

Artificial Update of One-Day GIM-TEC Predictions Using the W-Index Map from the Preceding Hour

Tamara Gulyaeva¹ and Feza Arikan²

¹IZMIRAN, Moscow, Russia tam.gulyaeva@gmail.com

²Hacettepe University, Department of Electrical and Electronics Engineering, Ankara, Türkiye arikan@hacettepe.edu.tr

The International Reference Ionosphere and NeQuick Improving the Representation of the Real-Time Ionosphere ICTP, Trieste, Italy; 6 -10 October, 2025

OUTLINE

- INTRODUCTION
- W AND Wp INDICES
- W-MODEL
- RESULTS
- CONCLUSIONS AND FUTURE DIRECTIONS

INTRODUCTION

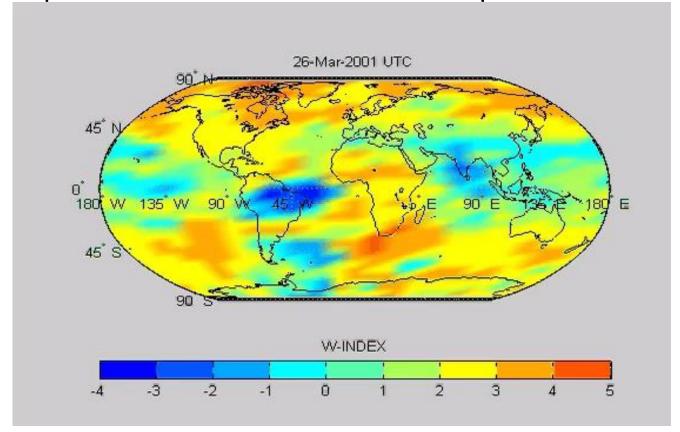
- Global Ionospheric Maps (GIM-TEC) are one of the most important sources of 2-D global imaging of ionosphere and plasmasphere.
- GIM-TEC are provided by various Data Analysis Centers with a one- to two-day delay such as
 - Jet Propulsion Laboratory (JPL) 1 h maps (jplr) with 1-day delay,
 - Rapid Universitat Politècnica de Catalunya (UPC)-IonSAT maps (uqrg) with a 15-minute cadence with a 2-day delay,
 - Center for Orbit Determination in Europe (CODE) 1-day predicted c1pg.
- Consequently, one or two day delays in prediction cause significant errors in GIM-TEC forecasts for the real-time services.
- One exception is uadg which is produced by UPC-IonSAT in quasi-real time with a 15-minute cadence and a 2-hour UT delay.
- We propose a method W-model for artificially updating GIM-TEC hour by hour, based on the rotation of the W-index map from the preceding hour by 15 degrees westward.
- The accuracy of TEC forecasting with W-model is compared with uadg, uqrg, jplr, c1pg, and the relevant GIM-W index maps.

W and Wp Indices (1)

- W-index is a logarithmic indicator of ionospheric and plasmaspheric disturbance. It can be applied to any ionospheric parameter.
- DNmF2 = log(Nm/Nm*(27 d median))

W index	DN=log(Nm/Nm*)	P%
4	0.301 < DN	+200% <p< th=""></p<>
3	0.155 <dn≤0.301< th=""><th>+43%<p<+200%< th=""></p<+200%<></th></dn≤0.301<>	+43% <p<+200%< th=""></p<+200%<>
2	0.046 <dn≤0.155< th=""><th>+11%<p≤+43%< th=""></p≤+43%<></th></dn≤0.155<>	+11% <p≤+43%< th=""></p≤+43%<>
1	0 <dn≤0.046< th=""><th>0<p≤+11%< th=""></p≤+11%<></th></dn≤0.046<>	0 <p≤+11%< th=""></p≤+11%<>
-1	-0.046≤DN<0	-10%≤P<0
-2	-0.155≤DN<-0.046	$-30\% \le P < -10\%$
-3	$-0.301 \le DN < -0.155$	-50%≤P<-30%
-4	DN<-0.301	P<-50%

Gulyaeva, T.L.,, I. Stanislawska, Derivation of a planetary ionospheric storm index. Annales Geophysicae, 26, N.9, 2645-2648, www.ann-geophys.net/26/2645/2008/, 2008. DOI:10.5194/angeo-26-2645-2008.


W and Wp Indices (2)

• DTEC=log(TEC/MTEC(15 d median)) Deviation from the quiet median

W-index	DTEC	Ionosphere state			
4	DTEC > 0.301	Intense positive W+ storm			
3	0.155 < DTEC < 0.301	Moderate W ⁺ storm or substorm			
2	0.046 < DTEC < 0.155	Moderate W⁺ disturbance			
1	0.0 < DTEC < 0.046	Quiet W+ state			
0	DTEC = 0.0	Reference Quiet state			
-1	-0.046< DTEC < 0.0	Quiet W-state			
-2	-0.155 <dtec< -0.046<="" td=""><td>Moderate W-disturbance</td></dtec<>	Moderate W-disturbance			
-3	-0.301 <dtec< -0.155<="" td=""><td>Moderate W- storm or substorm</td></dtec<>	Moderate W- storm or substorm			
-4	DTEC< -0.301	Intense negative W-storm			

W and Wp Indices (3)

• W-index computed from GIM for 26 March-3 April 2001

T.L. Gulyaeva, F. Arikan, M. Hernandez-Pajares, I. Stanislawska, GIM-TEC adaptive ionospheric weather assessment and forecast system, Journal of Atmospheric and Solar-Terrestrial Physics, Vol 102, 2013, 329-340, https://doi.org/10.1016/j.jastp.2013.06.011

W and Wp Indices (4)

 The planetary Wp index depicts contributions of perturbation at a global scale:

The difference (span) between the maximum of positive index, $W \max j$, and the minimum of negative index, $W \min j$, at the j-th latitude, serves as a latitudinal measure of the storm if there are values corresponding to the storm at the particular latitude:

 $\delta W j = W \max j - W \min j$ for $W \max j \ge 3$ and/or $W \min j \le -3$

 $\delta W j = \max(W \max j, |W \min j|)$ for $W \max j \le 2$ and $W \min j \ge -2$

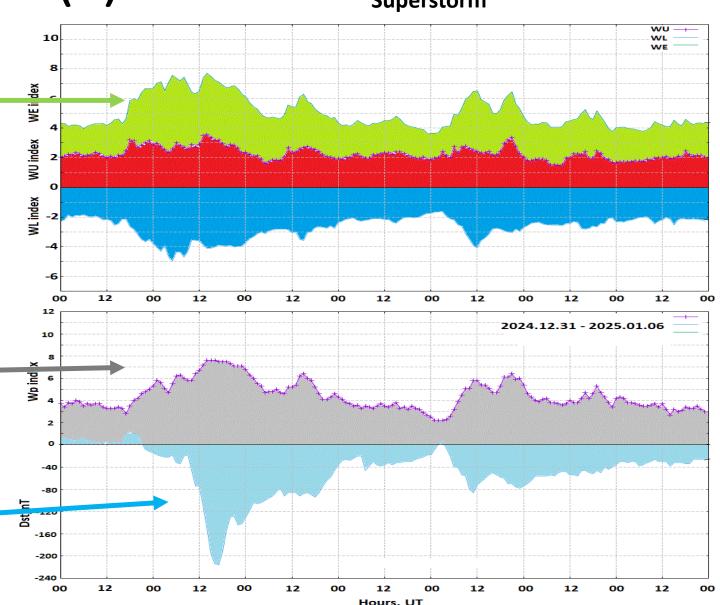
The planetary W_p index depicts contributions of perturbation at a global scale:

$$W_p = (1 + kn^{-1}m^{-1})n^{-1}\Sigma\delta Wj, (j = 1, ..., n)$$
 (2)

• Wp is the latitude averaged span between extremes δWj at each latitude. The weight

$$(1+kn^{-1}m^{-1})$$

explains the latitude-longitude extent of the areas of the greatest positive index

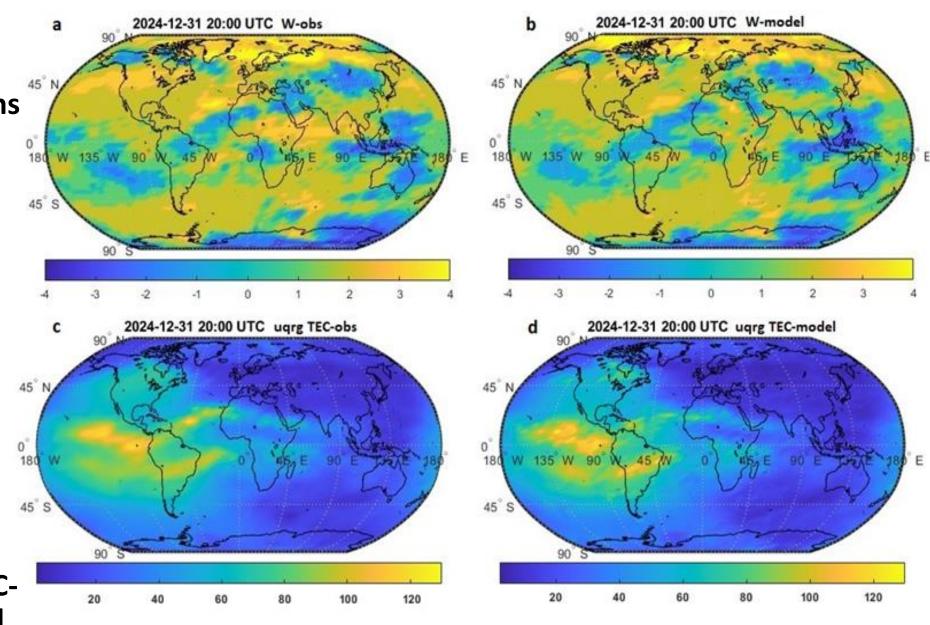

 $W \max = \max(W \max j)$, and the least negative value $W \min = \min(W \min j)$.

• Count *k* represents the number of the extreme positive and negative index values on a map.

W and Wp Indices (5)

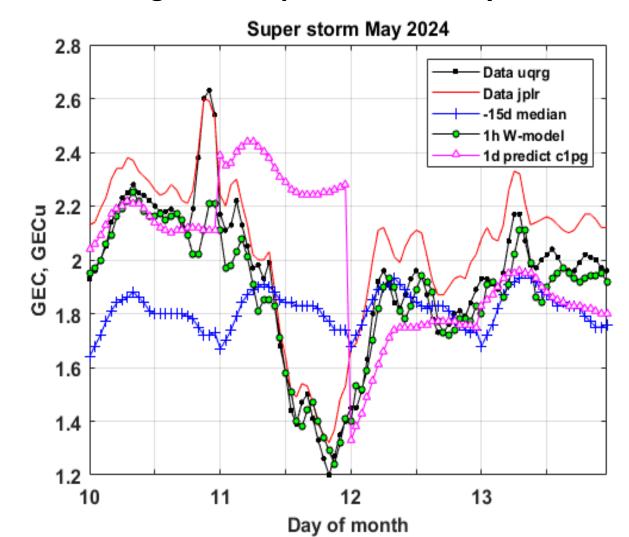
December 31, 2024- January 06, 2025 Superstorm

- WU index-- global intensity of TEC enhancement,
- WL index global intensity of TEC depletion,
- global WE = WU WL.
- Wp and WE indices follow the geomagnetic
- disturbance very well.
- High Correlation with Dst index

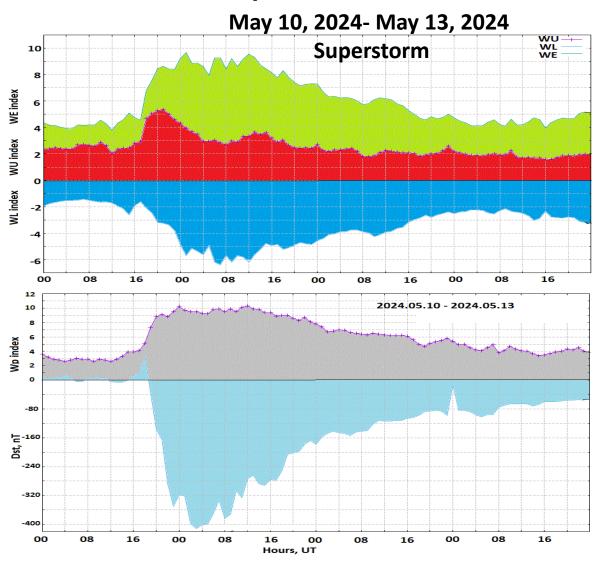

W-model

- W-model is produced hour by hour by the rotation of the W-index map from the preceding hour UT by 15 degrees westward.
- GIM-MTEC: -15 day running median produced for 0, 1,..., 23 UT from GIMs observed on 15 preceding days.
- GIM-W-TEC at each grid point = MTEC \times 10 DTEC
- Coefficients for the W-model values:

W	-4	-3	-2	-1	0	1	2	3	4
10 ^{DTEC}	0.50	0.59	0.79	0.95	1.00	1.05	1.26	1.69	2.00

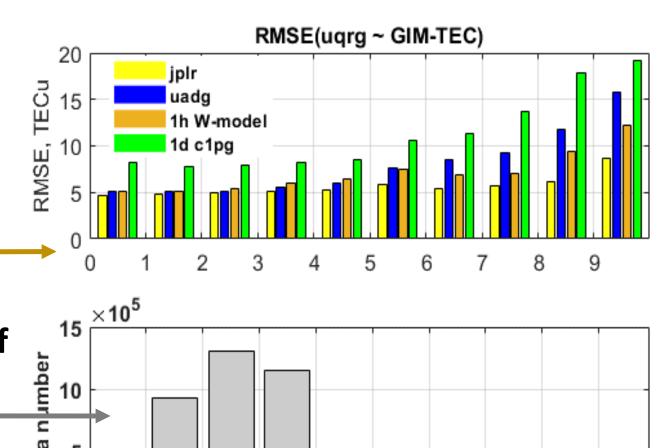

RESULTS (1)

- Model-data comparisons of global maps of Windex (top panel) and
- GIM-TEC (bottom) for quiet day (24 Dec 2024, 20:00 UT, Kp = 1.7):
- (a) W-obs;
- (b) W-model, obtained by rotation W-obs at 19:00 UT.
- (c) uqrg TEC-obs;
- (d) W-TEC (TEC-model), obtained from -15 d TEC-median at 20:00 UT and W-model (b).



RESULTS (2)

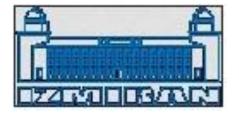
 Global Electron Content (GEC) produced from global maps on 10-13 May 2024



- Temporal variation of ionospheric WU, WL, WE and Wp indices and Dst
- Dst = -412 nT, Hpo = 10.7

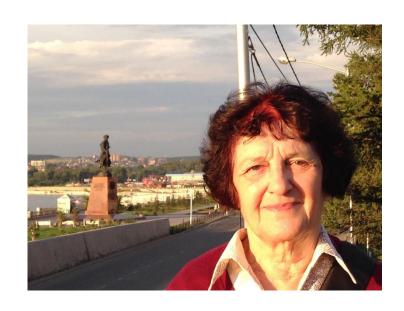
RESULTS (3)

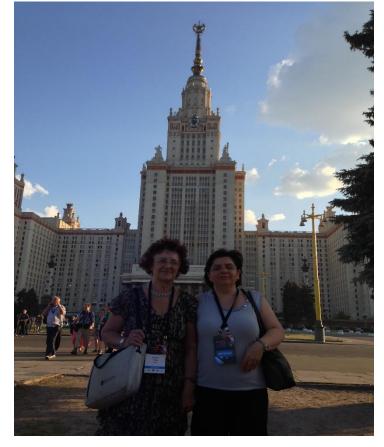
- RMSE calculated between uqrg and GIM-TEC (jplr, uadg, 1h W-model and 1 day c1pg forecast) during 36 quiet and storm days: 10-13.05.2024, 31.12.2024, 1-31.01.2025.
- RMSE increases with magnitude of geomagnetic disturbance and Hpo index (1h equivalent to Kp).
- W-model results outperform
 - uadg at high Hpo and
 - c1pg in all cases.
- Number of data points used for RMSE calculation.



Hpo index

CONCLUSIONS AND FUTURE DIRECTIONS


- A novel method, W-model, is proposed for artificially updating GIM-TEC maps hour by hour, based on the rotation of the W-index map from the preceding hour by a westward rotation of 15 degrees.
- The performance of the method is demonstrated by comparisons of Global Electron Content (GEC) from observed GIM-TEC with model results during superstorm in May 2024 and intense storm in January 2025.
- RMSE of GIM-W-TEC relative to those of uqrg
 - outperform uadg at high geomagnetic activity and
 - it is less than those of clpg results in all cases.
- 1 h W-model in this presentation is produced with uqrg.
- In the future, it would be best to apply W-model to quasi-real time uadg hour by hour since uadg has 15-minute cadence and a 2-hour UT delay.



Thank you

Acknowledgements

- Jet Propulsion Laboratory (JPL) database: https://sideshow.jpl.nasa.gov/pub/iono_daily/IONEX_rapid/
- The Universitat Politècnica de Catalunya (UPC-ionSAT) GIM: http://cabrera.upc.es/upc_ionex_GPSonly-RINEXv3/
- The Earth Data NASA GIM: https://cddis.nasa.gov/archive/gnss/products/ionex/
- W-index maps are routinely produced from 1h JPL GIM, jplr, and 15-min UPC maps uqrg and uadg GIM-TEC: https://www.izmiran.ru/ionosphere/weather/grif/Maps/.
- W-index maps are provided online by IONOLAB: https://www.ionolab.org/index.php?page=index&language=en
- W-index is published in
 - Gulyaeva, T.L.,, I. Stanislawska, Derivation of a planetary ionospheric storm index. Annales Geophysicae, 26, N.9, 2645-2648, www.ann-geophys.net/26/2645/2008/, 2008. DOI:10.5194/angeo-26-2645-2008.
 - Gulyaeva, T., & Arikan, F. (2017). Statistical discrimination of global post-seismic ionosphere effects under geomagnetic quiet and storm conditions. Geomatics, Natural Hazards and Risk, 8(2), 509-524. http://dx.doi.org/10.1080/19475705.2016.1246483.
- Hpo index is published in
 - Yamazaki, Y., Matzka, J., Stolle, C., Kervalishvili, G., Rauberg, J., Bronkalla, O., Morschhauser, A., Bruinsma, S., Shprits, Y.Y., and Jackson, D.R., Geomagnetic activity index Hpo, Geophys. Res. Lett., 2022, vol. 49, no. 10. https://doi.org/10.1029/2022GL098860