

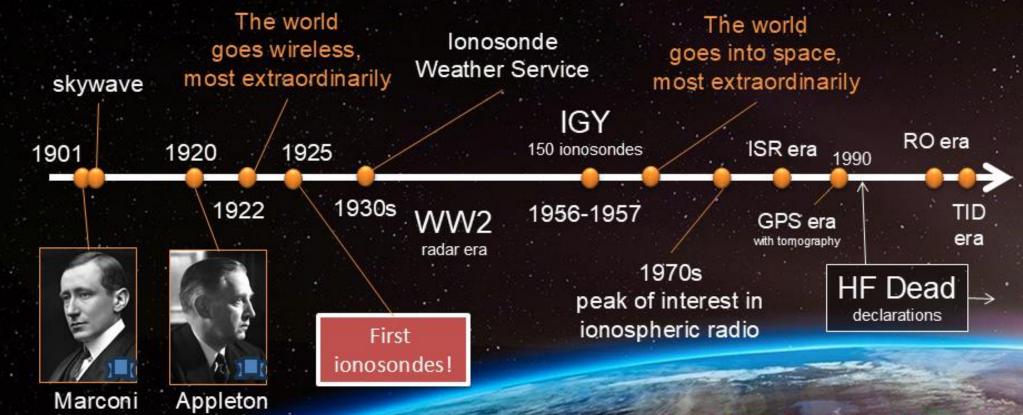
Prelude I

Prelude 2: Columbus' Discovery

Much like a Scientific Discovery

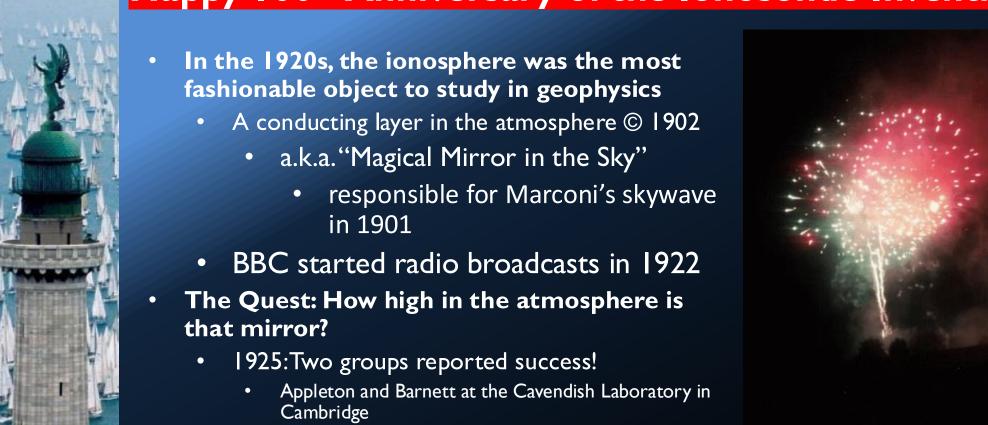
- Grand idea: the Earth is round and, by sailing West, my ship can reach India
 - Not an original idea, but he got new information
 - Terrible ordeal looking for funding
 - Did not find India, found something else
 - In spite of all evidence, remained convinced he found India
 - No recognition of his accomplishment during his lifetime
 - Multiple proofs he was not the first European to reach America

Marconi's Discovery

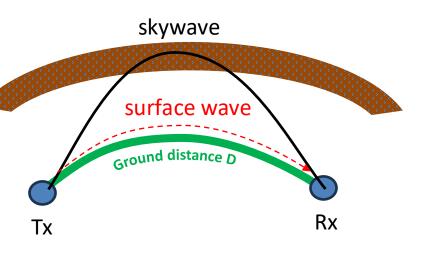


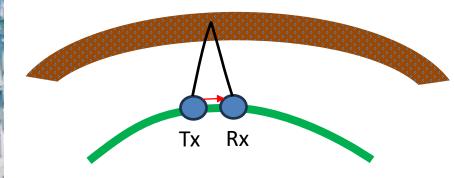
- Somewhat resembling Columbus'
- Grand-idea: radio can be used for over-the-horizon communications
 - Not a terribly new idea, but new application for the long-distance comms
 - Everyone believed the radio wave are good for line-of-sight propagation
 - Henrich Herz radio wave demo in 1888,
 - Oliver Lodge Rx/Tx spark gap telegraph in 1894
 - Breakthroughs: First Transatlantic radio link between Canada and UK in 1901
 - Multiple evidence that someone else did similar things before
 - Alexander Popov report in 1896 on 14 km link from coast to ships
 - Popov's results did not reach public due to their Top-Secret classification
 - Popov did not think much of his results and changed his interests

Historical Reference: High Frequency

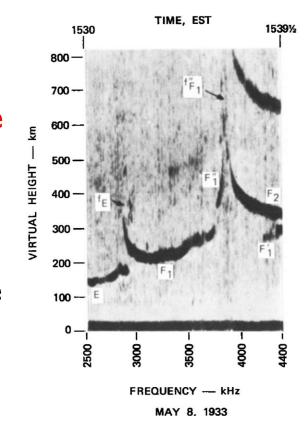


Celebrate!


Happy 100th Anniversary of the lonosonde Invention!


Breit and Tuve at Carnegie Institution of Washington

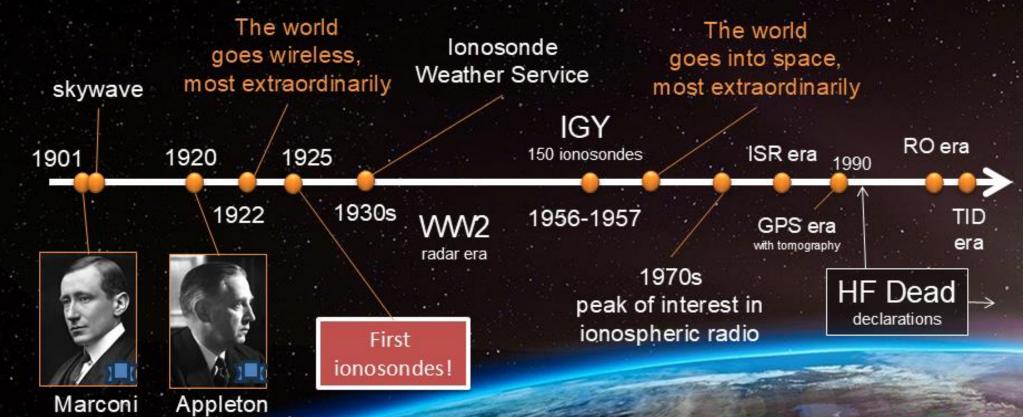
Skywave Existence Proof, 1925



- Sir Appleton Experiment
- Used BBC transmitter
 - Continuous Wave (CW)
 - Frequency control
- Made frequency changing during transmissions
 - Frequency modulation
- Received signal is a mix of the surface and sky waves
 - But phases are different so these waves interfere
 - Amplitude recorder was enough
- FMCW sounder was built first, pulsed (radar) second

The 1930s Challenge

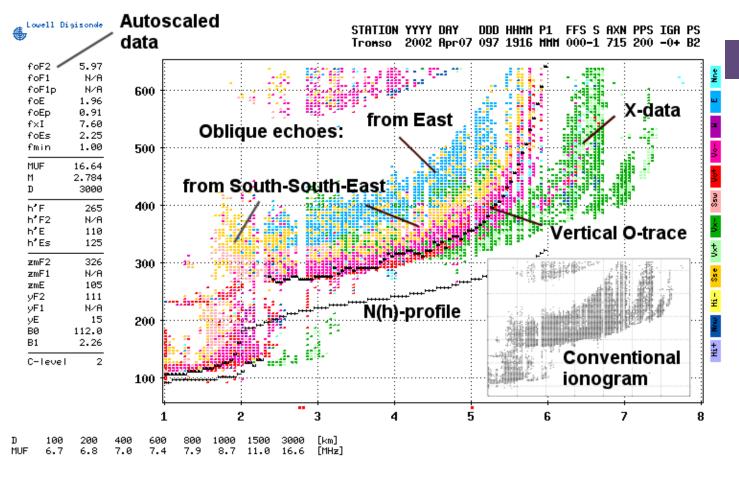
- Radio broadcasters in the 1930s: make ionosonde a weather service
 - (for HF frequency management)
- Challenge: transform ionosondes into automatic machines
 - 1931: six people to run one ionosonde
 - Regular observations were not a small feat!
 - No wonder 11 Jan 1931 is the celebrated mark in out community
 - Slough observatory produced the first diurnal timeline of foE



Theodore Gilliland's group at NBS (USA), 1933

Historical Reference: High Frequency

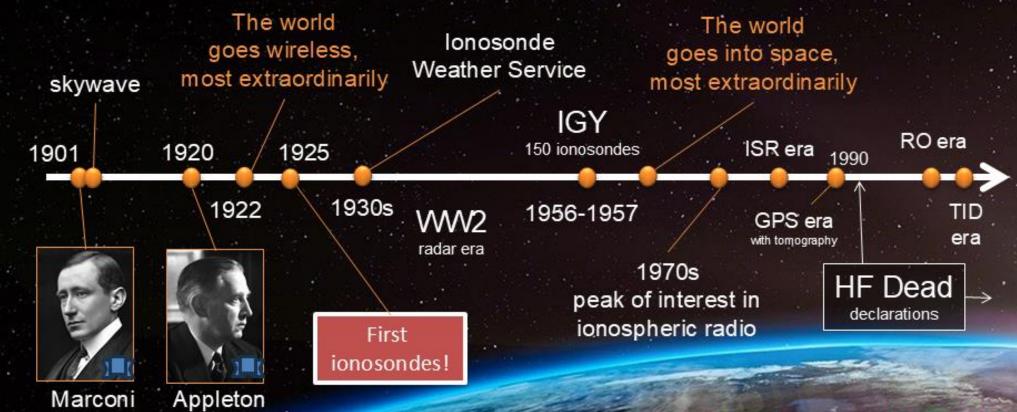
IRI: used ionosondes to model foF2


- During the IGY 1956-1957, ~150 ionosondes were collecting ionograms continuously
 - Was there any other sensor data?
- Acquired data used to build global climatology maps of foF2 and M(3000)
 - Jones and Gallett work in the 1960s
 - Used custom spatial expansion basis with 76 terms
 - Even though spherical harmonics math was readily available, custom basis design was introduced
 - Optimal for representation of the Appleton anomalies
 - Used modip angle (credits to Rawer) to represent dependence of foF2 on the [changing] magnetic field of the Earth
 - Had a special factor to suppress anomalous shootout at the poles
- Additional work: hmF2 for IRI
 - Derived from foF2 and M(3000)
 - Used until Shubin model became available (radio occultation measurements)

IRI CCBW 2025 29 Sep – 10 Oct '25 Trieste, Italy

Fast forward to the 1970s

ARTIST Family


- APE (1974)
- BISA (1981)
- ARTIST (1982)
- ARTIST-II (1986)
- ARTIST-III (1991)
- SARTIST (1991)
- ARTIST-B (1994)
- ARTIST-4 (1996)
- ARTIST-4.5 (2004)
- ARTIST-5 (2002)
- ARTIST-6?

Digisonde ionogram data courtesy: The Arctic University of Norway

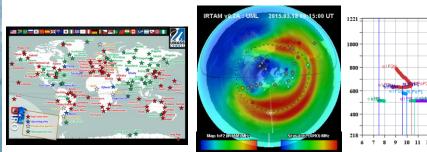
Historical Reference: High Frequency

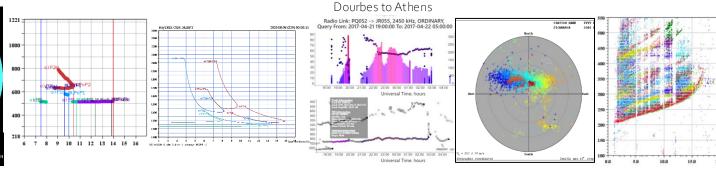
IDAR

IONOSONDE DATA ACQUISITION FOR RESCUE

Ivan Galkin

UMass Lowell Space Science Laboratory


22 SEPTEMBER PRE-FORUM SCIENCE DAY


GF2@25

23-26 SEPTEMBER XVI INTERNATIONAL GIRO FORUM

Main Ionosonde Real-Time Products

GIRO including DIDBase

GAMBIT including IRTAM 3D

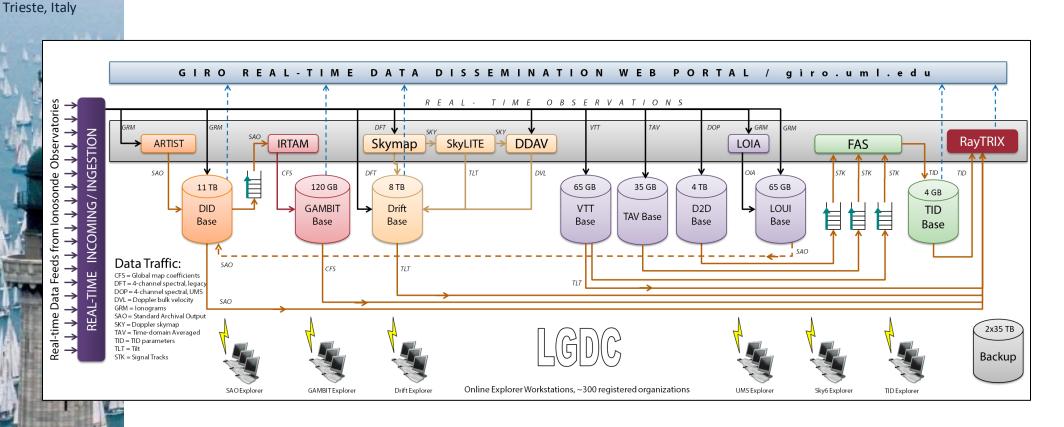
LOIA including LOUIBase

RayTRIX

TID Explorer

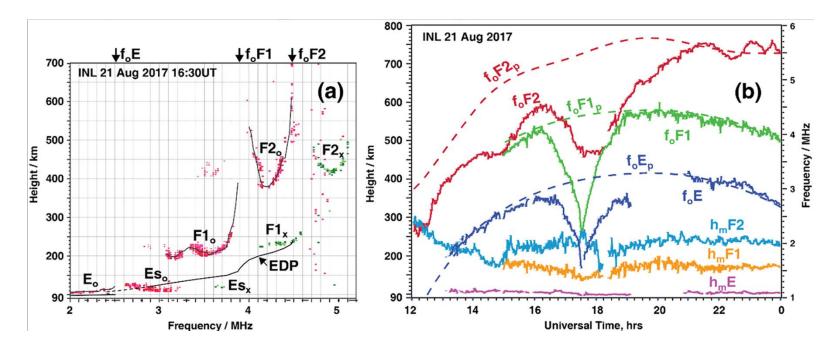
SkyLITE

IDI

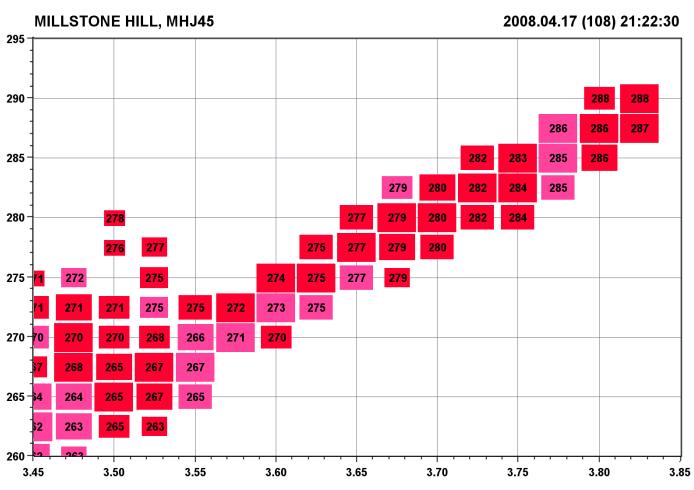

- 1. Measurements
- 2. Global Weather Modeling
- 3. Oblique lonograms
- 4. HF Signal Raytracing
- 5. TID Warnings 6. Plasma Drifts 7. Disturbance Indicator

LGDC Products and Services

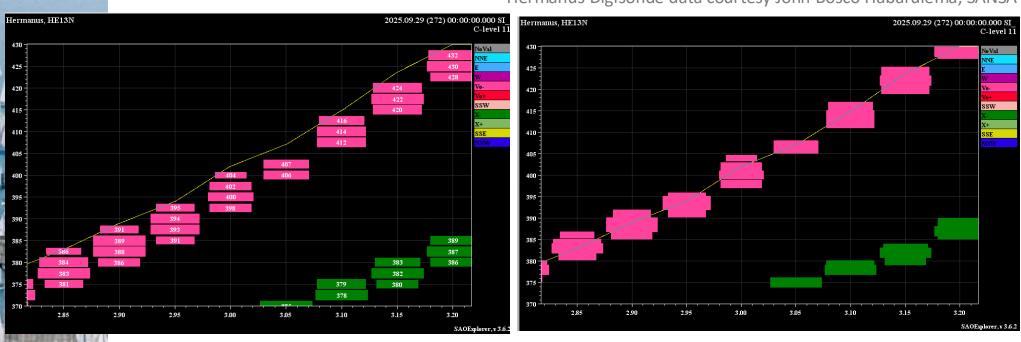
FOR SPACE WEATHER MONITORING



Why Ionosondes?


Ionosonde: GROUND TRUTH

- Good reference-quality data going back to the 1940s
 - 800 publications per year with ionosonde contributions

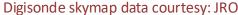

Precision Ranging of Digisonde

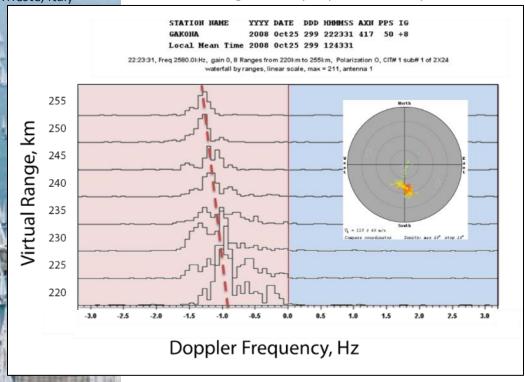
Precision Ranging in Digisonde

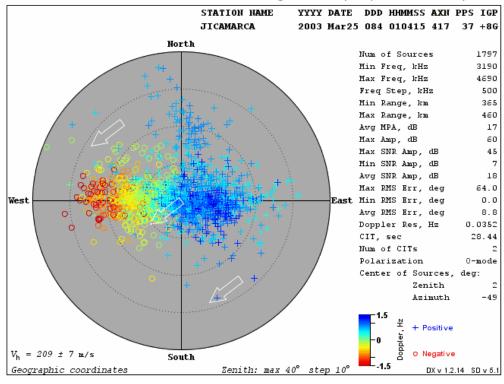
Hermanus Digisonde data courtesy John Bosco Habarulema, SANSA

Precision range is available for each bin

After precision range is applied

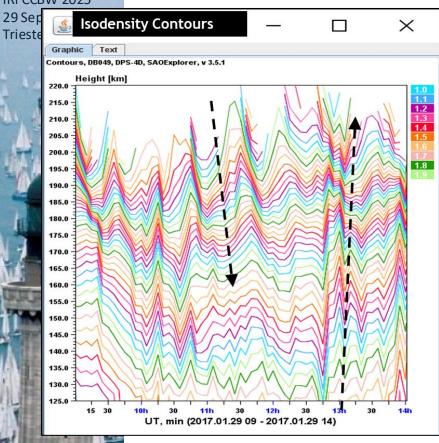

Automatic correction of zero range bias; sub-pixel accuracy of ranging is 1 km




Ionosonde path forward: Why?

IRI CCBW 2025 29 Sep – 10 Oct '25 Trieste, Italy

Digisonde skymap data courtesy: AFRL Gakona


Plasma acceleration above the HAARP-heated area

Digisonde's view of the equatorial bubble passages

Path forward: Why?

IRI CCBW 2025

HIGH SENSITIVITY TO PLASMA IRREGULARITIES:

- Sensitivity to TIDs
 - Detection of a 5% TID vs underlying density
 - What GNSS sees as 0.05 TECU modulation, the ionosonde sees as 50% local disturbance
 - This is because the ionosonde's probing signal "pin-points" a specific altitude in the ionosphere
 - lonosonde: "TID are always present" < 2%
- ID Altitude profile of TID (pin-pointing capability)
 - Detailed view of propagation along z-axis
- Direction, Velocity, Wavelength of TID with two ionosondes
- Direct measurement
 - lonosonde is a static platform (no spacecraft motion effects)
 - Relatively few assumptions are made about the ionosphere
- 24/7 operations with automatic intelligent system analysis
 - Replicated human intelligence

lonosondes: who cares?

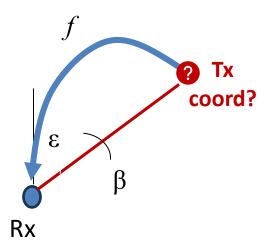
Path forward: Who Cares?

- Space Weather applications
 - lonosonde: global data within minutes
 - Oblique sounding over no-ionosonde areas!
 - e.g., South Korea to Japan link to monitor TID activity for the undersea earthquake/tsunami detection
 - A suite of assimilative models with ionosonde input (more about it today!)
 - including HF signal propagation models
 - Provide boundary conditions for MI coupling models
- Instrument Collaborations
 - Data fusion projects
 - Reference-quality data for various CalVal campaigns
- Scientific applications
 - Untapped information
 - Lesser-known ionosonde operational modes

Who cares: global prompt data

Global Ionosonde Observation/Operation Network (GION)

- Multi-agency advisory committee
- Established in 2025
 - UNOOSA for international cooperation in outer space
- Objective: combine all ionosonde networks into an ionospheric weather monitoring consortium
- Lowell GIRO Data Center (LGDC) funded to support GION



- Historical and real-time ionosonde data management
- SAO V6 standard for ionosonde data exchange

Who cares?

Three scenarios of HF signal modeling



FREQUENCY MANAGEMENT of HF communications

GEOLOCATION

OVER THE HORIZON RADAR searching reflecting targets also in backscatter mode

Who cares: Data fusion

- GNSS+GIRO
 - VTEC+NmF2
 - Fusing GIMs with IRI and IRTAM
 - GPSII model
 - Ionosonde-assisted Tomography
 - Radio Occultation + GIRO
 - Model-constrained assimilation of 24-hour measurements
 - Assimilative IRI
 - projecting VTEC anomaly to NmF2 anomaly

Who cares: Calibration/Validation

- The original CalVal: Naval Research Lab's project of UV sensors
 - FI7 (2004-2008) and FI8 (2010-2011) Spacecraft
 - DIDBase was built in 2004 to support this CalVal
- COSMIC validation (2006)
- New developments:
 - GNSS bias elimination with GIRO ionosonde inputs
 - DISPEC project: coincidence analysis with Swarm/GRACE

Who cares: Academia

- Hot topics in academic/applied research
 - D-region specification with Digisondes
 - Sporadic E layer
 - Earthquake (detection and precursor investigations)
 - Equatorial plasma bubbles
 - Auroral research (in support of the Arctic exploration)

Efforts to build Real-Time IRI

- Original concept dates back to 2009
 - Task Force on Real-Time IRI
- Real-time IRI is a subset of a wider Assimilative IRI
- Assimilative IRI: smoothly transformed IRI definitions to match available measurements
 - Effective Sunspot Number IG (1970s)
- Real-Time Assimilative IRI: use low-latency measurements
 - lonosondes
 - GNSS...

IRTAM

- IRI-based Real-Time Assimilative Model
- Every 15 minutes releases new coefficients
 - foF2, hmF2, B0, and B1
- The IRTAM coefficients can be freely downloaded
 - https://giro.uml.edu for the landing page (humans)
 - https://lgdc.uml.edu/rix/gambit-coeffs?charName=CC&time=TT
 - CC is foF2, hmF2, B0, or B1
 - TT is ISO timestamp YYYY.MM.DD'T'HH:MM
 - » Coverage: 2000 to current
 - Academic use only, the latest 4 hours are restricted
- The IRTAM coefficients are given to IRI-2020 to replace quiet-time coefficients
 - "Climate" IRI becomes "Weather" IRI
 - pyIRTAM is available from NRL, uses IRTAM coefficients

IRI CCBW 2025 29 Sep – 10 Oct '25 Trieste, Italy

Example IRTAM download

```
# START HEADER
# GLOBAL IONOSPHERE RADIO OBSERVATORY (G.I.R.O.)
# giro.uml.edu
# IRI-based Real-Time Assimilative Model (IRTAM)
# IRTAM Coefficients of Temporal-Spatial Expansion
# Generated by GambitCoefficients_Servlet GX.Global.Svlt 0.3b on 2025-09-29T09:49:42.456Z
# Ionospheric Characteristic: foF2 [MHz]
# Time of Validity 2021-05-05T10:00:00.000Z
# Assimilative Engine: NECTAR v0.2A
# Earth Grid: 46 lats x 45 lons
# Expansion Basis: JonesGallet_LinTrend
# Basis Lengths: 14(temporal) x 76(spatial)
# Assimilated stations:
# AL945 AS000 AT138 BC840 BR52P BVJ03 CB53N DB049 DW41K EA036
# EA653 EB040 EG931 EI764 FF051 FZA0M GA762 GM037 GR13L GU513
# HE13N H054K IF843 JB57N JR055 KB547 KL154 LL721 LM42B MA155
# MA560 MHJ45 M0156 MZ152 ND61R NI135 NI63 NV355 PA836 PE43K
# PF765 PK553 PQ052 PRJ18 RV149 SAA0K SH266 SMK29 S0148 THJ76
# TR169 TR170 TV51R TZ362 VT139 WA619 WP937
# Requested by unknown from IP:10.157.147.21
# END HEADER
 5.87953870e+00 -1.44939298e-01 1.25655436e-01 -2.42336456e-01
 -1.75973637e-01 1.54009262e-01 -1.39515268e-02 -1.19648304e-02
 -9.39705867e-02 -1.95793009e-02 5.57981271e-03 2.73829158e-02
 -2.95881461e-03 -1.50430237e+00 3.55188053e-01 3.32249181e-01
  6.67634727e-02 -3.94956554e-01 -9.92984803e-03 -2.14465534e-01
  3.65567284e-02 -2.16518322e-02 4.43464706e-02 1.35534191e-01
  1.54566996e-01 6.49715902e-02 1.26694202e+01 3.58279106e+00
  2.15255600e-01 1.62224261e+00 -7.22932143e-01 -3.38449181e-01
  3.19914819e-01 1.95202336e-01 2.12027550e-02 -1.05328821e-01
  1.13302375e-01 -3.94735259e-01 -2.54224937e-01 1.61858852e+01
 -6.22430209e+00 3.15664771e+00 -2.87885914e+00 3.46736197e+00
 -1.81862775e+00 1.05099400e-01 2.12410716e-01 3.45073958e-01
 1.62686811e-01 -2.78810570e-01 -1.12016392e+00 -7.49714200e-01
 -8.27104427e+01 -2.49222095e+01 9.45798245e-01 -9.95035349e+00
 2.78172067e+00 5.56545791e+00 7.40654876e-01 -3.74370508e-01
  2.05937317e+00 1.16587697e+00 -1.04607422e+00 1.55344768e+00
  2.30311580e+00 -2.16634168e+01 3.25514419e+01 -2.16535025e+01
  8.25515183e+00 -1.10288210e+01 1.46159451e+01 3.33768063e+00
```

-3.03053374e+00 1.92837099e+00 -1.33115558e-01 1.22634601e+00