

Introduction to NASA/NSF Community Coordinated Modeling Center (CCMC)

Min-Yang Chou and CCMC team min-yang.chou@nasa.gov

- NASA Goddard Space Flight Center, Community Coordinated Modeling Center, Greenbelt, MD, USA,
- Department of Physics, Catholic University of America, Washington, DC, USA,

Multi-agency strategic investment in US space weather program

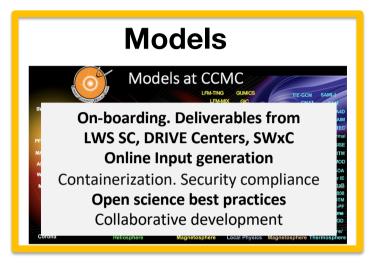
CCMC Goals

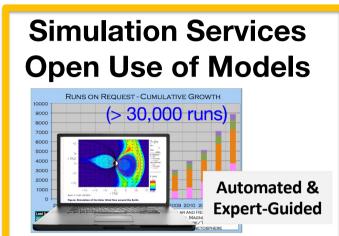
Facilitate
space weather & space science
research &
model development

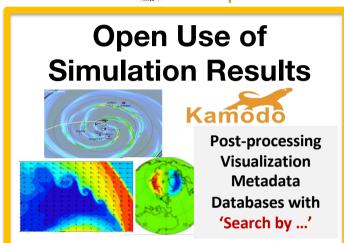
Support
transition of
advances in research to
space weather operations

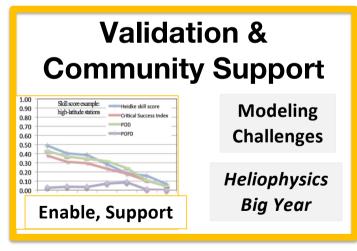
Established in 2000

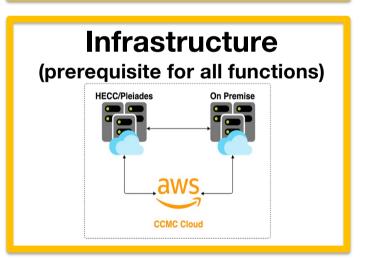
Original team: Michael Hesse (founding director), Masha Kuznetsova (deputy), Lutz Rastaetter

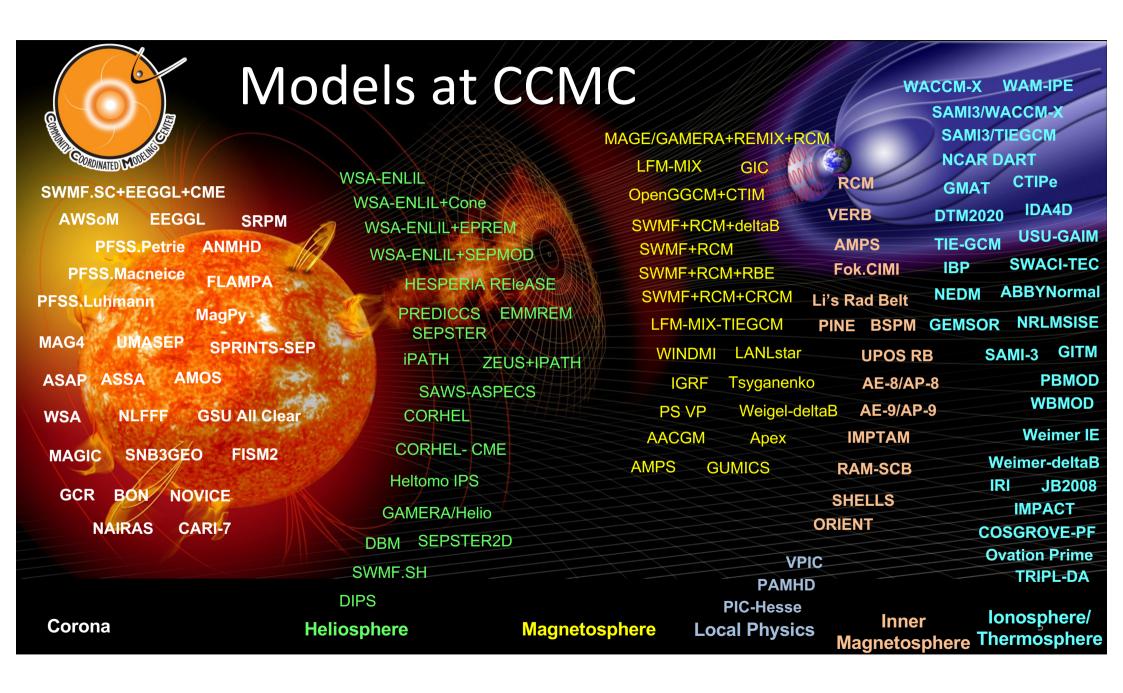



NASA CCMC Team




CCMC Core Functions





CCMC Model Simulation Service

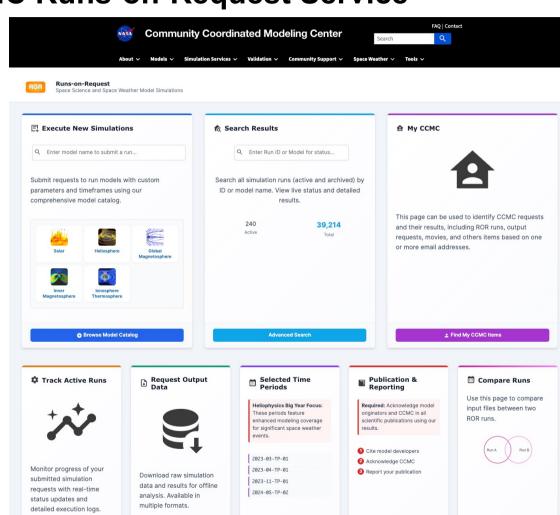
Runs on Request

Runs on Request (ROR) is a simulation service accessible to anyone wishing to execute space science and space weather models hosted by the CCMC.

Continuous/Real-time Run

Continuous/real-time runs are models that CCMC executes using near real-time observation data as inputs. Post processed results of such runs are sent to ISWA for display.

Instant Run


Simulation models that are available for instant execution and viewing of results online via the Instant-Run web app.

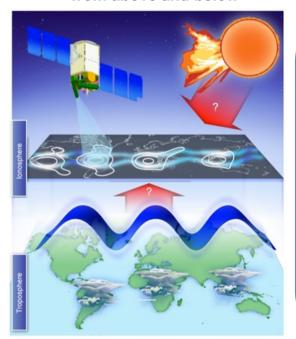
CCMC Model Catalog

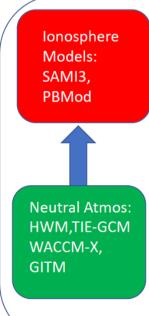
CCMC Runs-on-Request Service

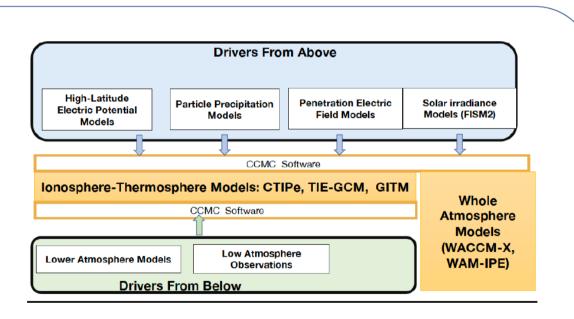
♣ Request Data Files

☑ View Time Periods Table

NSF NASA

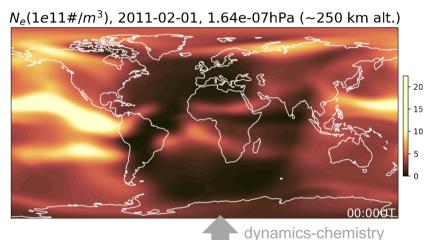

https://ccmc.gsfc.nasa. gov/ror/index.php



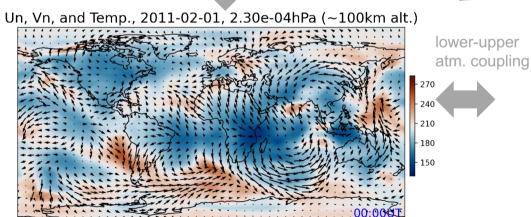

64 Models forRoR50+ Phenomena6 Space weather

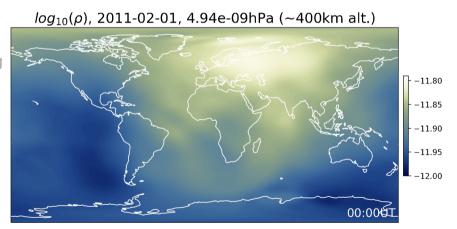
CCMC ROR service provides a solution for the coupled magnetosphere/lonosphere/thermosphere system

Space Weather Related to Forcing from above and below



Data Assimilation (NCAR DART)


WACCM-X: the Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension



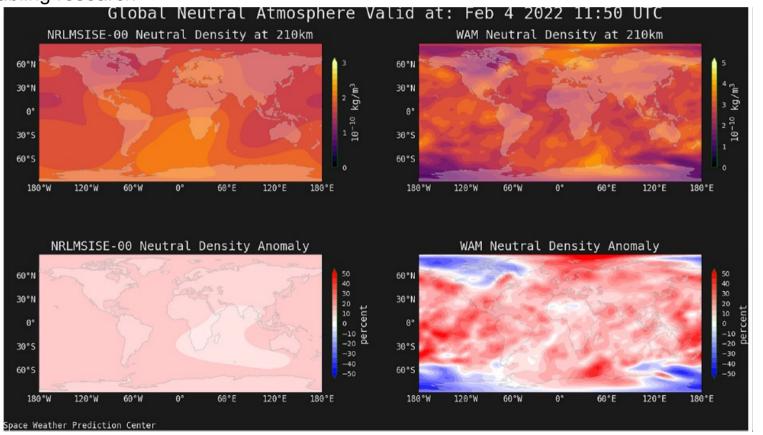
- Model domain from surface to 500 and 700 km
- Couples to ocean, sea ice, and land components, enabling studies of thermospheric/ionospheric coupling with the lower atmosphere
- WACCMX is available for ROR at CCMC
- Working on WACCMX/SWMF
- High-resolution WACCMX (0.5 degree)

coupling

TIE-GCM v3.0 for Runs-on-Request

- TIEGCM 3.0 is available at CCMC for ROR
- Enhanced spatial resolution (1.25 degree in lat and lon)
- Elevated upper boundary for the topside ionosphere (500 to 1000 km)
- Lower model boundary condition: GSWM (default) and SD-WACCMX (up to 120 km)
- TIE-GCM v3.0 is capable of reproducing observed features of day-to-day variability in the IT system

- Developer Dr. Joe Huba is working closely with CCMC.
- SAMI3 is available at CCMC for ROR
 - SAMI3/WACCMX
 - SAMI3/TIEGCM2.0
 - SAMI3/ICON-TIEGCM
 - SAMI3/HWM-MSIS
- Future plan: SAMI3/GITM, SAMI3/RCM, SAMI3/CIMI, SAMI3/REMIX
- Equatorial plasma bubble, storm and plasmasphere studies



NOAA/SWPC Whole Atmosphere Model-Ionosphere Plasmasphere Electrodynamics (WAM-IPE)

CCMC supports the R2O2R of NOAA/SWPC WAM-IPE by providing WAM-IPE RoR to community and enabling research

Fang et al., Space Weather 2022, Starlink incident

Instant Run

Explore space weather models instantly

Ionosphere / Thermosphere

GEMSOR

The GEMSOR provides occurrence rates (ORs) of blanketing sporadic-E with intensities of fbEs \geq 3 MHz. ORs are estimated from a combination of ionosonde & GNSS radio occultation observations, with a Karhunen–Loéve Expansion (KLE) used to improve temporal resolution.

HWM

Horizontal Wind Model 2014 (HWM14)

IBP

Ionospheric Bubble Probability (IBP) model.

IRI

International Reference Ionsophere (IRI).

NRLMSIS

Predictive models from NRLMSIS 00 and 2.0

SuperDARN Convection Models

Statistical convection models from the Super Dual Auroral Radar Network (SuperDARN).

Swipe

The Swipe model is an empirical model of high-latitude ionospheric electrodynamics based on Swarm ion drift measurements, and Swarm and CHallenging Minisatellite Payload (CHAMP) magnetic field measurements.

WBMOD 17

Wideband ionospheric scintillation model

Weimer

Weimer models are statistical electric potential models for the high-latitude ionosphere.

Zeeman-Stokes

This tool provides an online interactive platform to generate instantaneous polarimetric radiances with 4 Stokes parameters and their Jacobians near the 118.75 O2 spectral line by taking user specified inputs.

Geoelectric field calculation tool

The Geoelectric Field Calculator Tool allows computation of the ground geoelectric field for a given singlepoint geomagnetic field time series coupled with either a one-dimensional (1D) ground conductivity, or a three-dimensional (3D) surface impedance, ground response model.

Magnetosphere

AE-8/AP-8 RADBELT

This software package includes (1) an improved and updated version of the old MODEL program (MODEL87), (2) an interactive driver program (RADBELT), (3) the electron AE-8 and proton AP-8 flux maps for solar maximum and minimum, and (4) the interpolation subroutines.

CM5

CM5 is a member of a suite of "Comprehensive Models" (CMs) that describes the near-Earth magnetic field. CM5 is an empirical inverse model derived from pre-Swarm satellite data (CHAMP, Oersted, and SAC-C) and ground observatory data from August 2000 to January 2013.

IGRF

The International Geomagnetic Reference Field (IGRF) model is the empirical representation of the Earth's magnetic field recommended for scientific use by a special Working Group of the International Association of Geomagnetism and Aeronomy (IAGA).

Tsyganenko Magnetic Field

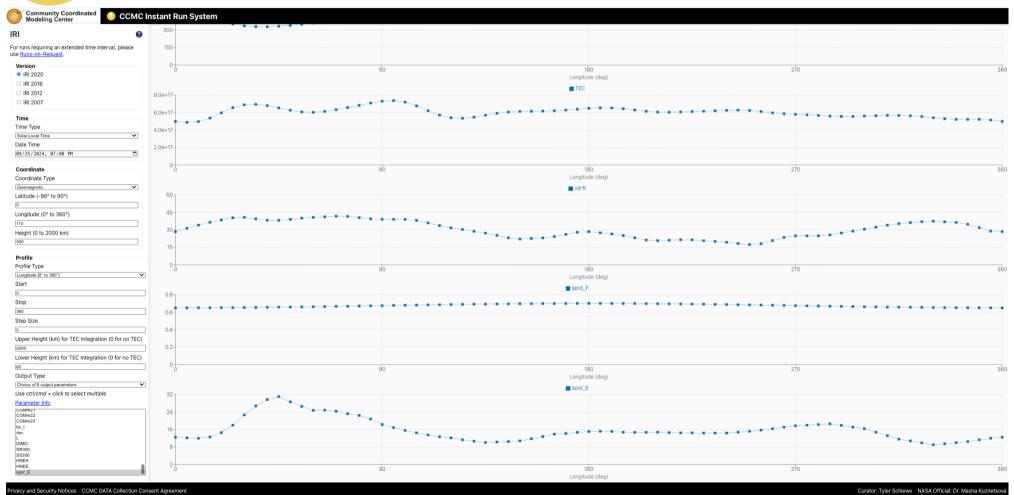
Tsyganenko models are semi-empirical best-fit representations for the magnetic field, based on a large number of satellite observations (IMP, HEOS, ISEE, POLAR, Geotail, GOES, etc). The models include the contributions from major external magnetospheric sources: ring current, magnetotail current system, magnetopause currents, and large-scale system of field-aligned currents.

Windmi

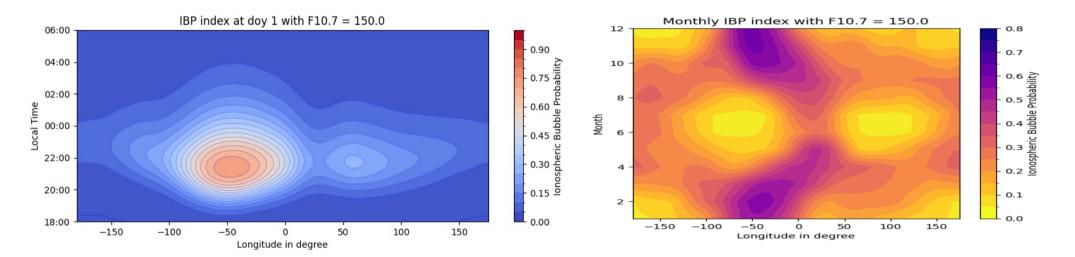
WINDMI is a low-dimensional model of the energy transfer from the solar wind through and into the ionosphere.

Heliosphere

DBM

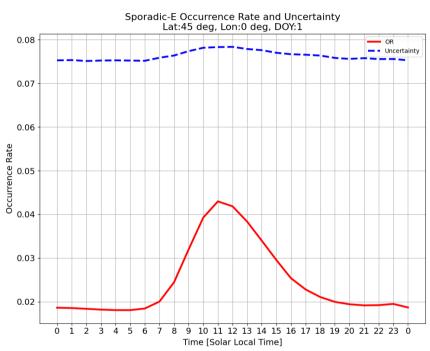

The Drag-Based Model (DBM) tool provides prediction of the interplanetary coronal ma expansion and its prediction of arrival at arbitrary location (or preselected planet or sate plane.

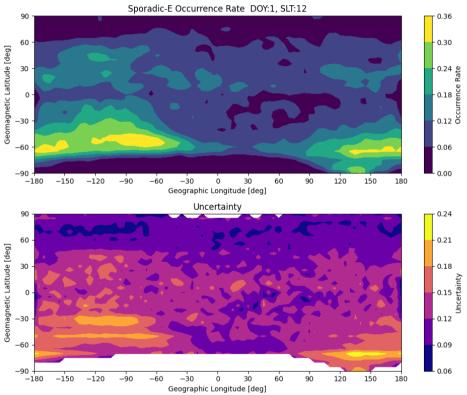
International Reference Ionosphere (IRI)



Ionospheric Bubble Probability (IBP) Model

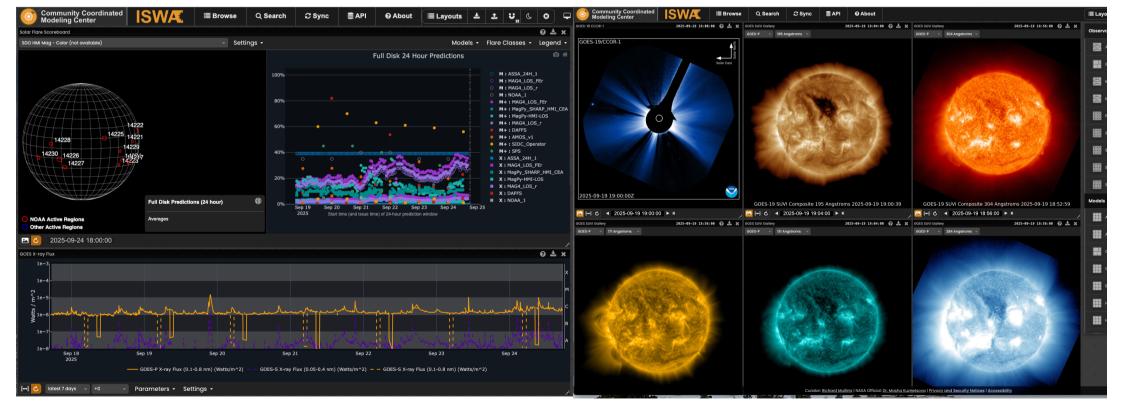
IBP is an empirical model of the plasma bubble occurrence rate derived from CHAMP and Swarm observations




Stolle, C., Siddiqui, T. A., Schreiter, L., Das, S. K., Rusch, I., Rother, M., & Doornbos, E. (2024). An empirical model of the occurrence rate of low latitude post-sunset plasma irregularities derived from CHAMP and Swarm magnetic observations. *Space Weather*, 22, e2023SW003809. https://doi.org/10.1029/2023SW003809

Global Empirical Model of Sporadic E Occurrence (GEMSOR)

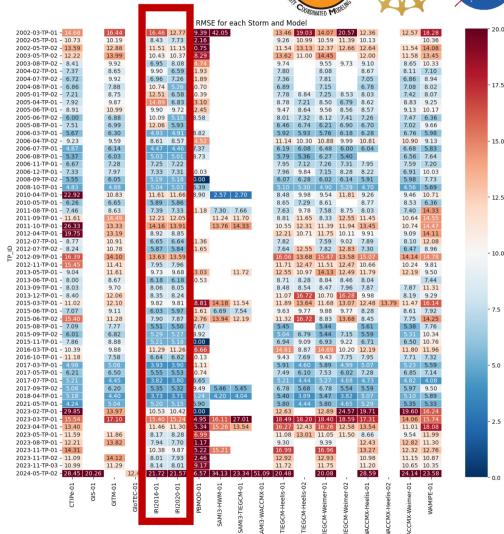
Parsch EV, Franz AL, Dao EV, Wu DL, Swarnalingam N, Salinas CCJH and Emmons DJ (2024) Global Empirical Model of Sporadic-E Occurrence Rates. Front. Astron. Space Sci. 11:1434367. doi: 10.3389/fspas.2024.1434367


Continuous Run

Continuous/real-time runs are models that CCMC executes continuously or in batch mode using near real-time observation data as inputs. Post processed results of such runs are often sent to ISWA (Integrated Space Weather Analysis), Flare Scoreboard, and/or SEP Scoreboard for display.

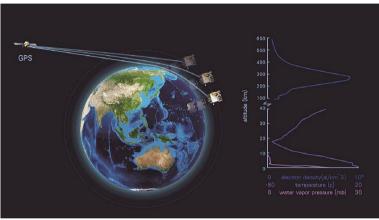
CCMC Ionospheric Model Validation Projects

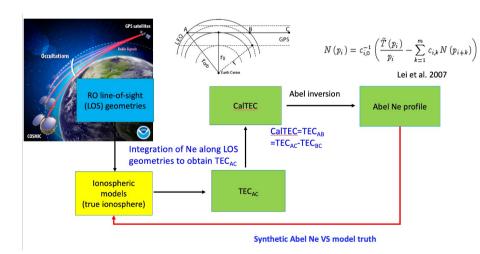
- CCMC has initiated the historic storm event (2000-2024) model validation campaign
- key parameters including:
 - Total Electron Content (TEC)
 - Critical frequency of the F2 layer (foF2)
 - Peak height of the F2 layer (hmF2)
 - Neutral density
- Using ground-based GNSS TEC, GNSS RO, ionosonde, ISR, HamSCI, etc.
- Develop ITMAP and CAMEL webapp tools to visualize the validation results


List of al	l Time	Periods:
------------	--------	----------

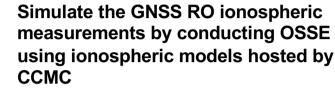
TPID	StartTime	EndTime	Max Kp	Min Dst	GM Run Series	ITM Run Series	Publications
2000-04-TP-01	2000-04-05T00:00:00Z	2000-04-09T00:00:00Z	8.667	-292.0	SWMF-01 2000-04-TP-01 050623 1 SWMF-01 2000-04-TP-01 080423 2		10.1029/2018SW002064
2000-11-TP-01	2000-11-03T12:00:00Z	2000-11-08T12:00:00Z	7.0	-159.0	SWMF-01 2000-11-TP-01 081123 2		
2001-03-TP-01	2001-03-18T12:00:00Z	2001-03-23T12:00:00Z	7.333	-149.0		İ	
2001-03-TP-02	2001-03-29T00:00:00Z	2001-04-04T00:00:00Z	8.667	-387.0	• SWMF-01.2001-03-TP-02.080623.2	■ J82008-01-2001-03-TF-02-030224 IT 1 - DTM203-01-2001-03-TF-02-030324 IT 1 - DTM203-01-2001-03-TF-02-030324 IT 1 - DTM203-01-2001-03-TF-02-030324 IT 1 - TTEGCM-Weime-01-2001-03-TF-02-030324 IT 1 - WECCMX-Heelis-01-2001-03-TF-02-030324 IT 1 - TEGCM-Heelis-01-2001-03-TF-02-030324 IT 1 - TEGCM-Heelis-01-2001-03-TF-02-030324 IT 1 - TEGCM-Heelis-01-2001-03-TF-02-030324 IT 1 - TEGCM-Heelis-01-2001-03-TF-02-030324 IT 1 - WACCMX-Weime-02-2001-03-TF-02-021324 IT 1	10.1029/2018SW002027 10.1029/2018SW002064
2001–04–TP–01	2001-04-11T00:00:00Z	2001-04-14T00:00:00Z	8.333	-271.0		DTMX020-01.2001-04-TP-01.021824 IT.1 DTMX013-01.2001-04-TP-01.021824 IT.1 DTMX013-01.2001-04-TP-01.021824 IT.1 JES008-01.0001-04-TP-01.021824 IT.1 TESCOM-Heelis-01.2001-04-TP-01.021824 IT.1 TESCOM-Heelis-01.2001-04-TP-01.021824 IT.1 CTPP-01.2001-04-TP-01.021824 IT.1 CTPP-01.2001-04-TP-01.021824 IT.1 TESCOM-Heelis-02.2001-04-TP-01.021824 IT.1 GTM-018.2001-04-TP-01.021824 IT.1 GTM-018.2001-04-TP-01.021824 IT.1 GTM-018.2001-04-TP-01.021824 IT.1 WACCMX-Weimer-01.2001-04-TP-01.021824 IT.1 WACCMX-Weimer-01.2001-04-TP-01.021824 IT.1	
2001-08-TP-01	2001-08-31T00:00:00Z	2001-09-02T00:00:00Z	4.0	-40.0			10.1002/swe.20056 10.1029/2018SW002064
2001-09-TP-01	2001-09-22T00:00:00Z	2001-09-28T00:00:00Z	7.333	-102.0		- WACCAM-Weimer-01 2001-09-TP-01 072524 IT 1 - TIEGOM-Heimer-02 2001-09-TP-01 101324 IT 1 - TIEGOM-Weimer-02 2001-09-TP-01 101324 IT 1 - TIEGOM-Heimer-02 2001-09-TP-01 101324 IT 1 - DTM2013-01 2001-09-TP-01 101324 IT 1 - DTM2020-01 2001-09-TP-01 101324 IT 1 - UM2020-01 2001-09-TP-01 113234 IT 1 - UM2020-01 2001-09-TP-01 113234 IT 1 - WACCAM-Heimir-01 2001-09-TP-01 10324 IT 1 - WACCAM-Heimir-01 2001-09-TP-01 103216 IT 1 - WAMINE-01 2001-09-TP-01 103216 IT 1 - WAMINE-01 2001-09-TP-01 103216 IT 1 - WAMINE-01 2001-09-TP-01 103216 IT 1	
2001_09_TP_02	2001-00-20100-00-007	2001-10-06700-00-707	70	-166.0		WACCMX-Weiner-0 TEGCM-Weiner-02 TEGCM-Heiner-02 DTM203-01.2001-0 DTM2020-01.2001-1 J82008-01.2001-9	

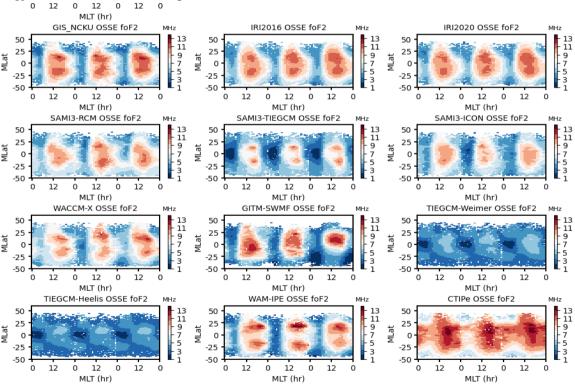
CCMC ionospheric model TEC validation for historic storm events


- 60 geomagnetic storms (2002-2024) with a single Dst trough were selected for TEC model validation
- Ionospheric models hosted by CCMC are used in the validation.
- Preliminary results show that RMSE from both empirical and physics-based ionospheric models varies significantly with the solar cycle.
- Additional model simulations will be included in the final analysis

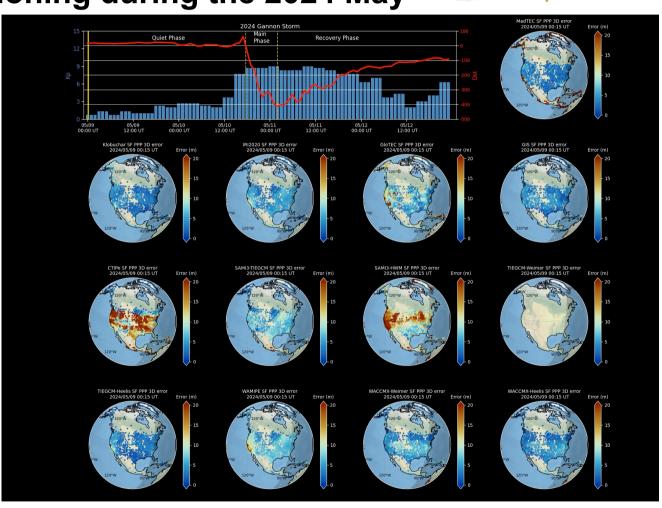


Ionospheric Model foF2 and hmF2 Validation Using GNSS Radio Occultation OSSE


FORMOSAT-7/COSMIC2 foF2 MHz



Observing System Simulation Experiment (OSSE)



Evaluate Model Performance in Single Frequency GNSS Precise Point Positioning during the 2024 May

NSF NASA

Storm

- lonosphere is the major error source for single-frequency (SF) GNSS
- The broadcast Klobuchar model is widely used but lacks accuracy
- We evaluate the communitydeveloped advanced ionospheric models in real world application

CCMC Model Validation Tools and Scoreboards

CAMEL

CAMEL is an integrated and flexible framework for comparing space weather and space science model outputs with observational data sets.

ITMAP

ITMAP is a web application for interactive and comprehensive evaluation of ionosphere and thermosphere (IT) models.

Flare Scoreboard

Real-time Forecasting Methods Validation for predicting Solar Flare events.

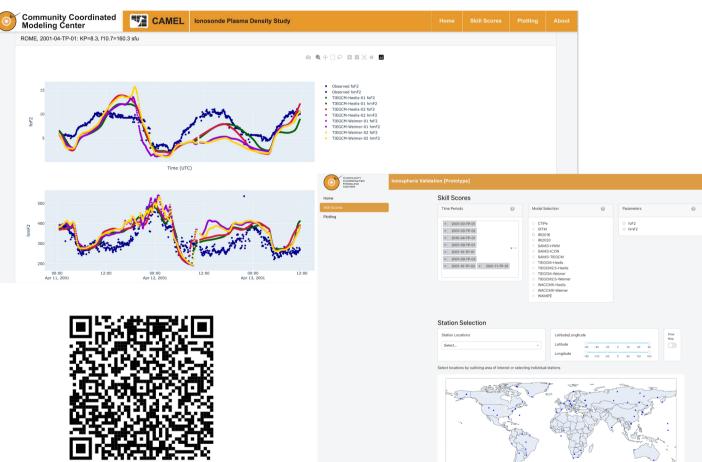
CME Arrival Time Scoreboard

Real-time Forecasting Methods Validation for Coronal Mass Ejections arrival time at Earth.

SEP Scoreboard

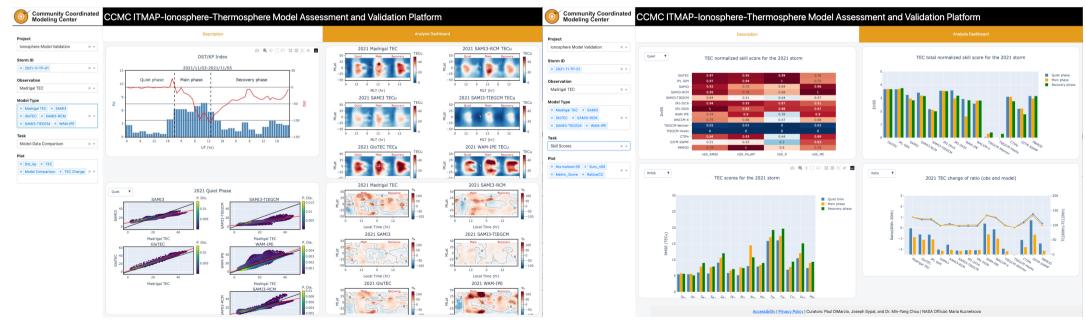
Real-time Forecasting Methods Validation for predicting Solar Energetic Particle (SEP) events.

IMF Bz Scoreboard

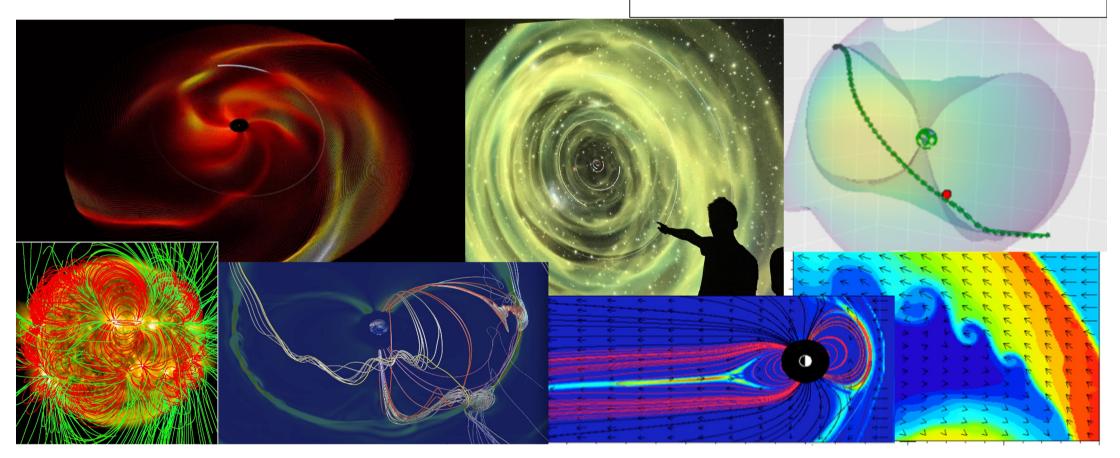

Real-time Forecasting Methods Validation for interplanetary magnetic field forecasts at L1.

The Comprehensive Assessment of Models and Events using Library Tools (CAMEL)

- Developing CAMEL webapp to show ionospheric model validation results for the historic storm events
- foF2 and hmF2 validation using ionosonde observations from GIRO
- Ionospheric foF2 and hmF2 validation is important since it greatly impacts the HF radio wave communications.



CCMC Ionosphere-Thermosphere Model (Assessment and Validation Platform (ITMAP)


- CCMC (interns: Paul and Joe) has developed ITMAP webapp to visualize CCMC model validation projects.
- Support NASA open science
- Projects include TEC, foF2, hmF2, neutral density, GNSS positioning, ray-tracing

Interactive Visualization

Lutz Rastaetter, Darren De Zeeuw, Tyler Schiewe, Elon Olsson, Anders Lundkvist

Basic model output and derived quantities User-ordered custom variables Automated movie & time series generation On-click advanced options
Field/flow lines (preset and custom)
Interfaces with Planetariums

Model Visualization and Archive

YI-AN_KO_052124_IT_8

Run Status: Run Complete

Status updated: 2024-05-21T13:29:57+0000

Run Metadata

View Full Run Metadata in the CCM
View Full Run Metadata as JSON
IT
IRI
IRI2016
GEO
event
2023/152
19 days

CCMC model visualization

- View 3D Ionosphere/Thermosphere
- Create Timeseries in 3D Ionosphere/Thermosphere
- View output in Kamodo

Run Services

Model data archive

- Request output data as a single archive file
- Browse output data

in Descrip	LIUL			
arc non		e	mi	201

ROR run for IRI 2016 with RORID YI-AN_KO_052124_IT_8

nulation Time:

Simulation Start Time: 2023-06-01T00:00:00Z Simulation End Time: 2023-06-20T00:00:00Z Time Step in second: 900 Simulation Time Description: Simulation Time Caveats:

Temporal Dependence (whether the outputs of the simulation code are time-dependent?): tru

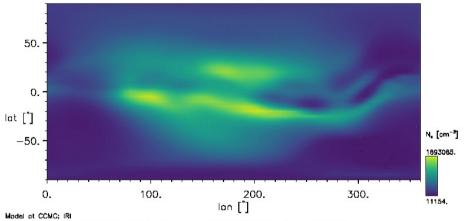
Regions:

Earth.NearSurface.Ionosphere

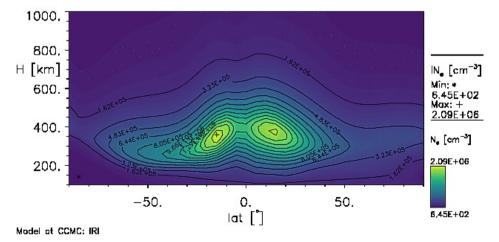
Simulation Domain Contacts:

YIAN.KO, ModelUser

List of Run Input Parameter Grouping and their associated properties


Name	Description	Caveats	<u>Properties</u>				
			Name	Description	Caveats	Units	Default Value or
			LAY_version	Standard profile or Lay-function formalism			standard
			Ne_Topside	Ne_Topside model with the following options 1.IRI-2001 2.COR2 3.IRIcor 4.NeQuick			NeQuick
			foF2_model	foF2 model with the following options 1.CCIR 2.URSI-88			URSI-88
			foF2_storm	foF2_storm: t (on)=with storm model and f (off)=without			on
			hmF2_model	hmF2 model with the following options: 1.f(M3000F2) 2.AMTB-model 3.Shubin-COSMIC model			AMTB-model
			Bottomside_thickness_B0	B0 bottomside thickness with the following options: 1. Bil-2000 2. ABT-2009 3. Gul-1987			ABT-2009

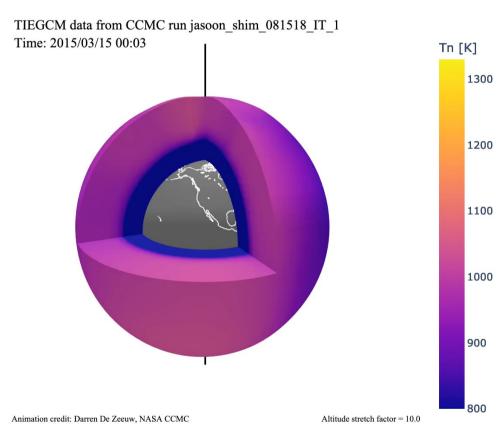
View 3D Ionosphere/Thermosphere

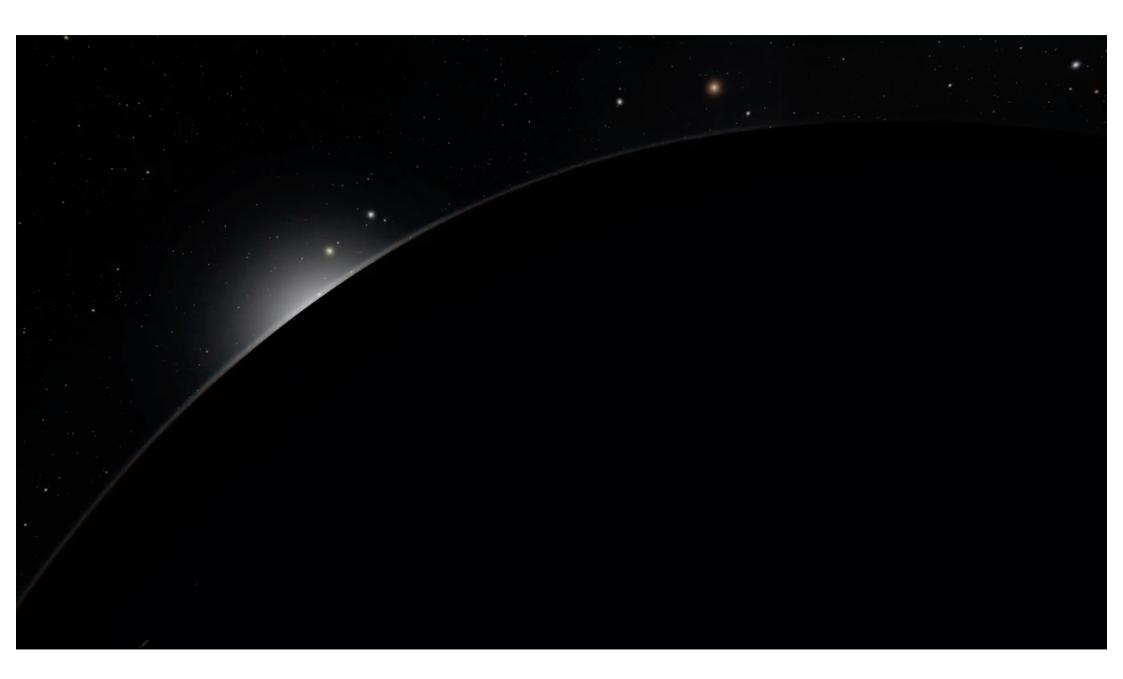


Update Plot Update Plot will update (generate) the plot with the chosen time and plot parameters below. This will take some time (typically 10-30s) as data are read in and processed. Ochoose data time: Date: 2023/06/01 Time: 00:30:00 V O Change time (relative to selected time above) O Create GIF movie (and archive of ASCII data outputs) with current plot settings Choose Plot Mode: Contour (2D) ☐ Show advanced options Choose quantity to be displayed: **Q 1:** N e \vee Customized variables are possible! Email the formula that you would like to see and that uses existing quantities to Lutz and it will be tested and added. **Plot Options for selected Plot Modes:** Contour: ✓ show values with contour levels 16 V Number of Levels ☐ Lock range: Min.: 0 Max.: 1 ☐ Log scale (use all data>0 in non-negative fields) **Choose Plot Area:** All Plot Modes except Line Plot and Vertical Plot: Select lower left corner of plot area on the left, and the upper right corner on the right. **Choose Cut Plane:** lon=constant 0 Range: 0 ... 360 deg 200 lat=constant O lat₂ 90 Range: -90 ... 90 deg lat₁ -90 H=constant O Range: 100 ... 1000 km H₁ 100 H₂ 1000 300

06/01/2023 Time = 02:00:00 UT H = 300.0 km

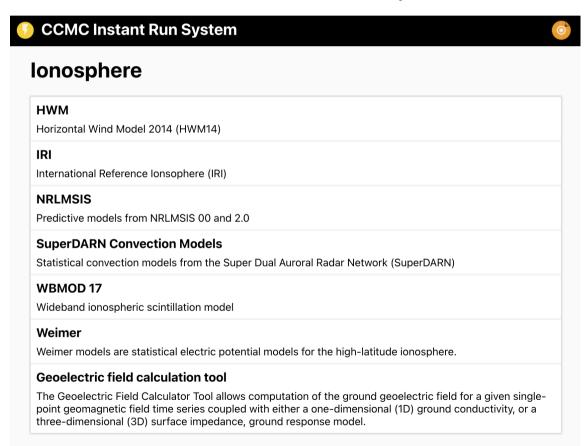
06/01/2023 Time = 01:00:00 UT lon= 200.0°




Kamodo Community Use Tool

- Kamodo is a CCMC tool for access, interpolation, and visualization of space weather models and data in python.
- NASA open source Python project on GitHub
- Access, interpolation, and visualization of space weather models
- Unit conversions, coordinate transformations
- Satellite flythrough extraction
- Dynamic interactive visualizations
- Core package in PyHC

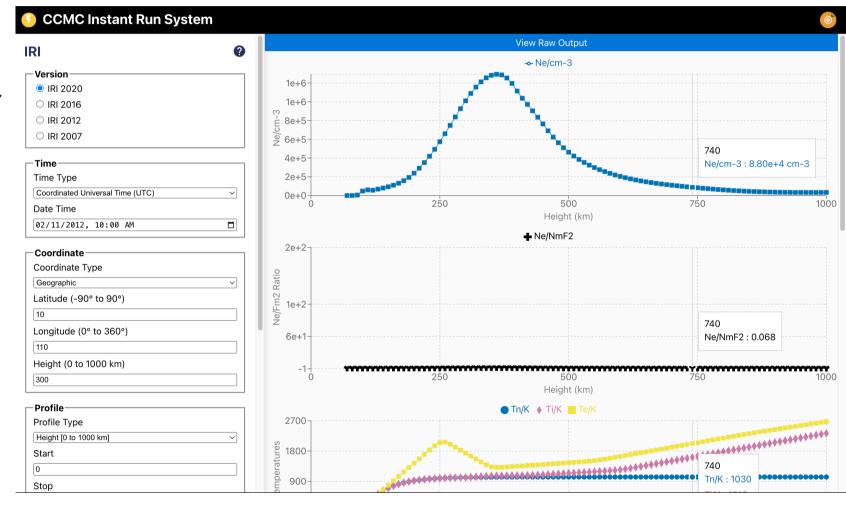
Access and Usage of IRI at CCMC



CCMC Instant Run Service

Instant Run (IR) system allow users to execute models and view results immediately via the IR web interface.

https://kauai.ccmc.gsfc.nasa.gov/inst antrun/iri/



Four versions of IRI 2020, 2016, 2012, 2007

UTC or LT

Geographic or Geomagnetic Lat, Lon, Height

yyyy/mmdd(or -ddd)/hh.h):2012/ -42/10.0UT geog Lat/Long/Alt= 10.0/ 110.0/ 300.0

CCMC Instal IRIcor2 is used for topside Ne profile URSI maps are used for the F2 peak density (NmF2) foF2 STORM model is turned on Shubin2015model is used for F2 peak height (hmF2) ABT-2009 option is used for the bottomside thickness parameter B0 Scotto-97 no L option is used for the F1 occurrence probability foE auroral storm model is turned off IRI-1990 option is used for D-region TBT-2012 with solar dependence is used for the electron temperature Tru-2021 option is used for the ion temperature RBV10+TBT15 option is used for ion composition CGM coordinates not computed auroral boundaries not computed

> Solar and magnetic parameter for the 1st profile point: Solar Zenith Angle/degree Dip (Magnetic Inclination)/degree 5.87 Modip (Modified Dip)/degree 5.89 Solar Sunspot Number (12-months running mean) Rz12 66.8 Ionospheric-Effective Solar Index IG12 77.9 Solar radio flux F10.7 (daily) 109.4 Solar radio flux F10.7 (81-day average) 116.9

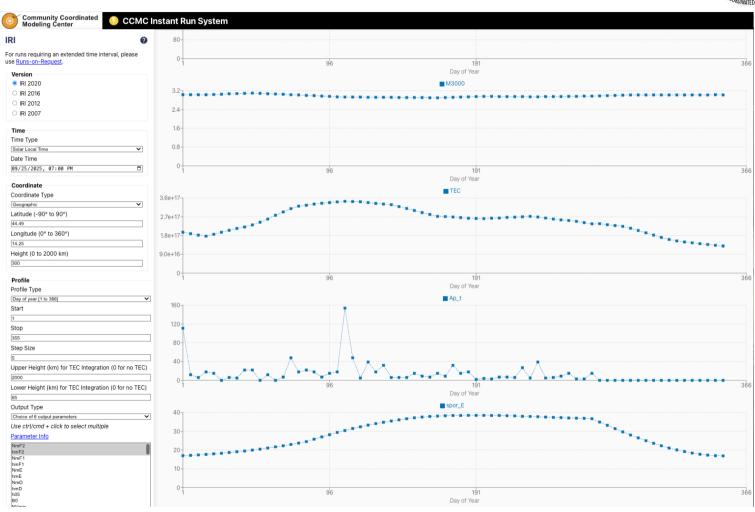
TEC [1.E16 m-2] is obtained by numerical integration in 1km steps from 50 to 2000.0 km. t is the percentage of TEC above the F peak.

HOUR	ELECTRON DE	ENSITY	TEM	PERATU	RES]	[ON P	ERCE	NTA(GES [9	s]*10	9	1E16m	1-2
U.T.	Ne/cm-3 N	Ne/NmF2	Tn/K	Ti/K	Te/K	0+	N+	H+	He+	02+	N0+	Clus	t TEC	t/%
1.0	0.9397E+06	0.994	839	868	1956	984	15	0	0	0	0	-1	25.7	66
2.0	0.9863E+06	0.920	885	888	1869	985	14	0	0	0	0	-1	30.3	61
3.0	0.9015E+06	0.847	927	927	1889	987	13	0	0	0	0	-1	31.9	58
4.0	0.8450E+06	0.822	966	966	1921	987	12	0	0	0	0	-1	32.1	56
5.0	0.8402E+06	0.827	995	995	1927	988	12	0	0	0	0	-1	31.9	56
6.0	0.8913E+06	0.842	1015	1015	1911	988	12	0	0	0	0	-1	32.4	57
7.0	0.9886E+06	0.847	1030	1030	1924	988	12	0	0	0	0	-1	34.1	58
8.0	0.1069E+07	0.832	1038	1038	1918	989	11	0	0	0	0	-1	36.2	59
9.0	0.1071E+07	0.802	1033	1033	1865	989	10	0	0	0	0	-1	36.9	59
10.0	0.1011E+07	0.781	1017	1018	1740	991	9	0	0	0	0	-1	35.5	59
11.0	0.9373E+06	0.787	988	988	1390	992	8	0	0	0	0	-1	32.1	61
12.0	0.8952E+06	0.845	946	946	1118	993	6	0	0	0	0	-1	27.9	63
13.0	0.8947E+06	0.947	902	902	973	994	6	0	0	0	0	-1	24.3	66
14.0	0.8840E+06	1.000	864	864	871	994	5	1	0	0	0	-1	22.1	69
15.0	0.8475E+06	0.992	836	839	839	994	5	1	0	0	0	-1	20.8	71
16.0	0.7702E+06	0.973	824	824	824	993	6	1	0	0	0	-1	19.1	73
17.0	0.6469E+06	0.943	820	820	820	993	5	1	0	0	0	-1	16.9	76
18.0	0.5620E+06	0.967	820	820	820	994	5	1	0	0	0	-1	14.5	77
19.0	0.4605E+06	0.980	810	810	882	995	4	1	0	0	0	-1	12.3	76
20.0	0.3172E+06	0.982	794	794	872	994	5	1	0	0	0	-1	9.2	76
21.0	0.1936E+06	0.981	776	779	878	993	6	1	0	0	0	-1	6.2	78
	0.1767E+06		763	796	1173		9	1	1	0	0	-1	5.9	79
	0.3196E+06		767	836	1890		12	1	1	0	0	-1	9.8	77
2/1 0	0 6376F±06	a aas	780	850	2160	985	1/	1	1	a	a	_1	17 R	71

	Download Output	
Ne/cm-3		
1000 Height (km)	1500	2000
→ Ne/NmF2		
1000	1500	2000
Height (km) /K ♦ Ti/K ■ Te/K		

1000	1500	2000
Height (km) H+ ● HE+ ◆ O2+ ▲ NO+		
021 21101		***************************************
-	***************************************	
1000	1500	2000
Height (km)	1000	2000

Profile Type:


- Height [0 to 1000 km]
- Latitude (-90 to 90 deg)
- Longitude (0 to 360 deg)
- Year (1961 to current)
- Month (1 to 12)
- Day of Month (1 to 31)
- Day of Year (1 to 366)
- Hour of Day (1 to 24)

Data Option:

- Standard IRI Parameters
- Peak heights and densities
- Plasma frequency, B0, M3000, Valley, width, depth
- Default 6 parameters of your choice
- D-region models at 60,65,..,110 km)

Sporadic E Occurrence Rate in ITCP, Trieste, Italy



CCMC Instant Run Service-Optional Parameters

Optional parameters
Ne topside
foF2 model
hmF2 model
Sporadic E Occ Prob
Bottomside Thickness B0
F1 model
D model
Te model
Ti model
Ion Comp model
Auroral Boundary Model
Input parameters

IRI ROR Service

Go to the CCMC website! https://ccmc.gsfc.nasa.gov/

Home Last Updated: 09/25/2025

Hosts

Model Catalog

IR	ССМС
Found 5 models Reset Filters	U vswmc
i valid 3 models	Other
IRI	Services
International Reference Ionosphere Model	_
Version: 2012	Runs-on-Request
Status: Production	Instant Run
Domains: Global Ionosphere ✓	Continuous/RT Run
Runs-on-Request Public Repository Instant Run	
	☐ ISWA layout
IRI	SWA data tree
International Reference Ionosphere Model	Flare Scoreboard
Version: 2016	
Status: Production	SEP Scoreboard Intensity
Domains: Global Ionosphere ✓	SEP Scoreboard Probability
→ Runs-on-Request	Public Repository
IRI	Statuses
International Reference Ionosphere Model	Production
Version: 2020	Production
Status: Production	Result Only
Domains: Global Ionosphere ✓	Source Only
F Instant Run → Runs-on-Request P Public Repository	Onboarding
NAIRAS	Retired
Nowcast of Aerospace Ionization RAdiation System (NAIRAS) Model	_
Version: 3.0	Domains
Status: Production	Solar
	I I Sorar

IRI ROR Service

REQUEST an IRI MODEL RUN Please fill in the form below and con	tinue with your run submission. At th	e moment, only event runs are available f	for submission.		
	ine <i>under your Run Registration Number</i> (al name of the submitter might be autom a	FirstName_LastName_MMDDYY_ModelType_ atically rejected.	RunNumber) e.g. John_Smith_0325	11_IM_1.	
You must agree to the CCMC Do you give your consent? YES	Data Policy in order to submit a r	un			
WORK OR SCHOOL EMAIL how to contact you FIRST NAME (GIVEN)* your given name		Enter a valid work or school email address Enter your given name	——	e-mail. Thi	our first name, last name, and is will generate a run number inquiries about your request
LAST NAME (FAMILY)* your family name RUN NUMBER* max 10 runs per day	choose run number for today 💙	Enter your family name Enter run number you have not used today already		and for sea results	arching/viewing the run's
KEYWORDS* helps to sort and search the results of simulations NSF OR NASA PROJECT NUMBER (Optional) Projects funded by NSF or NASA are processed with a higher priority		Enter keywords Enter NSF or NASA grant number			

IRI ROR Service

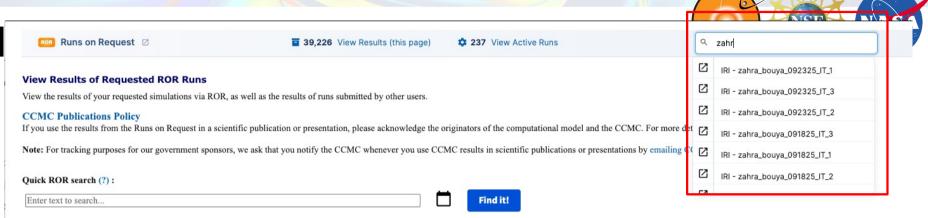
REQUEST an IRI MODEL RUN (CONTINUED) Please specify optional model parameters. Step 4: MODEL OPTIONS LAY_version standard Ne_Topside NeQuick ~ foF2_model URSI-88 foF2_storm with storm model (on) Ne_Topside_storm without foF2 storm model (off > hmF2_model AMTB-model Sporadic_E_Occ_Prob Bottomside_thickness_B0 ABT-2009 F1_model Scotto-1997-no-L E_peak_auroral_storm IRI-1990 v Te TBT-2012_PF107 ~ Ti Bil-1981 ~ lon_comp_model RBV10/TBT15 ~ Auroral_boundary_model

Step 5: ADVANCED MODEL OPTIONS Longitude Start, End, Step size Range: 0-360° or -180-180° | Step Size ≥ 1° 0,360,5 Latitude Range: -90-90° | Step Size ≥ 1° -90.90.5 Start, End, Step size Altitude 100,1000,20 Range: 90-3000 km | Step Size ≥ 10 km Start, End, Step size Universal Time 0,24,0.25 Range: 0-24 hrs | Step Size ≥ 0.25 hrs Start, End, Step size Upper height for TEC integration 2000 Range: 65-30,000 km lower height for TEC integration 65 Range: 65-30,000 km

IRI

S

IRI ROR Service-Historic runs



Please CONFIRM your selected options: *If you would like to CHANGE any of the options selected below, please GO BACK and change your submission. Otherwise, proceed to submit your request. We also suggest exploring the list of other runs in CCMC archive that overlap the chosen dates and might cover the same phenomenon: Click on model name to expand the list + TIE-GCM + SWMF + NRLMSIS [2024-01-01 - 2024-04-25] DOHYEON_LEE_042624_IT_10 [2024-01-01 - 2024-07-28] DOHYEON_LEE_072924_IT_2 [2024-01-01 - 2024-08-05] DOHYEON LEE 080624 IT 5 [2024-01-01 - 2024-01-10] Guan_Ruobing_031824_IT_2 [2024-01-03 - 2024-04-02] KHEYALI BARMAN 040324 IT 10 [2024-01-01 - 2024-04-25] Lee_Dohyun_042624_IT_10 [2024-01-01 - 2024-05-04] Lee Dohyun 050524 IT 1 [2024-01-01 - 2024-04-03] Lei_Shi_040424_IT_1 [2024-01-01 - 2024-03-26] Matilde_Mendes_030524_IT_7 [2024-01-01 - 2024-04-22] Mohammad_Salem_042524_IT_10 [2023-12-31 - 2024-01-02] NINGHSIANG YANG 052224 IT 1 [2023-03-21 - 2024-02-29] THANAPON_KEOKHUMCHENG 031124 IT 1 [2024-01-01 - 2024-05-31] Tyler_Eddy_070224_IT_4 [2024-01-01 - 2024-05-31] Tyler_Eddy_070224_IT_6 [2024-01-01 - 2024-01-30] Wayne Zhou 032624 IT 1 [2024-01-01 - 2024-01-02] ali_ali_040524_IT_1 [2024-01-01 - 2024-01-30] vian ko 041724 IT 10 [2024-01-01 - 2024-01-10] ze yao 042124 IT 10 + HWM14 + ENLIL **GO BACK** SUBMIT REQUEST + <u>HWM14</u> + ENLIL

Important!

Every submission takes time and resource

Model

Search runs based on model input parameters:

Faceted Search

Tailored run search and browsing by a domain:

Solar Mode Results

Heliosphere Models Results

Global Magnetosphere Models Results

Inner Magnetosphere Models Results

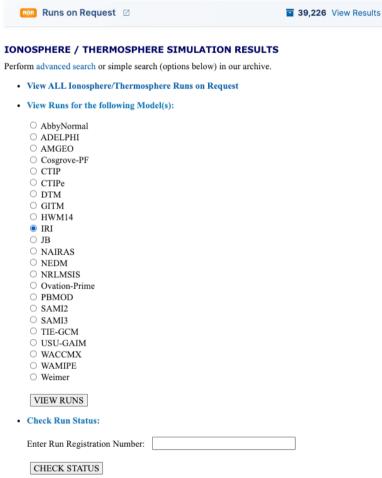
Ionosphere / Thermosphere Models Results

Local Physics Models Results

Post Processing Request Results

Request output for an executed run

Request raw or CDF-format output for a model run executed at the CCMC.


Notes: CDF output is available only for select models; we cannot provide output for instant runs.

Model Visualization and Archive

237 View Active Runs

Q Enter Run ID or Model for status...

► Runs on Request: IT Simulations Results

Total Number of Runs in the Database: 12847 Total Number of Search Results in this Database: 1389

* Please scroll on the table horizontally to see all of the column

Status	Run Number	Key Words	Model	Model Version	Validation Level	Year	DoY at Start	F10.7 at Start	F10.7 (three year average)	Type	Input Type	Event Date	Start Time	Run Duration	2D or 3D Model	Latitude of Magnetic	Geographic Longitude of Magnetic Longitudinal Slice (for 2D Model)	Minimum Altitude at Magnetic Equator (for 2D Model)	Altitude at
Published	Aswini_SL_092525_IT_1	IONOSPHERE TEC	IRI	IRI2020		2024	286	0.00000	0.00	event		12, 2024	00:00:00	5760		0.00	0.00		
Published	zahra_bouya_092325_IT_2	research	IRI	IRI2020		2023	60	0.00000	0.00	event		01, 2023	00:00:00	43200		0.00	0.00		
Published	zahra_bouya_092325_IT_1	research	IRI	IRI2020		2025	220	0.00000	0.00	event		08, 2025	00:00:00	66240		0.00	0.00		
Published	zahra_bouya_092325_IT_3	research	IRI	IRI2020		2023	90	0.00000	0.00	event		31, 2023	00:00:00	43200		0.00	0.00		
Published	chen_haonan_092225_IT_1	2017250	IRI	IRI2020		2017	249	0.00000	0.00	event		06, 2017	00:00:00	2880		0.00	0.00		
Published	Jie_Zhang_092225_IT_5	TEC	IRI	IRI2020		2025	100	0.00000	0.00	event		10, 2025	00:00:00	72000		0.00	0.00		
Published	Jie_Zhang_092125_IT_5	TEC	IRI	IRI2020		2025	100	0.00000	0.00	event		10, 2025	00:00:00	72000		0.00	0.00		
Published	zahra_bouya_091825_IT_1	research	IRI	IRI2020		2025	232	0.00000	0.00	event		20, 2025	00:00:00	38880		0.00	0.00		
Published	zahra_bouya_091825_IT_2	research	IRI	IRI2020		2025	232	0.00000	0.00	event		20, 2025	00:00:00	40320		0.00	0.00		
Published	zahra_bouya_091825_IT_3	research	IRI	IRI2020		2025	232	0.00000	0.00	event		20, 2025	00:00:00	40320		0.00	0.00		
Published	zahra_bouya_091725_IT_3	research	IRI	IRI2020		2025	232	0.00000	0.00	event		20, 2025	00:00:00	38880		0.00	0.00		
Published	zahra_bouya_091725_IT_4	research	IRI	IRI2020		2025	232	0.00000	0.00	event		20, 2025	00:00:00	38880		0.00	0.00		
Published	zahra_bouya_091725_IT_5	research	IRI	IRI2020		2025	232	0.00000	0.00	event		20, 2025	00:00:00	38880		0.00	0.00		
Published	zahra_bouya_091725_IT_1	research	IRI	IRI2020		2025	232	0.00000	0.00	event		20, 2025	00:00:00	38880		0.00	0.00		
Published	Prajakta_Chougule_091625_IT_1	Total Electron content over India\r\n	IRI	IRI2020		2023	59	0.00000	0.00	event		28, 2023	00:00:00	102240		0.00	0.00		
Published	zahra_bouya_091525_IT_2	research	IRI	IRI2020		2023	81	0.00000	0.00	event		22, 2023	00:00:00	63360		0.00	0.00		
Published	zahra_bouya_091525_IT_1	research	IRI	IRI2020		2025	232	0.00000	0.00	event		20, 2025	00:00:00	36000		0.00	0.00		
Published	cy_Fei_091325_IT_5	2020TEC	IRI	IRI2016		2020	1	0.00000	0.00	event		01, 2020	00:00:00	524160		0.00	0.00		
Published	cy_Fei_091325_IT_4	2021TEC	IRI	IRI2020		2021	1	0.00000	0.00	event		01, 2021	00:00:00	524160		0.00	0.00		
Published	cy_fei_091225_IT_1	TEC2020	IRI	IRI2020		2020	1	0.00000	0.00	event		01, 2020	00:00:00	524160		0.00	0.00		
Published	cy_fei_091225_IT_2	2020fof2	IRI	IRI2020		2020	1	0.00000	0.00	event		01, 2020	00:00:00	524160		0.00	0.00		
Published	cy_fei_091225_IT_3	2020tec	IRI	IRI2020		2020	1	0.00000	0.00	event		01, 2020	00:00:00	524160		0.00	0.00		
Published	RAJESH_BARAD_091025_IT_1	rkb	IRI	IRI2020		2025	200	0.00000	0.00	event		19, 2025	00:00:00	28800		0.00	0.00		
Published	Lin_Zhishu_090925_IT_1		IRI	IRI2016		2020	200	0.00000	0.00	event		18, 2020	00:00:00	1440		0.00	0.00		
Published	anahita_roshani_090325_IT_1		IRI	IRI2020		2025	1	0.00000	0.00	event		01, 2025	00:00:00	2880		0.00	0.00		
Published	zahra_bouya_090325_IT_4		IRI	IRI2020		2025	236	0.00000	0.00	event		24, 2025	00:00:00	12960		0.00	0.00		
Published	haijun_wu_090225_IT_1		IRI	IRI2020		2013	76	0.00000	0.00	event		17, 2013	00:00:00	1440		0.00	0.00		
Published	Gabriela_Felix_090125_IT_10		IRI	IRI2016		2001	1	0.00000	0.00	event		01, 2001	00:00:00	525600		0.00	0.00		
Published	Malkiat_Singh_083125_IT_1		IRI	IRI2016		2025	160	0.00000	0.00	event		09, 2025	00:00:00	1440		0.00	0.00		
Published	Maryna_Shulha_082825_IT_1		IRI	IRI2020		2008	292	0.00000	0.00	event		18, 2008	00:00:00	17280		0.00	0.00		
Published	Hager_Salah_082825_IT_10		IRI	IRI2020		2024	1	0.00000	0.00	event		01, 2024	00:00:00	524160		0.00	0.00		
Published	Maryna_Shulha_082725_IT_1		IRI	IRI2020		2008	297	0.00000	0.00	event		23, 2008	00:00:00	12960		0.00	0.00		
Published	kexin_ZHOU_082725_IT_10		IRI	IRI2020		2024	- 5	0.00000	0.00	event		05, 2024	00:00:00	522720		0.00	0.00		

Model Visualization and Archive

YI-AN_KO_052124_IT_8

Run Status: Run Complete

Status updated: 2024-05-21T13:29:57+0000

Run Metadata

Metadata Record:	View Full Run Metadata in the CCM
Metadata as JSON:	View Full Run Metadata as JSON
Model Domain:	IT
Model Name:	IRI
Model Version:	IRI2016
Coordinate System for the output:	GEO
Run type:	event
Start Time (Year/Doy):	2023/152
Duration of the run:	19 days

CCMC model visualization

- View 3D Ionosphere/Thermosphere
- Create Timeseries in 3D Ionosphere/Thermosphere
- View output in Kamodo

Run Services

Model data archive

- Request output data as a single archive file
- Browse output data

Run	Description	

CCMC ROR run for IRI 2016 with RORID YI-AN_KO_052124_IT_8

Simulation Time

Simulation Start Time: 2023-06-01T00:00:00Z Simulation End Time: 2023-06-20T00:00:00Z Time Step in second: 900 Simulation Time Description: Simulation Time Cayests:

Temporal Dependence (whether the outputs of the simulation code are time-dependent?): tru

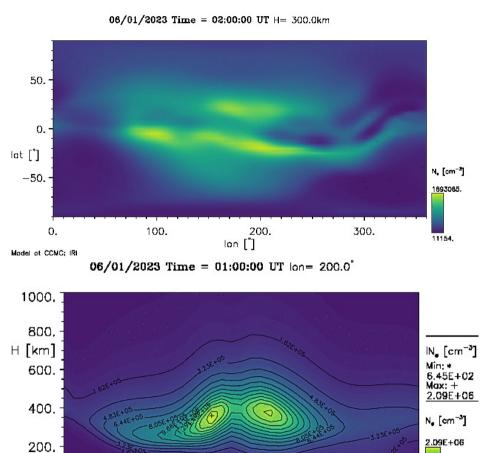
Regions

Earth.NearSurface.Ionosphere

Simulation Domain

VIAN FO Modellion

List of Run Input Parameter Grouping and their associated properties


Name	Description	Caveats		Properties			
			Name	Description	Caveats	Units	Default Value or a
			LAY_version	Standard profile or Lay-function formalism			standard
			Ne_Topside	Ne_Topside model with the following options 1.IR1-2001 2.COR2 3.IRIcor 4.NeQuick			NeQuick
			foF2_model	foF2 model with the following options 1.CCIR 2.URSI-88			URSI-88
			foF2_storm	foF2_storm: t (on)=with storm model and f (off)=without			on
			hmF2_model	hmF2 model with the following options: 1.f(M3000F2) 2.AMTB-model 3.Shubin-COSMIC model			AMTB-model
			Bottomside_thickness_B0	B0 bottomside thickness with the following options: 1. Bil-2000 2. ABT-2009 3. Gul-1987			ABT-2009

View 3D Ionosphere/Thermosphere

This will take some time (typically 10-30s) as data are read in and processed. Ochoose data time: Date: 2023/06/01 Time: 00:30:00 V O Change time (relative to selected time above) O Create GIF movie (and archive of ASCII data outputs) with current plot settings Choose Plot Mode: Contour (2D) ☐ Show advanced options Choose quantity to be displayed: **Q 1:** N e \vee Customized variables are possible! Email the formula that you would like to see and that uses existing quantities to Lutz and it will be tested and added. **Plot Options for selected Plot Modes:** Contour: ✓ show values with contour levels 16 V Number of Levels Lock range: Min.: 0 Max.: 1 ☐ Log scale (use all data>0 in non-negative fields) **Choose Plot Area:** All Plot Modes except Line Plot and Vertical Plot: Select lower left corner of plot area on the left, and the upper right corner on the right. **Choose Cut Plane:** lon=constant 6 Range: 0 ... 360 deg 200 lat=constant O lat₂ 90 Range: -90 ... 90 deg lat₁ -90 H=constant O Range: 100 ... 1000 km H₁ 100 H₂ 1000 300

Update Plot Update Plot will update (generate) the plot with the chosen time and plot parameters below.

0.

lat []

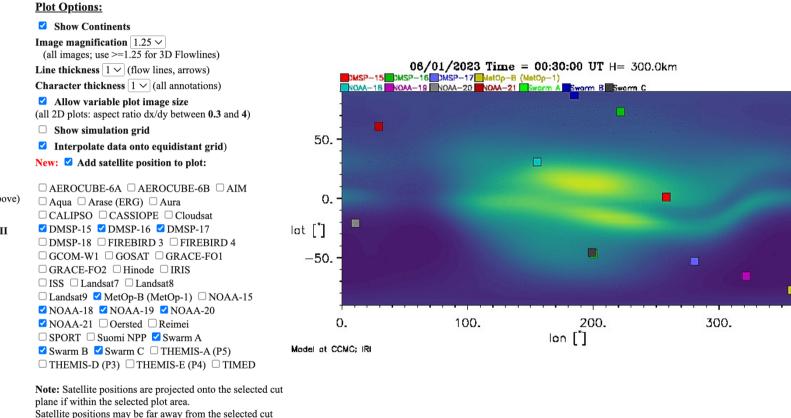
50.

6.45E+02

-50.

Model at CCMC: IRI

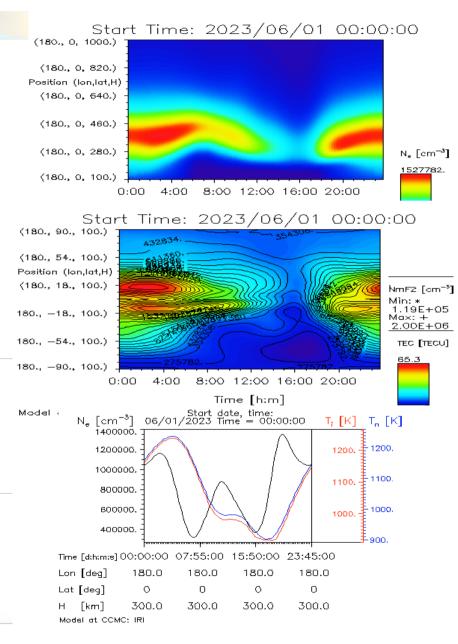
☐ Trace flow or field line from satellite positions using


vector field NoVector V

TEC [TECU]

64.2

Da	ate: 2023/06/01 Time: 00:30:00 V
0	Change time (relative to selected time
0	Create GIF movie (and archive of AS
	ta outputs) with current plot settings


Timeseries plot visualization

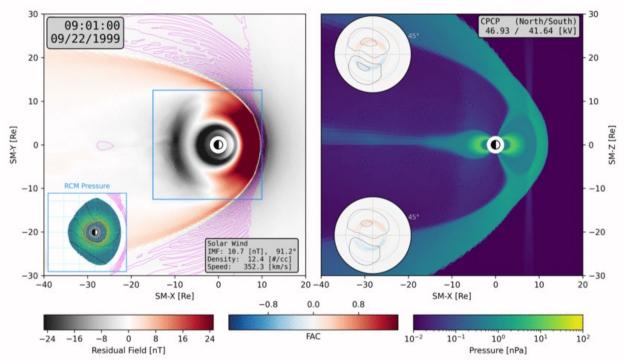
Model: IRI Run: YI-AN_KO_052124_IT_8

Publication Policy: Please contact the model owners before you use results for any presentation or publication (full Publication Policy).

To track usage for our government sponsors, we ask that you notify CCMC staff whenever you use CCMC results in a scientific publication or presentation. Thank you go back to web page of run

Go back to web page		k that you	noutry Conte stati whenever you use Conte testits in a scientific publication of presentation. Thank you.
			with the chosen time and plot parameters below.
This will take some	time (typically 10-30s) as da	ta are rea	l in and processed.
		Plot (Options:
		□ Use	e satellite track
•	: 2023/06/01 Time: 00:00:00 \ : 2023/06/01 Time: 23:45:00 \ e:		© upload trajectory file: Choose File No file chosen Text file with 10 space-separated columns of numbers headed by 'Year Month Day Hour Minute Second ms Lon Lat H' (≤100000 lines of ≤150 characters each). © Use satellite name at SSCWeb (April 9, 2020: this feature may tail with the response time from SSCWeb being unusually long. We have contacted them to resolve the issue.): AEROCUBE-6A ✓ Note: Satellites may not always be in the modeled region and model lata may be unavailable.
		(all i	magnification 1 v mages; use >=1.25 for 3D Flowlines)
Choose Plot Mode: ColorContour (2D)		be displaye	d (some Plot Modes require up to three choices): Q 3: T_i
Plot Options for	selected Plot Modes:		
Trajectory Plots: View angles:			
AX [-9090]: 30			
Color Contour, Tr			
Color table: gsfc:		~	
Min.: -1	Max.: 1		
	all data>0 in non-negative fiel	ds)	
	values with contour levels		
Vector: length of a	arrows: 3.0 V		
	jectory Plot: Select start point	line on the	the left, the end point on the right. left, the end point on the right. s to be selected, too.
Lon_1	180 Lon ₂	180	Range: -360 360 deg.
Lat ₁	0 Lat ₂	0	Range: -90 90 deg.
H_1	100 H	12 1000	Range: 100 1000 km
Reset Form Res	set Form will reset changes to	the default	s specified by the previous run of this script.
Update Plot Un	date Plot will update (generate	e) the plot	with the chosen time and plot parameters above.

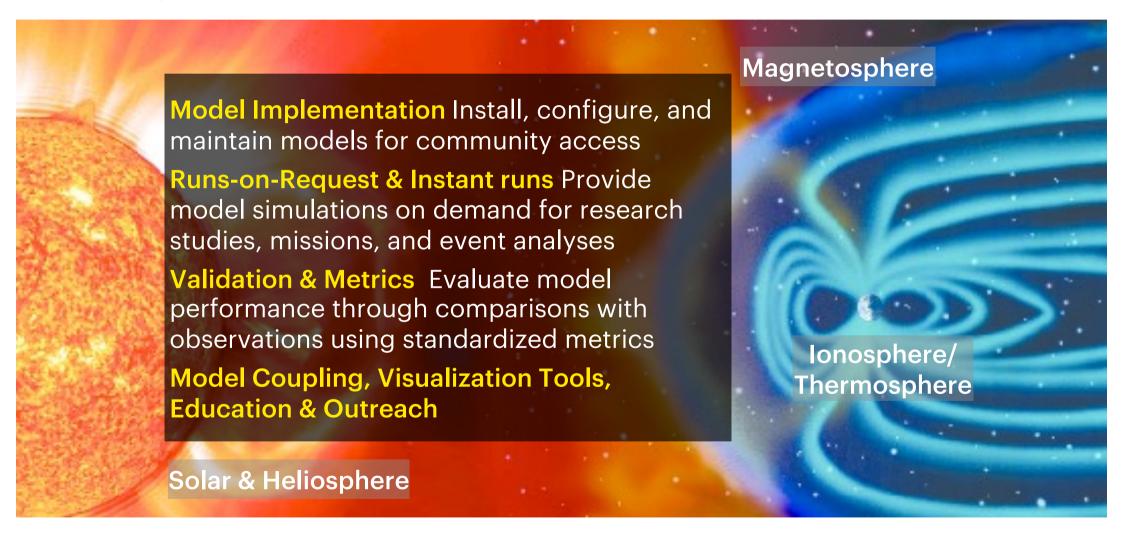
Thank you



Backup slides

MAGE (Multiscale Atmosphere Geospace Environment model suite)

First Deliverable to CCMC from NASA DRIVE Science Center for Geospace Storms(CGS)



MAGE model is a comprehensive geospace modeling framework

- coupled GAMERA magnetosphere
- RCM ring current
- ReMIX ionosphere electrostatics solver

- Kaipy, visualization tools developed by CGS, is available at the CCMC
- Provides on-the-fly visualization w/o requiring dataset downloads

CCMC mission: Bridging the Gap Between Space Weather Model Development and End Users

Last 7 Days Last 30 Days Last 12 Months

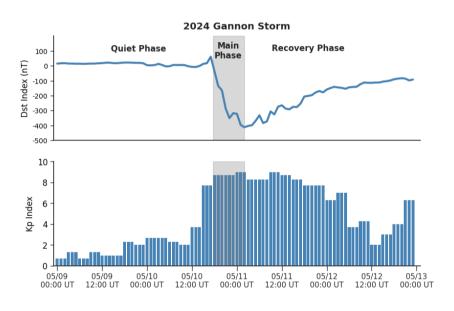
New Requests	
[SAMI3] Sneha_Vengurlekar_062625_IT_1	In Queue
[MAGE] Sydney_Kinsella_062725_GM_3	(i
[MAGE] Sydney_Kinsella_070325_GM_1	(
[MAGE] Annmarie_Scalise_070325_GM_1	I
[MAGE] Annmarie_Scalise_070325_GM_3	I
[MAGE] Sydney_Kinsella_071125_GM_2	(
[MAGE] Annmarie_Scalise_071125_GM_1	(1
[MAGE] Sydney_Kinsella_071125_GM_3	(i
[MAGE] Annmarie_Scalise_071125_GM_2	(i
[MAGE] Annmarie_Scalise_071125_GM_3	(1
[SWMF-AWSoM] Igor_Sokolov_071625_SH_1	I
[GAMERA-Helio] SHIVAM_PARASHAR_072425_SH_1	In Queue
[SAMI3] SAMI3-WACCMX-01_2002-03-TP-01_080825_IT_1	1
[SAMI3] SAMI3-HWM-01_2003-08-TP-02_081225_IT_1	(i
[SAMI3] SAMI3-HWM-01_2004-02-TP-01_081225_IT_1	(1
[SAMI3] SAMI3-TIEGCM-01_2006-11-TP-01_081225_IT_1	1
[SAMI3] SAMI3-TIEGCM-01_2003-05-TP-02_081225_IT_1	(i
[SAMI3] SAMI3-WACCMX-01_2003-05-TP-02_081425_IT_1	(i
[SAMI3] SAMI3-TIEGCM-01_2004-02-TP-01_081425_IT_1	1
[SAMI3] SAMI3-HWM-01_2005-01-TP-02_081425_IT_1	(i

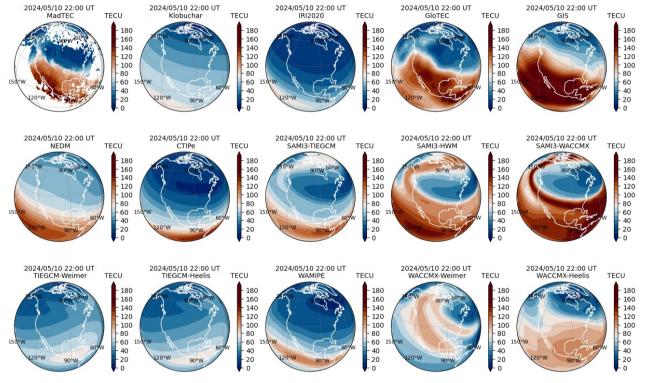
coconut Currently using 49% of 1200 cores	
[LFM] Jose_Espinoza_061625_GM_1	Error
[LFM] Jose_Espinoza_061625_GM_2	Error
[ENLIL] Arik_Posner_071825_SH_1	Error
[SWMF] Amar_Deep_082225_GM_1	88%
[SWMF] X_GOU_082525_GM_1	33%
[SWMF] Michaela_Mooney_091825_GM_1	20%
[ENLIL] PreitySukla_Sahani_092425_SH_1	100%
[ENLIL] PreitySukla_Sahani_092425_SH_2	90%
dream Currently using 35% of 800 cores	
[CORHEL] NITIN_VASHISHTHA_090725_SH_1	1%
[CORHEL] Peter_MacNeice_092425_SH_1	1%
lahaina Currently using 14% of 960 cores	
[SAMI3] shadow_Junior_082225_IT_9	Post Processing

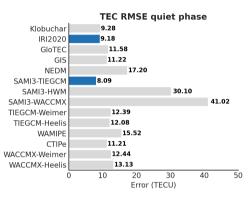
peanut Currently using 50% of 1456 cores	
[OpenGGCM] SHERINANN_ABRAHAM_070825_GM_1	Post Processing
[OpenGGCM] SHERINANN_ABRAHAM_070825_GM_3	Post Processing
[OpenGGCM] SHERINANN_ABRAHAM_070825_GM_7	Post Processing
[SWMF] yu_gan_091525_GM_2	Post Processing
[SWMF] he_shen_091625_GM_2	Post Processing
[SWMF] Christopher_Ramos_091925_GM_1	
[TIE-GCM] aibin_zhang_090325_IT_5	Erro
ror	
[EUHFORIA] Maksym_Petrenko_053025_SH_1	_
[EUHFORIA] Maksym_Petrenko_053025_SH_1	
[EUHFORIA] Maksym_Petrenko_053025_SH_1 [NLFF] Manju_Sudhakar_060525_SH_2 [AMGEO] SHERIN_ABRAHAM_082425_IT_1	
[EUHFORIA] Maksym_Petrenko_053025_SH_1 [NLFF] Manju_Sudhakar_060525_SH_2	

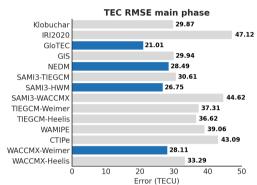
Flare Scoreboard

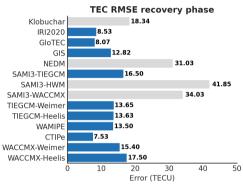
Real-time forecasting methods validation for predicting solar

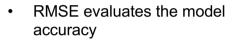

flare events

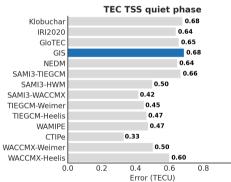


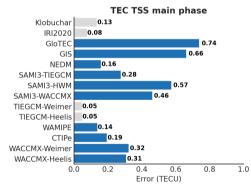


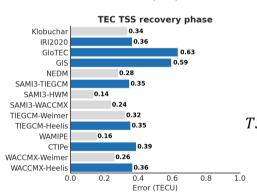












 Taylor Skill Score (Taylor, 2001) evaluates skills in simulating ionosphere TEC spatial and temporal variations

$$SS = \frac{4(1+R)^4}{(\sigma_{mod}/\sigma_{obs} + \sigma_{obs}/\sigma_{mod})^2 (1+R_0)^4}$$

TSS=1 perfect TSS=0 worst

Space weather societal impact

- Ionosphere variability (navigation, communications)
- Atmosphere variability (satellite/debris drag)
- Geomagnetically induced currents GICs (electric power systems)
- Near-earth radiation and plasma environment (aerospace assets functionality)
- Solar energetic particles SEPs (human exploration, aviation safety, aerospace assets functionality)
- Galactic cosmic rays GCRs (human exploration, aviation safety, aerospace assets functionality)