.org/10.1002/acm2.13337

August 2020

https://doi.org/10.1002/acm2.13337


Sample size

Small datasets in DL can be challenging as it may result 
in overfitting.
Data Augmentation, dropout layer, estimation based on 
the training and the validation curves etc. 30/76



Advantages
Improve consistency & efficiency
Reduce inter-planner variability
Facilitates standardization across centers

Limitation
Predictions only for implemented ROIs
DVHs lack spatial information → voxel-based methods
Plan quality strongly depends on quality of past plans

Challenges
Outliers in training data
Database size & quality
Generalization to unusual anatomies
Validation & QA of models
Interpretability of predictions
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PROTOCOL-BASED AUTOMATIC ITERATIVE OPTIMIZATION



Protocol-Based Auto-Planning

Idea
Uses clinical rules/protocols coded as algorithm
(Example: IMRT/VMAT plans per QUANTEC, RTOG guidelines)
Does not require prior plans

Advantages
Transparent – rules are explicit
Easy to adapt to local standards

Limitations
Less flexible in complex cases
Struggles with unusual clinical scenarios
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Pinnacle3 Auto-planning

User-defined goals 
aligned with clinical 

dosimetry 
standards = 
“Technique” 

template

Cilla, Scientific Reports 2020, https://doi.org/10.1038/s41598-019-56966-y
Gintz, J of Applied Clinical Medical Physics 2016, https://doi.org/10.1120/jacmp.v17i3.6167 34/76

Philips Pinnacle3 TPS (Philips Radiation 
Oncology Systems, Fitchburg, WI)

https://doi.org/10.1120/jacmp.v17i3.6167


Pinnacle3 Auto-planning
The user

Template with target prescriptions and OAR goals (clinical 
protocol)
OAR priorities weighted by clinical importance

The software
Creates helper structures (rings, overlaps) to guide 
optimization
Controls dose fall-off, homogeneity, hot/cold spots
Provides initial optimization criteria
Runs iterative optimization cycles to meet protocol goals

a global Plan Quality Index (PQI)

What makes it “Auto-Planning” is the automation of goal 
generation, structure creation, and iterative refinement, not 

a new optimizer per se.
35/76



Pinnacle3 Auto-planning
User-defined goals aligned with clinical dosimetry 
standards

Balance: target conformity vs. OAR sparing
Dose Fall-Off Margin → auto-generated around PTV
Cold Spot ROIs → boost underdosed regions in final loops
Priority → relative importance of an individual goal user 
sets High / Medium / Low
Compromise → when OAR overlaps with PTV

Gintz, J of Applied Clinical Medical Physics 2016, https://doi.org/10.1120/jacmp.v17i3.6167 36/76
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Pinnacle3 Auto-planning

Chen Jihong, Sci Rep 2022, https://doi.org/10.1038/s41598-022-07519-3

For locally advanced 
NPC, Auto-Planning

could generate VMAT 
plans with similar or 
superior plan quality 
compared to manual 
VMAT plans for most 

patients

manual approach 
could be preferred in 
stage IV patients, due 
to a better control of 
the balance between 
the OARs and targets 

by an experienced 
physicist 37/76



Pinnacle3

Auto-planning

Cilla, Scientific Reports 2020, https://doi.org/10.1038/s41598-019-56966-y

• Produces high-quality, 
clinically acceptable plans

• Improves overall 
treatment quality

• ↑ Dose conformity
• ↓ Integral dose (6–10%)
• Maintains target coverage
• Cuts planning time

to 60–80 min (~⅓)
• 94% of plans scored equal 

or better in clinical review
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MULTICRITERIA (MULTOBJECTIVE) OPTIMIZATION
(MCO)



Multi Criteria Optimization (MCO)
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Multi Criteria Optimization (MCO)
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Multi Criteria Optimization (MCO)

42/76

Pareto optimality:
Defines a set of optimal trade-

offs between competing 
objectives

Supports decision-making by 
selecting the most suitable 

compromise

a priori and a posteriori MCO



MCO a posteriori 
Idea:

Algorithms optimize multiple objectives simultaneously 
(tumor coverage, OAR sparing)

How it works:
Generates a set of plans showing trade-offs between 
criteria → user selects the most appropriate.

Advantages:
Interactive selection of the best compromise
Greater clinician control over the final plan

Limitations:
Still requires human input
Can be time-consuming with many criteria
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Possible limitation of a posteriori MCO
- FMO – fluence only (no machine parameters), fast
- DMPO – includes machine parameters (MLC leaf 

positions, segment weights, etc.) higher computational 
cost

if FMO 
Plans may be near Pareto-optimal in fluence space, not 
machine parameters
Deliverable plan created via direct aperture optimization
Conversion may cause dosimetric discrepancies 
(McGarry, Kyroudi)
Usually minor, but can be significant for small targets / 
low-density tissue → manual fine-tuning may be required
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✓ Define tradeoff objectives (feasible space)
✓ Constraints (feasible space)

✓ A posteriori MCO clinical implementations
✓ Navigation-based 

plans Interactive Pareto 
front exploration

MCO a posteriori - RayStation TPS
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MCO a posteriori  - Eclipse TPS
The effect of integrating KBP with MCO 
in treatment Planning for prostate SBRT

KBP & MCO → both improve plan quality 
vs. manual
KBP + MCO → fewer outliers, better 
model stats & DVH predictions, but no 
major influence on plan quality
Learning curve steeper for MCO than 
KBP
MCO integrates directly into planning, 
no model training needed
Both KBP and MCO shorten planning 
time -> KBP achieves greater time 
reduction
Large centers → KBP, Small centers → 
MCO

Jayarathna, J Appl Clin Med Phys. 2023,  https://doi.org/10.1002/acm2.13940
Oonsiri  Clin Transl Radiat Oncol, 2024. https://doi.org/10.1016/j.phro.2024.100595 
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MCO a priori  Erasmus-iCycle

tumor site specific 
wish‐lists

delineated
CT skans

Erasmus
iCycle

patient‐specific
template
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Automatically 
generated 

plan

Commercial 
TPS

commercial TPS:
•Monaco (Elekta linacs)
•Multiplan (Cyberknife)

fully Automated 
MCO

iCycle: performs fully automated beam fluence
and (non-coplanar) beam angle optimization
Acts as a pre-optimizer for the TPS (eg. Monaco, Elekta)

TPS (Monaco): generates a 
deliverable segmented plan that 
mimics the iCycle dose 
distribution
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MCO a priori  Erasmus-iCycle – wish-list
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MCO a priori  Erasmus-iCycle – wish-list
Step 1

Optimize each objective in order of priority
Reach goal if possible; if not, use best achieved value as 
constraint
Move to next objective

Step 2
Objectives that met goals in Step 1 are further optimized to 
maximum potential

Breedveld, 2007, Phys.Med.Biol. 526339-6353

Plan is generatedV1
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MCO a priori  Erasmus-iCycle – wish-list
Step 1

Optimize each objective in order of priority
Reach goal if possible; if not, use best achieved value as 
constraint
Move to next objective

Step 2
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maximum potential
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MCO a priori  Erasmus-iCycle – wish-list

NO

definition of initial 
wish‐list

• limited number of training patients (~5)
• automated plan generation with Erasmus 

iCycle based on current wish‐list

Plan evaluation

Is it possible to 
improve plan?

final wish‐list = current wish‐list

update 
current
wish‐list

YES

iterative tweaking
proces
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MCO a priori  Erasmus-iCycle
Erasmus-iCycle plans showed better target 
coverage and sparing of OARs

In 97% of cases, automatically generated plans 
were selected for treatment because of the 
superior quality (Phys. Med. Biol 2013)

• Developed as an 
academic 
platform

• Served as a 
precursor to MCO 
and automation

• Inspired features 
later adopted in 
commercial TPS 58/76



Elekta Monaco Templates
iCycle concept applied in Monaco
plan generated with out any human interference 
(mimicking the Erasmus-iCycle dose distribution)
the final plan is generated with a CE marked TPS MONACO

Bijman, Radiotherapy and Oncology 2021, https://doi.org/10.1016/j.radonc.2021.03.003 59/76

NovelATP - new 
autoplanning application
 
FMO – fluence map 
optimization



Elekta Monaco Templates
MCO FMO – ErasmusATP vs. NovelATP

1. Both are wish-list driven & conceptually similar

2. Differ in implementation:

NovelATP uses new code, solver, patient model
Wish-list cost functions differ between systems
Segmentation of FMO plans 
- ErasmusATP → wish-list only in FMO
- NovelATP → wish-list in FMO & segmentation

Bijman, Radiotherapy and Oncology 2021, https://doi.org/10.1016/j.radonc.2021.03.003 60/76
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Adaptive Radiotherapy (ART) with Automation
1. Off-line 

Previously discuses solutions

2. On-line (oART)
New tools 
Idea
• Daily plan modification based on patient anatomy 

changes
Automation Supports
• Fast re-planning
• Auto-contouring of organs
• Auto-plan generation per clinical criteria

Significance
• Enables real-time personalized treatment
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Commercial On-Couch Adaptive RT Systems
1. Varian Ethos

CBCT-based oART platform
Integrated AI contouring & auto-planning

2. Elekta Unity (MR-Linac)
MRI guidance + daily plan adaptation
Real-time soft tissue visualization

3. Elekta Evo (CT-Linac)
AI-enhanced CT imaging
Adaptive workflows for Elekta

4. Accuray Radixact + Cenos
Online adaptive solution (pending FDA)
Supports re-planning with daily kVCT

5. Accuray Radixact with ClearRT
Daily kVCT imaging for plan adaptation
Synchrony® for motion adaptation

63/76



oART – Example: Varian Ethos
Daily CBCT → captures patient’s current anatomy
Rigid & deformable registration with reference CT

64/76



oART – Example: Varian Ethos
Daily CBCT → captures patient’s current anatomy
Rigid & deformable registration with reference CT
AI auto-contouring of targets & OARs → manual edits if 
needed
Synthetic CT generation (no longer in use since Ethos v2.0)
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oART – Example: Varian Ethos
Automated re-planning using predefined clinical goals
Plan selection → scheduled vs adapted



oART – Example: Varian Ethos
Automated re-planning using predefined clinical goals
Plan selection → scheduled vs adapted
Plan QA & approval done while patient is on couch



oART – Example: Varian Ethos
Optional verification CBCT before treatment delivery

14 min
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oART – Example: Varian Ethos
Treatment delivery with adapted plan in the same session

Lack of table rotations, breathing control, SGRT
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oART – sesion time
time [min:s]

average ± SD

all tumor sites 20:00 ± 09:10

prostate 12:50 ± 03:30

gynecology 26:20 ± 08:00

bladder 13:00 ± 04:00
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Auto-Planning Systems

Philips Pinnacle Auto-Planning – template-based 
optimization

RayStation Auto-Planning – scripting + automated 
optimization

Elekta Monaco Templates – MCO, template-based 
optimization

Academic iCycle – fully automated MCO pre-optimizer, 
integrated with Monaco

Varian Ethos – scripting + KBP, adaptive auto-planning
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Automation in TPS
Varian vs Elekta vs Philips vs RaySearch

TPS Key Automation 
Module API Strengths Limitations

Elekta
Monaco
Unity

Monaco
Auto-Planning
Unity MR-Linac 
(online ART)

Monaco
Script API 
(limited)

Biological 
optimization, MR 
integration, real-

time ART

Less open API, 
complex 

configuration

Philips
Pinnacle

Auto-Planning 
(template-based) Python

Simplicity, automatic 
templates, extensive
clinical experience

Development limited

RaySearch 
RayStation

RS Scripting API
Auto-Planning
MCO

Python
Flexibility, easy AI/ML 
integration, strong 

community

Needs strong clinical 
validation, less 

widespread than 
Eclipse

Varian
Eclipse

ESAPI
RapidPlan C# Large clinical base

ARIA integration Closed ecosystem

Varian 
ETHOS online ART -



Why automation?
Advantages of automation

Increased efficiency & consistency

Reduced inter-planner variability

Fewer errors

Supports Adaptive Radiotherapy (ART)
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Why automation?
Potential Risks of automation

Human related
1. Reduced oversight → less clinical attention
2. Errors from Over-Reliance (Automation Bias) → blind 

trust without expert verification

System related
3. Bias in training data (AI/KBP) → incorrect or inadequate 

plans
4. Validation & QA Challenges
5. Lack of Transparency (Black Box AI)
6. System Errors & Error Propagation

74/76



Why automation?
Potential Risks of automation
Future
7. Loss of individualization → overly generic, less patient-

specific plans
Unusual anatomy / rare tumors → risk of poorer plans

8. Skill degradation → reduced manual expertise among 
planners.
All current implementations of automated planning 
require a high-level of manual planning knowledge for 
configuration. 

9. Technical failures / bugs → delays or incorrect plans
10. Legal & ethical issues → unclear responsibility

(system vs. clinician)
75/76



Summary

Automation evolved from rule-based methods to AI-
driven solutions
KBP, MCO, Auto-Planning, and oART improve plan quality, 
efficiency, and consistency
Commercial systems (Eclipse, RayStation, Pinnacle, 
Monaco, Ethos, Unity, Evo, Cenos) provide diverse 
automation pathways
Benefits: reduced variability, knowledge sharing, faster 
workflows, real-time personalization
Challenges: data quality, transparency, validation, 
maintaining clinical oversight
Future: deeper AI integration → fully personalized, 
adaptive Treatment with one mouse klick
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Thank you
anna.zawadzka@nio.gov.pl
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