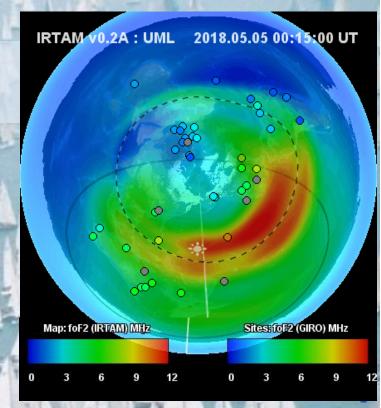


29 September – 10 October 2025 Trieste, Italy

IRTAM

a Real-Time Assimilative IRI

University of Massachusetts Lowell, USA



IRI Capacity Building Workshop 2025

Trieste, Italy • 30 September 2025

Outline

Galloping Introduction to IRTAM

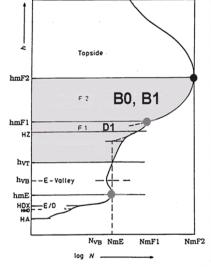
- IRTAM
 - NECTAR "model-morphing" method (not a Kalman filter)
 - Anomaly maps for a physics-informed assimilation
 - "Significantly 4DDA": 24-hour of previous data at each update step
 - » Diurnal harmonics as "eigen functions" of
 - Attenuation trajectories for spatial prediction

GAMBIT

- GAMBIT Explorer software
- GAMBIT Situation Room for real-time monitoring
- MUF(3000) weather maps for PECASUS/ICAO
- Data fusion with GNSS VTEC
 - Weather maps of plasma slab thickness

Path forward

- Assimilation of data from moving platforms
- D-region specification using ionosondes

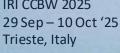

Real-Time IRI

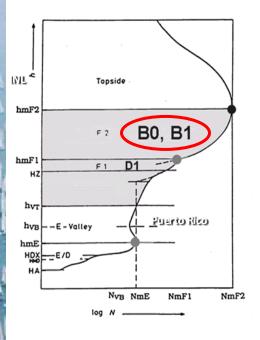
Real-Time IRI Task Force

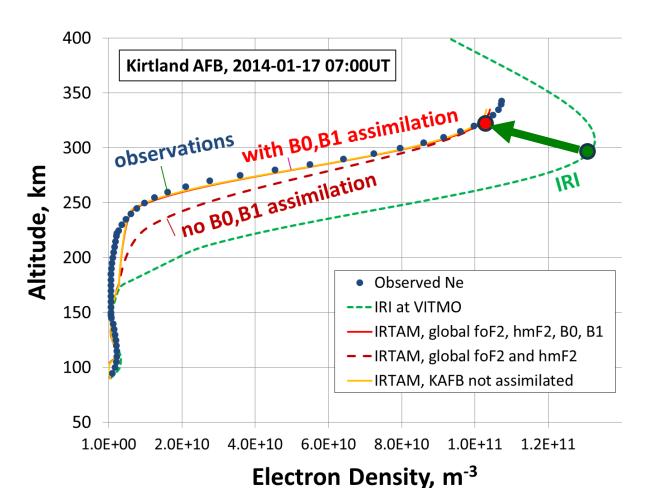
- concept: tweak IRI using available observations
 - To make a good model better
 - Ja Soon S. (CCMC) and GEM Challenge
 - Not necessarily an assimilation
 - Example of assimilative IRI: adjusting ISSN driver (IG12)
 - "Real-time IRI" refers to application to space weather

IRTAM is IRI-based Real-Time Assimilative Model

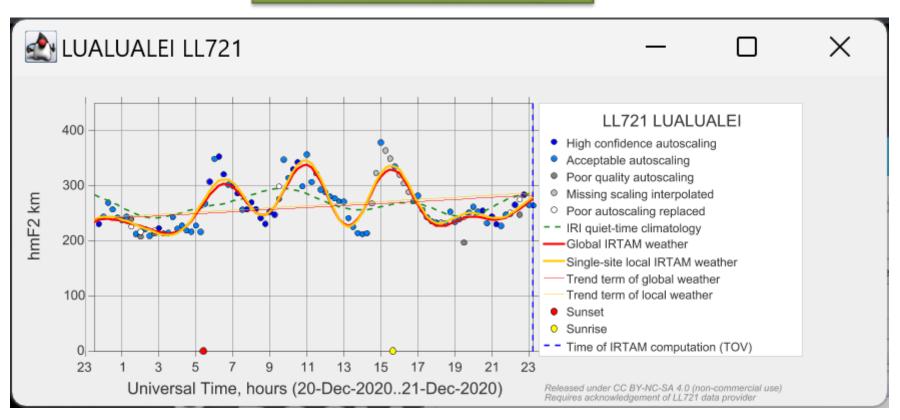
- 3D weather density model based on four 2D maps
 - NmF2, hmF2, B0 and B1
 - Captures [most of] the ionospheric dynamics
 - Smoothing
 - » Max resolution: 4-hour order harmonic as in IRI
 - Es, D-region, and disturbance level are not included
- Current IRTAM version 0.4A
 - Assimilates real-time data from GIRO ionosondes
 - Path forward: add assimilation of the Radio Occultation profiles



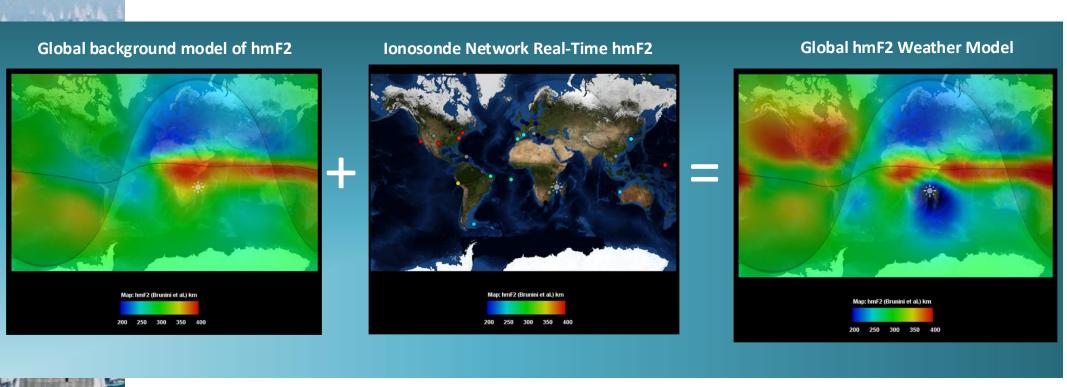

The vertical profile of plasma density:


16 "anchor" parameters

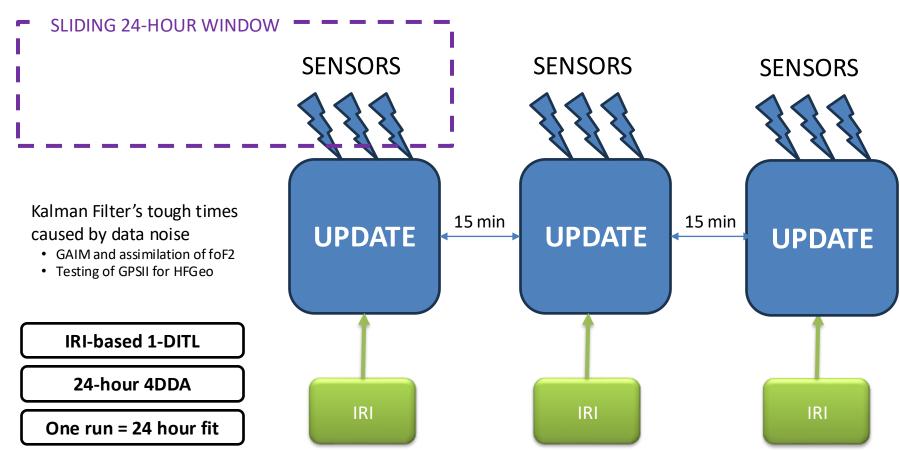
B0 and **B1**: profile shape is important!



Single station chart of IRI, ionosonde, and IRTAM


One IRTAM Computation = Red Line, matches 24 hours of data

Available online at https://giro.uml.edu


IRI-based Assimilation Concept for 2D maps

NECTAR is not quite a Kalman Filter

IRTAM is a physics-informed model

(not a theoretical white box model)

A GRAY BOX approach

- IRI background is responsible for capturing underlying geophysics with solar, seasonal, and geomagnetic field dependencies
- IRTAM merely adjusts IRI background 1-DITL
 - Computes anomaly coefficients Δ_{jm} to add to the original 13 x 76 C_{jm}

Principles of IRTAM:

- Treat ionosphere in terms of its "disturbed" oscillations about IRI
 - Extrapolate in space when possible
 - If one GIRO site sees a wavy anomaly in time, expand this to outside the site
- Represent 24-hour observations faithfully
 - Certain smoothing effects are possible
 - Sean S. validation project confirms this smoothing effect
 - But smoothness in time and space is a valuable property
 - » Assimilation of non-cooperative transmitter signals (GPSII by NWRA)
 - 2-year HFGeo Phase III project to mate GPSII and IRTAM
- Gradually return to the background over no-sensor regions

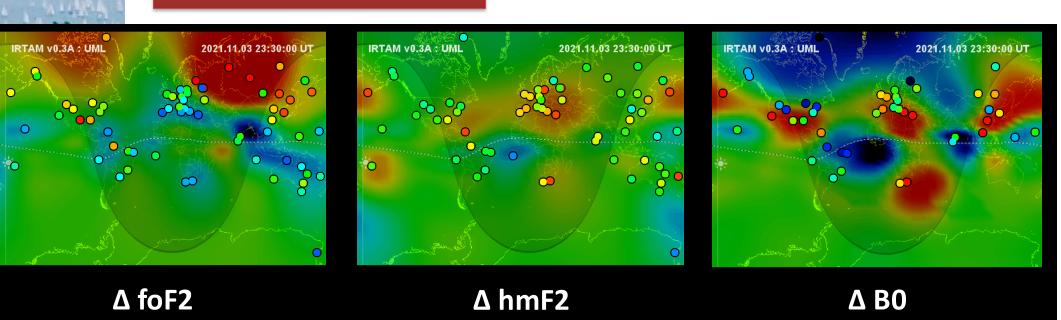
Principles of IRTAM: NECTAR Technique

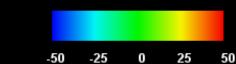
NECTAR algorithm, original version:

- At each sensor site $\frac{k}{l}$, use 24-hour history of deviations from IRI, $\frac{D_k(t)}{l}$
- Expand $D_k(t)$ into j diurnal harmonics Δ_{kj}
 - Use the same 6th order Fourier series as in IRI
 - Rumor: coefficients of the 8th order Fourier expansion are somewhere
- Interpolate-Extrapolate Δ_{kj} to global 2D, individually for each j
 - Important! NECTAR works with harmonics of the anomaly timeline at each site
- Expand to Jones-Gallett spatial basis m
- Add 998 resulting corrections ∆_{im} to 998 original IRI coefficients

NECTAR with a Twist

- A linear-trend term added to IRTAM's diurnal harmonics
 - Original IRI wraps around midnight into the same value as 24 hours ago
 - Linear trend
 - Total 1024 coefficient

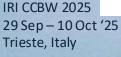



November 4, 2021 Storm, Kp ~ G3..G5

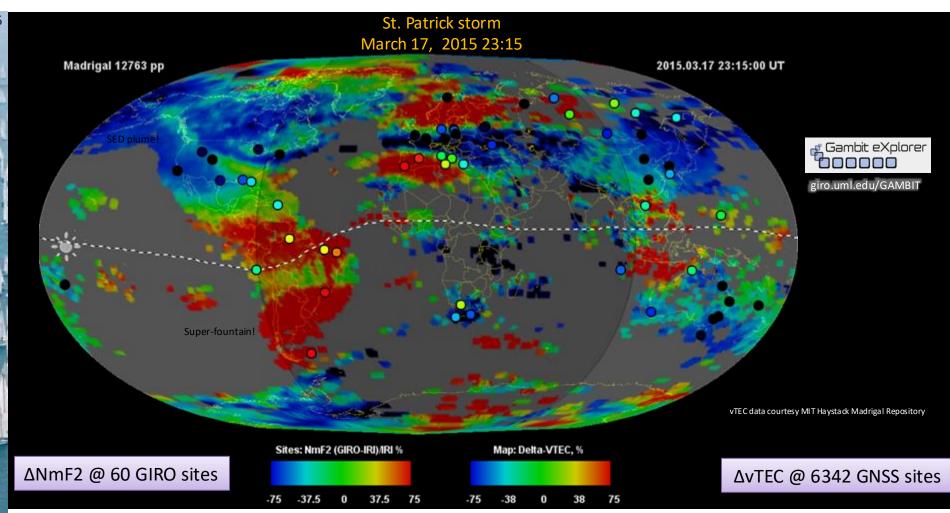
GIRO ionosondes only, IRTAM 3D assimilative model

NOT A SIMULATION!

Would not it be nice to have these at CCMC!



COOPERATION OF IRI, GIRO AND GNSS


Data Fusion of VTEC and NmF2

Anomaly maps by IGS and GIRO networks

Viewing IRTAM computations

GAMBIT Explorer

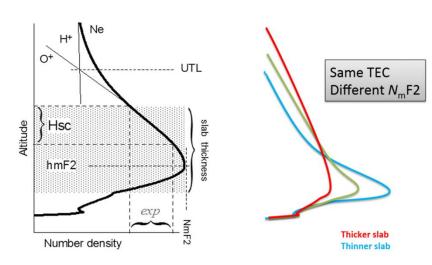
Download from https://giro.uml.edu/GAMBIT

Cooperation of GNSS and GIRO

OTHERS:

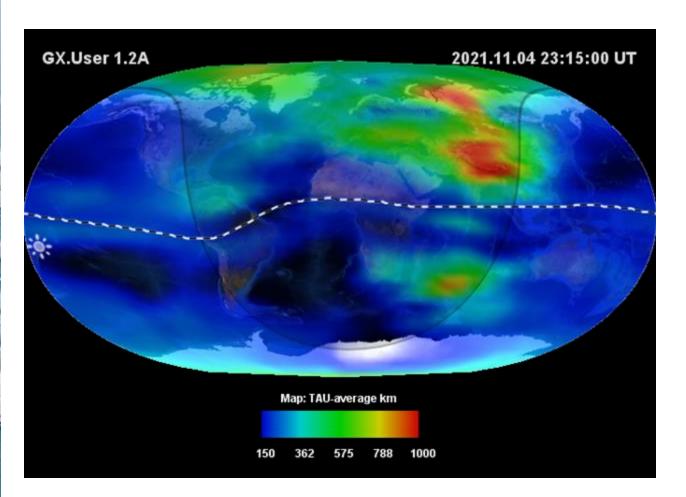
2D: use observed $\Delta vTEC$ to derive corrections to NmF2 over no-coverage areas

- T. Gulyaeva et al.
- A. Pignalberi et al.


Assimilate GIRO and GNSS data simultaneously in a 3D model

- 6000 vs 60 problem
 - GIRO input is insignificant
- GPSII: weighted assimilation
 - Fridman et al., NWRA/HFGeo

OUR APPROACH:


DATA FUSION PROJECT

 Combine NmF2 and vTEC measurements to reason about slab thickness τ

Slab Thickness Climatology

NmF2: IRI foF2 model (climate) VTEC: IGS 30-day median VTEC

[Fron *et al.*, 2020]

BACKUP SLIDES

IRTAM Open Problems and Path Forward

- Diplomatic issues with data providers
- Need to complete fusion with near-real-time global VTEC maps (GIMs)
 - Work with IGS Coordination Center at UWM Olztyn
- ELO (Elastic Linear Optimizatioin): capability
 - Assimilate sensor data from moving platforms such as COSMIC/SPIRE
 - 4DDA technique to analyze 24-hour history of RO data
 - Similar Model Morphing approach as in NECTAR
- h_m F2 dilemma in IRTAM: did not fare well in comparisons to COSMIC h_m F2 data
 - Possibly related to the IRTAM using IRI-2000 background climate specification of $h_{\rm m}$ F2
 - Upgrade IRTAM to Shubin et al. background model of h_m F2 from IRI 2020
 - Rerun comparisons to COSMIC/RO $h_{\rm m}$ F2
- Optimize attenuation trajectories
- Improve MUF(3000) weather mapping algorithm by involving ionosonde data
- Increase expansion orders in IRTAM?
 - Capture finer detail
 - Improve "underestimation" problem due to smoothing artifacts
- Assimilate VTEC in IRTAM?
- Ingest WDC/SPIDR ionosonde archives into DIDBase, rerun IRTAM?