

Towards Connecting the Remaining 3 Billion

6G is Coming

Vehicle-to-everything

E-Health

Extended Reality

Super eMBB

Artificial Intelligence

Industrial IoT

The Global Connectivity Divide

E. Yaacoub and M.-S. Alouini, "A Key 6G Challenge and Opportunity - Connecting the Base of the Pyramid: A Survey on Rural Connectivity", Proceedings of IEEE, 2020.

Urban Connectivity Divide

- In communities with low income, the digital disparity is much more profound.
- People who have high-quality internet service are more likely to benefit from health care, selfeducation and social/governmental services.
- It needs collaboration and agreement among various stakeholders, i.e., government, policy makers, service provider, manufacturer and community members.

Bridging Connectivity Divide

Shortage of healthcare

Social Barriers

Poor infrastructure

Low quality of education for schooling

Lack of Sufficient Weak Development Digital Connectivity and Growth **Limited Investment** of Services in ICT **VICIOUS CYCLE of DIGITAL DIVIDE**

Sustainability Development Goals (SDGs)

The United Nations SDGs should **Drive** the evolution of 6G

6G should target

No Bad Effects on **Environment** & **Human Health**

More **Security** and **Privacy**

Digital **Inclusion**

Resilience, Robustness, and Dependability

Resilience with On-Demand Pop-up Networking

Global Connectivity Holy Grail

A telephone subscriber here may call up and talk to any other subscriber on the **Globe**. An **inexpensive** receiver, not bigger than a watch, will enable him to listen **anywhere**, on **land** or **sea**, to a speech delivered or music played in some other place, however **distant**.

- Nikola Tesla 1919

Satellite Constellations Backhaul

Manufacturing Cost Down => Mass Production

Geostationary Earth Orbit (GEO) Satellite

- Fixed position in the sky at ~35,000 km
- Relatively large delay

Medium Earth Orbit (MEO) Satellite

- 2,000~35,000 km

Low Earth Orbit (LEO) Satellite

- 160~2,000 km
- Hand-Over
- OneWeb, Starlink, Lightspeed, Kuiper, GW, G60

Bridging the Educational Divide: A Delay-Tolerant Networking Approach for Equitable Digital Learning in Rural Areas*

[*] S. Abdeljabar, and M-S. Alouini: "Bridging the Educational Divide: A Delay-Tolerant Networking Approach for Equitable Digital Learning in Rural Areas". *IEEE Technology and Society Magazine, under review*.

DTN-Enabled Digital Learning Platform

Proof of Concept Deployment

We designed and built a proof of concept for this system:

- Demonstrated a viable approach for digital learning in rural areas with limited or no internet access.
- DTN provides a cost-effective, backhaullike solution for delivering educational content in remote regions.
- Initial tests on a campus bus using offthe-shelf components showed promising results for text-based content delivery.
- Planned improvements to support multimedia content and support broader community services and connectivity, increasing the system's impact.

Remote Terrestrial Environments

•Step1: UAV transmits laser energy to wake up and power the ground sensor.

•Step2: The sensor sends collected data to the base station via LoRa.

Underwater Environments

- •Step 1: UAV delivers laser energy through the water to power the underwater sensor.
- •Step 2: Sensor transmits data optically to the UAV.
- •Step 3: UAV forwards data to the shoreline base station via LoRa.

Principle and Implementation

Component	Description
Laser Source	530 nm diode laser, Output power 10 W
Beam Collimator	Lens-based, beam divergence < 2 mrad
Modulation	iPPM
MCU	STM32
Solar Panel (Rx)	efficiency ~20%
Wake-Up Power	-20dBm
Lora Module	range > 2 km (LOS)

Indoor experiments ~3m

Transimitter

Receiver

Laser Output Power	Electrical Power Output
1 W	0.14 W
2 W	0.28 W
4 W	0.56 W
5 W	0.70 W

Outdoor experiments ~5km

Paper:

[1] Z. Shi, Y. Zhang, J. Xu, and M.-S. Alouini, "Design and performance analysis of a UAV based capacitorenhanced solar panel communication system," *Under Review*.

L'Outdoor experiments ~600m

Temperature

30cm X20 cm Solar Panel

6cm X 6 cm Solar Panel

Larger solar panels (30cm × 20cm) demonstrate better resistance to atmospheric turbulence compared to smaller ones.

Fig.1 Workflow of Step 1–2: Wake Up \rightarrow Charge \rightarrow Data Uplink

Fig.2 Application Scenario

Underwater communication, RF is not a good option, so our uplink also applies FSO

Fig.1 Two-phase SLIPT architecture for an underwater sensor

The transmission power is increased M times compared to PPM.

M-iPPM

Fig.2 M-PPM vs. M-iPPM symbol patterns (duty-cycle and average-power comparison).

Fig. 1 Average BER versus average uplink SNR $\overline{\gamma}_u$ under various modulation schemes.

Fig. 2 Ergodic capacity versus average uplink SNR $\overline{\gamma}_u$ under different vertical distances d_{vz} .

Autonomously Aligned UWOC System (2)

Autonomously Aligned UWOC System

The biggest problem with underwater optical communication is alignment.

Traditional FSO communication uses a camera for alignment, which is too costly.

Fig.1 Coarse-to-fine optical alignment for underwater SLIPT

Autonomously Aligned UWOC System

$$\operatorname{sign}_{\tau}(x) = \begin{cases} 1, & x > \tau \\ 0, & \text{others} \\ -1, & x < \tau \end{cases}$$

 τ is a dead-zone threshold introduced to suppress noise-induced actuation.

s denotes the fixed step size of the vessel.

Fig.1 Closed-loop alignment using four-quadrant intensity feedback.

Autonomously Aligned UWOC System

$$S_{x,1} = (\bar{I}_{1,1} + \bar{I}_{4,1}) - (\bar{I}_{2,1} + \bar{I}_{3,1})$$

$$S_{y,1} = (\bar{I}_{1,1} + \bar{I}_{2,1}) - (\bar{I}_{3,1} + \bar{I}_{4,1})$$

$$x_2 = x_1 - s \operatorname{sign}_{\tau}(S_{x,1})$$

$$y_2 = y_1 - s \operatorname{sign}_{\tau}(S_{y,1})$$

$$S_{x,2} = (\bar{I}_{1,2} + \bar{I}_{4,2}) - (\bar{I}_{2,2} + \bar{I}_{3,2})$$

$$S_{y,2} = (\bar{I}_{1,2} + \bar{I}_{2,2}) - (\bar{I}_{3,2} + \bar{I}_{4,2})$$

$$x_3 = x_2 - s \operatorname{sign}_{\tau}(S_{x,1})$$

$$y_3 = y_2 - s \operatorname{sign}_{\tau}(S_{y,1})$$

UWOC-SLIPT System

Fig. 1 Marginal steady-state offset distributions for (a) \hat{x} and (b) \hat{y} , comparing MC simulation (black) with the closed-form theory (red).

Fig. 2 Two-dimensional joint probability surfaces over the discrete state grid: (a) simulation, (b) theoretical, and (c) absolute error.

SLIPT Hybrid FSO/RF System

Fig.1 Application Scenario

In ground communication, RF has more advantages than FSO.

- 1. Wide range of coverage
- 2. low energy consumption

However, RF may have the issue of information leakage.

SLIPT Hybrid FSO/RF System

UAV Step2: Sensor **Data Transmission** Step1:Wake Up Sensor Laser emitter Receiver Location and Energy command signals Receive Charge the command capacitor information Information Sensor collected by sensors

Fig.1 Two-phase SLIPT architecture

Fig.2 Workflow of Step 1–2: Wake Up \rightarrow Charge \rightarrow Data Uplink

Secure SLIPT Hybrid FSO/RF System (4)

SLIPT Hybrid FSO/RF Secure System

Fig.1 Application Scenario

Fig.2 Workflow of Step

Secret capacity: $C_s = [C_b - C_e]^+$

Secret Outage Probability: SOP = $\mathbb{P}(C_s > C_{th})$

Fig. 2. SOP versus average optical transmit power \bar{P}_0 under different sensor-Eye separation distances \hat{d}_{be} with $\omega_b = 5r_a$.

25

Secret Coverage Probability: $P_C = 1 - SOP$

Fig. 3 Heatmap of the logarithmic CP $\log_{10}(P_c)$ versus average optical transmit power \hat{P}_0 and power splitting ratio ρ . The black curve indicates the optimal ρ^* that maximizes P_c for each \bar{P}_0 .

Fig.1 Application Scenario

Background & Motivation

♦ Background

- NASA's TBIRD program successfully demonstrated > 100 Gbps link from a single CubeSat to the ground, which can be utilized in delay-tolerant networks (DTNs) for high-volume data transmission from LEO to Earth [1].
- Advantages of single-satellite system: Low computational and hardware complexity, reduced size, weight, and power (SWaP) requirements.
- ➤ Using free space optical (FSO) links overcomes traditional RF limitations.

♦ Motivation

- The DTN paradigm enables satellites to store data when out of contact and forward it during visibility windows, providing greater reliability.
- Satellite ergodic capacity performance is governed by orbital geometry.
- ➤ LEO satellites operate between 160–2,000 km altitude [2]

Fig.1 Satellite orbit trade-offs

[1] C. Schieler, B. Robinson, O. Guldner, B. Bilyeu, A. Garg, K. Riesing, J. Chang, F. Hakimi, J. Brown, F. Khatri, et al., "NASA's terabyte infrared delivery (TBIRD) program: Large-volume data transfer from LEO," 2019.

Gap & Research Question

♦ Gap

- Existing missions (TBIRD, ARCSTONE, OCSD)[1],[3],[4] demonstrate feasibility but lack systematic optimization for jointly selecting:
 - > Orbit altitude
 - Beamwidth
 - > Transmit power
 - ➤ Elevation Angle

To maximize average downlink capacity and freshness of information under DTN constraints.

♦ Research Question

- How can we place satellites and choose orbits so that energy transfer windows coincide with the highest-capacity downlinks
- ➤ Objective: Maximizing data delivery with minimal loss and delay

[3] Stone, Thomas C. "Acquisition of Moon measurements by Earth orbiting sensors for lunar calibration." IEEE Transactions on Geoscience and Remote Sensing 60 (2021): 1-6.

[4] Rose, Todd S., et al. "Optical communications downlink from a 1.5 U CubeSat: OCSD program." International Conference on Space Optics—ICSO 2018. Vol. 11180. SPIE, 2019.

◆ Orbit Type Selection for LEO Satellites

- Circular Orbits:
 - ➤ Constant altitude, uniform coverage
 - ➤ Ideal for Earth observation and consistent communication
- > Elliptical Orbits:
 - ➤ Varying altitude, Prolonged focus over regions
 - > Suitable for remote sensing, targeted high-latitude coverage

Fig.2 Satellite-Earth geometry of a satellite in circular orbit.

Fig.3 Satellite-Earth geometry of a satellite in elliptical orbit.

♦ 1. Circular Orbit FSO Channel Analysis Joint optimization over orbit altitudes & laser beamwidth

The power received at a distance d from the transmittercan given the Gaussian beam and the point-receiver assumption in the presence of (random) pointing error, be expressed as $S(d) \approx \frac{2P_t}{2\pi w^2(d)} \exp\left(-\frac{R^2}{2w^2(d)}\right) \pi a_{rx}^2$.

The pointing error follows a Rayleigh distribution as $f_R(r) = \frac{r}{\sigma_R^2} \exp\left(-\frac{r^2}{2\sigma_R^2}\right)$, $0 < r < \infty$.

- ✓ The satellite velocity in a circular orbit is $v \approx \sqrt{\frac{\mu}{r_E + z}}$,
 ✓ The orbital period is $T \approx 2\pi \sqrt{\frac{(r_E + z)^3}{\mu}}$.
- \checkmark The largest angular visibility window when $\psi = 0$ is $\varphi = 2 \arccos \left(\frac{r_E}{r_E + z} \right)$
- \checkmark The maximum visibility window duration $W = \frac{\varphi}{2\pi}T = \frac{T}{\pi}\arccos\left(\frac{r_E}{r_E + z}\right)$ $z \le d \le d_{\max} = \sqrt{z(z + 2r_E)}$

$$z \le d \le d_{\max} = \sqrt{z(z+2r_E)}$$

$$d(z,\phi) = \sqrt{(z+r_E)^2 + (r_E)^2 - 2(z+r_E)r_E\cos(\phi)}$$

♦ 1. Circular Orbit FSO Channel Analysis

- ✓ In practice, obstructions near the horizon necessitate a minimum elevation angle constraint $\psi > 0$ to maintain reliable line-of-sight communication.
- ✓ Reduces the effective visibility window and thus the link availability

$$\varphi'(\psi) = 2 \left(\arccos \left(\frac{r_E}{r_E + z} \cos(\psi) \right) - \psi \right).$$

$$d_0(\psi) = \sqrt{z^2 + 2zr_E + r_E^2 \sin^2 \psi} - r_E \sin \psi,$$
$$z < d_0 < \sqrt{z(z + 2r_E)}.$$

◆ 1. Circular Orbit FSO Channel Analysis

- The total signal current flowing out of the detection elements (after photoconversion) is $S = \eta S(d)$,
- An upper bound on the normalized instantaneous capacity $C = \log_2 \left(1 + \frac{S^2}{\sigma_2^2}\right)$ bits/s/Hz.
- The maximum amount of data, that can be offloaded to the ground station within one orbital period is $\mathcal{D}(z)$

$$\mathcal{D}(z) = \mathcal{W}\mathbb{E}[\mathcal{C}] = \mathcal{W} \int_{-\varphi/2}^{\varphi/2} \int_{0}^{\infty} \log_{2} \left(1 + \frac{\left(\eta \frac{2P_{t}}{2\pi\theta^{2}d^{2}(z,\phi)} \exp\left(-\frac{r^{2}}{2\theta^{2}d^{2}(z,\phi)} \right) \pi a_{rx}^{2} \right)^{2}}{\sigma_{n}^{2}} \right) f_{R}(r) f(\phi) \, \mathrm{d}r \, \mathrm{d}\phi. \text{ bits/Hz}$$
The ergodic capacity for a pointing error dominant channel $C_{P}(z)$

The ergodic capacity for a pointing error dominant channel $C_P(z)$

 $\mathbb{1}_A(y)$ is 1 when $y \in A$ and 0 otherwise

$$C_{\mathsf{P}}(z) = \frac{\mathcal{D}}{T} = \frac{1}{2\pi} \int_{-\varphi/2}^{\varphi/2} \int_{0}^{\infty} \log_{2} \left(1 + \frac{\left(\eta \frac{2P_{t}}{2\pi\theta^{2}d^{2}(z,\phi)} \exp\left(-\frac{r^{2}}{2\theta^{2}d^{2}(z,\phi)} \right) \pi a_{rx}^{2} \right)^{2}}{\sigma_{n}^{2}} \right) f_{R}(r) \, \mathrm{d}r \, \mathrm{d}\phi. \text{ bits/s/Hz}$$

◆ Atmospheric Turbulence and Pointing Error Impaired FSO Channel Analysis

When the FSO channel is subject to both pointing errors and atmospheric turbulence, the received power can be reproduced

as
$$S(d) = \frac{2IP_t}{2\pi w^2(d)} \exp\left(-\frac{R^2}{2\,w^2(d)}\right)\pi\,a_{rx}^2$$

$$= \int_{I(I;\alpha_{GG},\beta_{GG})} \frac{2\left(\alpha_{GG}\beta_{GG}\right)^{\frac{\alpha_{GG}+\beta_{GG}}{2}}}{\Gamma(\alpha_{GG})\Gamma(\beta_{GG})} \times I^{\frac{\alpha_{GG}+\beta_{GG}}{2}-1}K_{\alpha_{GG}-\beta_{GG}}\left(2\sqrt{\alpha_{GG}\beta_{GG}\,I}\right),\,I>0$$

✓ The ergodic capacity considering both the pointing error and scintillation due to atmospheric turbulence

$$C_{\mathsf{PT}}(z) = \frac{1}{2\pi} \int_{-\varphi/2}^{\varphi/2} \int_{0}^{\infty} \int_{0}^{\infty} \log_{2} \left(1 + \frac{\left(\eta \, \frac{2IP_{t}}{2\pi \, \theta^{2} \, d^{2}(z,\phi)} \, \exp\left(- \frac{r^{2}}{2\theta^{2} \, d^{2}(z,\phi)} \right) \pi \, a_{rx}^{2} \right)^{2}}{\sigma_{n}^{2}} \right) f_{R}(r) \, f_{I}(I;\alpha_{GG},\beta_{GG}) \, \mathrm{d}r \, \mathrm{d}I \, \mathrm{d}\phi.$$

✓ Gauss-quadrature (GQ) approximation for smooth integrations with comparable accuracy using far fewer sample points where:

$$C_{\text{PT}}(z) pprox rac{arphi}{4\pi} \sum_{j=1}^{N_{\phi}} \sum_{k=1}^{N_{I}} \sum_{i=1}^{N_{r}} w_{j}^{GL} \tilde{w}_{k}^{GLa} w_{i}^{GH} \log_{2} \left(1 + rac{A^{2}(\phi_{j}, r_{i}) I_{k}^{2}}{\sigma_{n}^{2}} \right) |x_{i}|.$$

- $\phi_j = \frac{\varphi}{2}t_j$, $r_i = \sigma_R\sqrt{2}|x_i|$, $\tilde{w}_k^{GLa} = w_k^{GLa}f_I(I_k)e^{I_k}$,
- $\{x_i, w_i^{\text{GH}}\}_{i=1}^{N_r}$, $\{I_k, w_k^{\text{GLag}}\}_{k=1}^{N_I}$, and $\{t_j, w_j^{\text{GL}}\}_{j=1}^{N_\phi}$, denote the Gauss–Hermite, Gauss–Laguerre and Gauss–Legendre nodes/weights, respectively.
- N_r , N_I , and N_{ϕ} are the numbers of quadrature points for the r, I, and ϕ integrals, respectively.

◆ 2. Elliptical Orbit FSO Channel Analysis

- \checkmark The eccentricity of the elliptical orbit $\mathcal{E} = \sqrt{1 \frac{b^2}{a^2}}$
- The distance between centre of the Earth and the satellite on the ellipse is $\mathscr{D} = \sqrt{(a\cos(\beta) \sqrt{a^2 b^2})^2 + b^2\sin^2(\beta)}$
- \checkmark The velocity is furnished by $v = \sqrt{\mu \left(\frac{2}{\mathscr{D}} \frac{1}{a}\right)}$.
- \checkmark The orbital period (in seconds) of the satellite is $T = 2\pi \sqrt{\frac{a^3}{\mu}}$.
- ✓ capacity due to pointing error impairment at a certain angle β on the ellipse between

$$-\beta 0 \text{ and } \beta 0 \text{ is } \mathcal{C}(\beta) = \int_0^\infty \log_2 \left(1 + \frac{\left(\eta \frac{2P_t}{2\pi\theta^2 d^2(\beta)} \exp\left(-\frac{r^2}{2\theta^2 d^2(\beta)} \right) \pi a_{rx}^2 \right)^2}{\sigma_h^2} \right) f_R(r) \, \mathrm{d}r.$$

If
$$\overrightarrow{GO} > 0$$
, $\beta_0 = \pi - \arctan\left(\frac{\|\overrightarrow{AG}\|}{\overrightarrow{GO}}\right)$

$$\overrightarrow{GO} < 0, \ \beta_0 = \arctan\left(-\frac{\|\overrightarrow{\mathbf{AG}}\|}{\overrightarrow{\mathbf{GO}}}\right)$$

- $\checkmark \text{ The total data transmitted during the visibility window } \mathcal{D} = \int_{-\beta_0}^{\beta_0} \mathrm{d}D(\beta) = \int_{-\beta_0}^{\beta_0} \frac{\mathcal{C}(\beta)}{v(\beta)} \sqrt{a^2 \sin^2(\beta) + b^2 \cos^2(\beta)} \, \mathrm{d}\beta.$
- The average capacity—computed over one revolution of the satellite is $C = \frac{D}{T} = \frac{1}{T} \int_{-\beta_0}^{\beta_0} \frac{C(\beta)}{v(\beta)} \sqrt{a^2 \sin^2(\beta) + b^2 \cos^2(\beta)} \, d\beta$

Simulation and Results

Optimization Problems

1) $\mathcal{P}_{\mathbf{0}}$:

 $c(z, \theta)$ The optimum geometry is circular unless an application needs extra dwell time over a specific region.

2)
$$P_1$$
: $\max_{a,b} C(z)$

s.t. $i) a > r_E + z_0$, iii) a > b.

$$iii) b > \sqrt{2a(r_E + z_0) - (r_E + z_0)^2}.$$

Maximum capacity = 2.33 bits/s/Hz, which occurs at $\theta = 0.94 \times 10^{-6}$ rad and z = 1940 km.

Fig.4 Ergodic capacity in a circular orbit.

- Narrower θ increases both the maximum capacity and the optimal semi-major axis a^*
- Ergodic capacity reaches its maximum when a=b

Fig.5 Ergodic capacity in an elliptical orbit.

Simulation and Results

Altitude z (m)

Altitude z (km)

Circular Orbits

Optimization Problems $3)\mathcal{P}_2$

0.7

0.6

 $\left(\frac{\text{pits/s/Hz}}{0.5}\right)$

Capacity C 0.3

0.1

0

500

1000

Altitude z (km)

1500

 $\max_{z} C(z)$

s.t. $z > z_0$

 $\times 10^5$

Thank You

A telephone subscriber here may call up and talk to any other subscriber on the **Globe**. An **inexpensive** receiver, not bigger than a watch, will enable him to listen **anywhere**, on **land** or **sea**, to a speech delivered or music played in some other place, however **distant**.

- Nikola Tesla 1919

