
C4ES - C. Sisterna ICTP- MLAB 1

‘C’ for Embedded
Systems

Cr ist ian Sis terna

Sen i o r Assoc i a t e , I CTP -MLAB

Pro f essor a t Un i ve r s i dad Nac i ona l San Juan - Argen t i na

C4ES - C. Sisterna 2C4ES - C. Sisterna ICTP- MLAB 2

❑ Introduction to Embedded C

❑ Differences between Standard C and Embedded C

❑ ‘C’ Data Types

❑ ‘C’ Modifiers

❑ ‘C’ Directives

❑ Local and Global Variables

❑ Functions and Pointers

❑ Bit/Byte/Word Manipulation

❑ Zynq GPIO I/O Guide

❑ IP Cores ‘C’ Drivers

❑ Custom IP Cores ‘C’ Drivers Conclusions

Agenda

C4ES - C. Sisterna ICTP- MLAB 3

Embedded C

C4ES - C. Sisterna 4

Why do we need ‘C’ Language ?

C4ES - C. Sisterna 5ICTP 5

What is ‘Embedded C’ ?

Embedded C is a set of language extensions for the C

programming language designed specifically for

programming embedded systems — small computing devices

that control hardware in real-time.

It’s not a separate language, but rather C tailored for

embedded applications with additional features to support

direct interaction with hardware.

Embedded C is essentially C adapted to run "closer to the

Hardware“. Code Speed and Code Size

C4ES - C. Sisterna 6ICTP 6

Differences Between ‘C’ and ‘Embedded C’
Feature Regular C Embedded C

Target System General-purpose computers (PCs, servers) Microcontrollers, embedded systems

Operating System Often relies on OS (e.g., Linux, Windows) Often no OS or a Real-Time OS (RTOS)

Libraries Standard C libraries (stdio.h, etc.) Limited or custom libraries

Hardware Access Abstracted from hardware Direct register and port manipulation

Memory Usage Abundant (RAM, Disk) Very limited memory (few KB to MB)

Timing Not deterministic Precise, deterministic timing often needed

I/O Handling Through OS APIs or files Direct I/O via registers (e.g., `PORTA)

Compilation Compiles to run on the host system
Cross-compiled for a specific

microcontroller

Toolchains GCC, Clang Keil, MPLAB, IAR, AVR-GCC, etc.

Typical Use Cases Software apps, games, compilers Device drivers, firmware, real-time control

C4ES - C. Sisterna 7ICTP 7

Advantages of Using Embedded C

Feature Description

Efficiency Designed for low-level access and minimal resource usage.

Hardware Access
Supports direct access to hardware components (e.g. registers, I/O

ports, sensors).

Real-time Capable Used in systems that require deterministic timing.

Portability
Code can often be reused across microcontrollers with minor

changes. Unlike assembly.

Extensions
Compiler-specific features like __interrupt, __bit, __sfr etc. allow

low-level control.

Low-level

programming

Deals with hardware-specific access, like memory addresses,

bit/bytes manipulation, processor’s registers, etc.

C4ES - C. Sisterna ICTP- MLAB 8

Reviewing Embedded ‘C’
Basic Concepts

C4ES - C. Sisterna 9

‘Bits, Nibbles, Bytes, Word

In a digital computer system, terms like bit, nibble, byte, and word describe units of digital
information, each representing different sizes of data.

0 1 1 0 1 0 0 0 1 0 1 0 0 1 1 1

bitMSB LSB

nibblenibblenibblenibble

bytebyte

word

MSB: Most Significant Bit
LSB: Least Significant Bit

C4ES - C. Sisterna 10

Hexadecimal (often shortened to "hex") is a base-16 number system used in computing and
digital systems to represent data more compactly than binary (base-2) or decimal (base-10).

Hexadecimal Representation Code

0 1 1 0 1 0 0 0 1 0 1 0 0 1 1 1

bitMSB LSB

Decimal Binario Hexadecimal

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

nibblenibblenibblenibble

????

7A86

C4ES - C. Sisterna 11ICTP-MLAB 11

‘C’ Basic Data Types

Data Type Description Size (Typical) Format Specifier

int Integer (whole numbers) 4 bytes %d

char Character 1 byte %c

float Floating point (single precision) 4 bytes %f

double Floating point (double precision) 8 bytes %lf

void
No value (used for functions that return

nothing)
N/A N/A

C4ES - C. Sisterna 12Embedded C ICTP-MLAB 12

‘C’ Derived Data Types

✓ Arrays: A collection of elements of the

same data type stored in contiguous

memory locations.

✓ Structures: A user-defined datatype that

groups variables of different data types

under a single name.

✓ Pointers: A variable that stores the memory

address of another variable.

C4ES - C. Sisterna 13Embedded C ICTP -MLAB 13

‘C’ Derived Data Types

✓ Unions: Similar to a structure, but all

members share the same memory

location, so only one member can

hold a value at a time.

✓ Functions: a derived type that represents a

block of code with a return type and parameters.

✓ Enumeration: A user-defined type that

assigns names to integral constants for

better readability.

C4ES - C. Sisterna 14ICTP -MLAB 14

Xilinx-AMD ‘C’ Basic Data Types:

The xil_types.h is a header file from the Xilinx Embedded Software library.

It provides basic data types, constants, and macros essential for low-

level programming, device drivers, and board support packages (BSPs).

Note: The xbasic_types.h is another header file from the Xilinx Embedded Software library; however, it has

been deprecated since around 2014; using it may trigger warnings. Do migrate to xil_types.h for new code to

align with current AMD/Xilinx standards.).

xil_types.h

https://github.com/Xilinx/embeddedsw/blob/master/lib/bsp/standalone/src/common/xil_types.h

C4ES - C. Sisterna 15

‘C’ Modifiers - Type Modifiers

Modifier Purpose

signed Default for int/char: can hold negative and positive values

unsigned Only positive values (doubles the upper limit)

short Smaller-sized integer (usually 16 bits)

long Larger-sized integer (usually 32 or 64 bits)

long double Even larger integer (usually 12 or 16 bytes)

These modify the size or sign of data types.

ICTP -MLAB

C4ES - C. Sisterna 16

Function data types refer to the types of values that functions can return and the types of
parameters they can accept.

Functions Data Types

Return Type: Every function in C has a

return type that specifies the type of value the

function will return.

Common return types include:

• int: Returns an integer value.

• float: Returns a floating-point value.

• double: Returns a double-precision

floating-point value.

• char: Returns a character.

• void: Indicates that the function does not

return a value.

Parameter Types: Functions can accept

parameters of various data types. The types

of parameters must be specified in the

function definition. You can have multiple

parameters of different types.

void printSum(int a, float b) {

printf("Sum: %f\n", a + b);

}

void(*funcPtr)(int, float);

ICTP -MLAB

C4ES - C. Sisterna 17

Functions Data Types

Function Pointers: In C, you

can also define pointers to

functions, which allows you to

store the address of a function

and call it later.

The type of a function pointer is

defined by the return type and

the parameter types.

void(*funcPtr)(int, float);

2 funcPtr=&printSum; // Assigning the address of printSumto funcPtr

ICTP -MLAB

C4ES - C. Sisterna 18

Structures

In C programming language, a structure (struct) is a user-defined data type that
allows you to group different types of variables under a single name.

ICTP -MLAB

C4ES - C. Sisterna 19

Review of ‘C’ Pointer

In ‘C’, the pointer data type corresponds to a MEMORY ADDRESS

int x = 1, y = 5, z = 8, *ptr;

1

5

8

x

y

z

1

5

8

1

1

8

8

1

8

a

b

c

d

a b c d

ptr = ?? ptr = &x

ptr

y = *ptr *ptr = z

*ptr = z; // content pointed by ptr gets content of z

ptr = &x; // ptr gets (point to) address of x

y = *ptr; // content of y gets content pointed by ptr

ptr ptr

ICTP -MLAB

C4ES - C. Sisterna ICTP- MLAB 20

‘C’ Directives

C4ES - C. Sisterna 21

Use of #include directive

ICTP -MLAB

• #include is a directive that is us to include the contents of a header file or external file into the

current source file, allowing access to declarations, macros, or functions defined in those files.

The syntax for the #include directive can use either double quotes (" ") or angle brackets (< >),

and there are important differences between the two:

#include <filename> (Angle Brackets)

Search Path: When you use angle brackets, the

preprocessor searches for the specified file only in the

standard system directories (e.g., /usr/include on

Unix/Linux systems). It does not look in the current

directory.

Usage: This is generally used for including standard

library headers or system headers that are part of the C

standard library.

#include <stdio.h>

#include "filename" (Double Quotes)

Search Path: When you use double quotes, the

preprocessor first searches for the specified file in

the same directory as the source file that contains

the #include directive. If the file is not found there, it

then searches the standard system directories.

Usage: This is typically used for including user-

defined header files or files that are part of your

project.

#include “my_header”;

C4ES - C. Sisterna 22

Use of #include directive - Examples

Example using #include "xparameters.h" to access device IDs.

This example is based in the Vitis Platform that we will be using.

It shows the difference between <> and "" with Xilinx headers.

C4ES - C. Sisterna 23

#ifdef/#ifndef/#endif directive

ICTP -MLAB

The preprocessor directives #ifdef and #ifndef are used for conditional compilation,
allowing parts of the code to be included or excluded based on whether a macro is

defined (#ifdef) or not defined (#ifndef).

• It's used to prevent multiple inclusion of the same header file, which can cause

compilation errors.

C4ES - C. Sisterna 24

#ifdef/#ifndef/#endif directive

ICTP -MLAB

• Purpose: Controls conditional compilation, allowing parts of the code to be

included or excluded based on conditions evaluated at preprocessing time.

• Usage: Used for platform-specific code, debugging, or feature toggling.

C4ES - C. Sisterna 25

#define Directive

ICTP -MLAB

• Purpose: Defines a macro, which can be a constant, expression, or function-

like substitution, to replace identifiers with specified values or code fragments

during preprocessing.

• Usage: Used for constants, inline code, or simplifying repetitive code.

C4ES - C. Sisterna ICTP- MLAB 26

Variables: Globals / Locals

C4ES - C. Sisterna 27

In C programming, variables can be local or global depending on where they

are declared and how they are accessed.

ICTP-MLAB 27

Local vs Global Variables

Local Variables Global Variables

✓ Declared outside any function.

✓ Exist for the lifetime of the program.

✓ Can be accessed or modified by

any function

✓ Accessible only by the function

within which they are declared

✓ Created when the function is called.

✓ Destroyed when the function exits.

✓ Not accessible outside their scope

•.

Local variables are declared inside a

function, block, or compound statement and

are accessible only within that scope.

Global variables are declared outside

of all functions, usually at the top of

the program file. They are accessible

from any function in the program.

C4ES - C. Sisterna 28ICTP -MLAB 28

Local vs Global Variables

•.

Feature Local Variable Global Variable

Declaration Inside a function or block Outside all functions (file scope)

Scope Limited to function/block Entire program (or file, unless extern)

Lifetime Until function/block exits Entire program duration

Storage Stack (temporary) Data/BSS segment (persistent)

Initialization Undefined unless initialized Zero-initialized if not set

Accessibility Only within declaring function/block Accessible by all functions

Example Usage Loop counters, temporary results Shared state, configuration data

C4ES - C. Sisterna 29

Global and Local Variables Declarations

Global variables

Local variables

ICTP -MLAB

C4ES - C. Sisterna 30

Global and Local Variables

ICTP -MLAB

C4ES - C. Sisterna ICTP- MLAB 31

‘C’ Modifiers

C4ES - C. Sisterna 32ICTP-MLAB 32

‘C’ Modifiers

•.

In C language, modifiers are keywords that modify the meaning or behavior

of variables, functions, and data types.

They can affect storage, visibility, lifetime, type size, and optimization

behavior.

‘C’ Modifiers

Storage-Class Modifiers

Type Modifiers

C4ES - C. Sisterna 33

‘C’ Modifiers - Storage-Class Modifiers

Modifier Purpose Notes

auto
Default for local variables (rarely used

explicitly)

register

Hints to store variable in a CPU

register (deprecated in modern

compilers)

static
Keeps variable's value across

function calls / restricts visibility to file
Retains value, restricts linkage.

extern
Declares a variable/function defined

in another file

Share variables/functions

between files.

volatile

Prevents compiler optimization;

ensures variable is read from memory

every time

Useful for variables that

changes outside normal control

(e.g. hardware).

These control the lifetime, scope, and linkage of variables or functions.

ICTP -MLAB

C4ES - C. Sisterna 34

Use of the ‘static’ modifier with variables

Embedded C

❖ The ‘static’ modifier causes that the local
variable to be permanently allocated storage in
memory, like a global variable, so the value is
preserved between function calls (but still is
local)

❖The 'static' modifier may also be used with
global variables

❖ This gives some degree of protection to the
variable as it restricts access to the variable to
those functions in the file in which the
variable is declared

1

1

2 2

ICTP -MLAB

C4ES - C. Sisterna 35

Use of the ‘static’ modifier with functions

Embedded C

❖ The ‘static’ modifier in a function declaration causes that the functions is only
callable within the file where is declared.

static void helper() {

// only callable within this file

}

ICTP -MLAB

C4ES - C. Sisterna 36

Tells the compiler not to optimize the variable because its value can change
unexpectedly (e.g. interrupts, hardware registers).

Ensure each access actually read or write the memory location.

Often your compiler may eliminate code to read the port as part of the compiler's
code optimization process if it does not realize that some outside process is

changing the port's value.

You can avoid this by declaring the variable volatile.

‘volatile’ Variable

ICTP -MLAB

C4ES - C. Sisterna 37

Without volatile the compiler might optimize the loop away because it
assumes sensorflag variable never changes.

‘volatile’ Variable Example

ICTP -MLAB

C4ES - C. Sisterna 38

Use of the ‘static’ and ‘volatile’ modifiers

Embedded C

Why Combine static and volatile?

o volatile tells the compiler

o “This variable can change at any time (outside normal program flow, like via an

interrupt), so don’t optimize accesses to it.”

o static ensures the variable

o “Persists between function calls and is only visible within this file (or function).”

ICTP -MLAB

C4ES - C. Sisterna 39ICTP 39

Use of the ‘static’ and ‘volatile’ modifiers

Embedded C

Example: You have a button
interrupt that sets a flag. The

‘C’ main loop waits for this flag

to change to take action.

static

File-level scope

Keep buttonpressed

variable, local to the file

volatile

Prevents optimization

Ensures compiler does not

cache the variable value, reads

from memory every time

C4ES - C. Sisterna ICTP- MLAB 40

Embedded ‘C’
Techniques for Low

Level Operations

C4ES - C. Sisterna 41

Bitwise operators in ‘C’: ~ (not), & (and), | (or), ^ (xor)
which operate on one or two operands at bit levels

Bit Manipulation in ‘C’

u8 mask = 0x60; //0110_0000 mask bits 6 and 5

u8 data = 0xb3 //1011_0011 data

u8 d0, d1, d2, d3; //data to work with in the coming example

. . .

d0 = data & mask;

d1 = data & ~mask;

d2 = data | mask;

d3 = data ^ mask;

// 0010_0000; isolate bits 6 and 5 from data

// 1001_0011; clear bits 6 and 5 of data

// 1111_0011; set bits 6 and 5 of data

// 1101_0011; toggle bits 6 and 5 of data

ICTP -MLAB

C4ES - C. Sisterna 42

The right shift operator shifts the data right by the specified number
of positions. Bits shifted out the right side disappear. With unsigned
integer values, 0s are shifted in at the high end, as necessary. For
signed types, the values shifted in is implementation-dependant.
The binary number is shifted right by number bits.

Bit Shift Operators

The left shift operator shifts the data right by the specified number
of positions. Bits shifted out the left side disappear and new bits
coming in are 0s. The binary number is shifted left by number bits.

x >> number;

Both operands of a bit shift operator must be integer values

x << number;

ICTP -MLAB

C4ES - C. Sisterna 43

void led_knight_rider(XGpio *pLED_GPIO, int nNumberOfTimes)
{

int i=0; int j=0;

u8 uchLedStatus=0;

// Blink the LEDs back and forth nNumberOfTimes

for(i=0;i<nNumberOfTimes;i++)

{

for(j=0;j<8;j++) // Scroll the LEDs up

{

uchLedStatus = 1 << j;

XGpio_DiscreteWrite(pLED_GPIO, 1, uchLedStatus);

delay(ABOUT_ONE_SECOND / 15);

}

for(j=0;j<8;j++) // Scroll the LEDs down

{

uchLedStatus = 1 << 7 - j;

XGpio_DiscreteWrite(pLED_GPIO, 1, uchLedStatus);

delay(ABOUT_ONE_SECOND / 15);

}

}

}

Bit Shift Example

ICTP -MLAB

C4ES - C. Sisterna 44

There are cases that in the same memory address different fields are stored

Unpacking Data

Example: let’s assume that a 32-bit memory address contains a 16-bit field for an integer data
and two 8-bit fields for two characters

num ch1 ch0

31 . . . 16 15 . . . 8 7 . . . 0

u32 io_rd_data;

int num;

char chl, ch0;

Unpacking

io_rd_data = my_iord(...);//my_io_read read a data

ch0 =

num =

chl =

(int) ((io_rd_data & 0xffff0000) >> 16);

(char)((io_rd_data & 0x0000ff00) >> 8);

(char)((io_rd_data & 0x000000ff));

io_rd_data

ICTP -MLAB

C4ES - C. Sisterna 45

Packing Data

u32 wr_data;

int num = 5;

char chl, ch0;

Pa
ck

in
g

There are cases that in the same memory address different fields are written

Example: let’s assume that a 32-bit memory address will be written as a 16-bit field for an
integer data and two 8-bit fields for two characters

num ch1 ch0

31 . . . 16 15 . . . 8 7 . . . 0

io_wr_data

wr_data = (wr_data << 8) | (u32) ch0; //num[31:16],ch1[15:8]

wr_data = (u32)(num); //num[15:0]

wr_data = (wr_data << 8) | (u32) ch1; //num[23:8],ch1[7:0]

my_iowr(. . . , wr_data) ; //ch0[7:0]

ICTP -MLAB

C4ES - C. Sisterna 46

Another Way ….

wr_data = (((u32)(num))<<16)|(((u32)ch1)<<8)|(u32)ch2;

ICTP -MLAB

C4ES - C. Sisterna ICTP- MLAB 47

Embedded ‘C’ Basic
Program Template

C4ES - C. Sisterna 48

Embedded System Application

ICTP -MLAB

In embedded systems, applications are typically designed as a collection of tasks

or functional blocks, each responsible for a specific operation. These tasks can

be implemented using:

Software Routines

✓ Executed by a general-purpose

processor (e.g., ARM Cortex).

✓ Written in C/C++ or assembly.

✓ Good for tasks that are:

✓ Control-intensive

✓ Low-throughput

✓ Complex to parallelize

Hardware Accelerators

✓ Implemented on FPGAs, ASICs, or

dedicated coprocessors.

✓ Designed using RTL (VHDL/Verilog)

or HLS (C/C++ → Hardware).

✓ Best for tasks that are:

✓ Compute-intensive

✓ Highly parallel

✓ Time-critical

C4ES - C. Sisterna 49

Example Embedded System Application

Task Implementation

Frame capture Software

Color space conversion Hardware (HLS)

Edge detection Hardware (RTL/HLS)

Display output Software

ICTP -MLAB

C4ES - C. Sisterna 50

Basic Embedded C Program Architecture

#include “nnnnn.h”

#include <ppppp.h>

main()

{

sys_init();//

while(1){

task_1();

task_2();

. . .

task_n();

}

}

An embedded application consists of a collection tasks, implemented by
hardware accelerators, software routines, or both.

ICTP -MLAB

*Sleep mode

C4ES - C. Sisterna 51

The flashing-LED system turns on and off two LEDs alternatively according to the interval
specified by the ten sliding switches

I/O Simple Problem

Tasks ????

1. reading the interval value from the switches

2. toggling the two LEDs after a specific amount of time

ICTP -MLAB

C4ES - C. Sisterna 5252

I/O Simple Example

main()

{

while(1){

. . .

task_1();

task_2();

. . .

}

}

main()

{

int period;

while(1){

read_sw(SWITCH_S1_BASE, &period);

led_flash(LED_L1_BASE, period);

}

}

#include “nnnnn.h”

#include “aaaaa.h”

ICTP -MLAB

C4ES - C. Sisterna 53

I/O Simple Example - Reading

/**

* function: read_sw ()

* purpose: get flashing period from 10 switches

* argument:

* sw-base: base address of switch PIO

* period: pointer to period

* return:

* updated period

* note :

**/

void read_sw(u32 switch_base, int *period)

{

*period = my_iord(switch_base) & 0x000000ff; //read flashing period

// from switch

}

0x000003ff;

ICTP -MLAB

C4ES - C. Sisterna 54

I/O Simple Example - Writing
/**

* function: led.flash ()

* purpose: toggle 2 LEDs according to the given period

* argument:

* led-base: base address of discrete LED PIO

* period: flashing period in ms

* return : none

* note :

* — The delay is done by estimating execution time of a dummy for loop

* — Assumption: 400 ns per loop iteration (2500 iterations per ms)

* - 2 instruct. per loop iteration /10 clock cycles per instruction /20ns per clock cycle(50-MHz clock)

***/

void led_flash(u32 addr_led_base, int period)

{

static u8 led_pattern = 0x01; // initial pattern

unsigned long i, itr;

led_pattern ^= 0x03; // toggle 2 LEDs (2 LSBs)

my_iowr(addr_led_base, led_pattern); // write LEDs

itr = period * 2500;

for (i=0; i<itr; i++) {} // dummy loop for delay

}

ICTP -MLAB

C4ES - C. Sisterna 55

I/O Example – Read / Write

int main()

{

int period;

while(1){

read_sw(SWITCH_S1_BASE, &period);

led_flash(LED_L1_BASE, period);

}

return 0;

}

void read_sw(u32 switch_base, int *period)

{

*period = my_iord(switch_base) & 0x000003ff;

}

void led_flash(u32 addr_led_base, int period)

{

static u8 led_pattern = 0x01;

unsigned long i, itr; //static?

led_pattern ^= 0x03;

my_iowr(addr_led_base, led_pattern);

itr = period * 2500;

for (i=0; i<itr; i++) {}

}

ICTP -MLAB

C4ES - C. Sisterna 56

Advanced Techniques for Embedded C

✓ Pointers Manipulation

✓ Interrupts Handling

✓ RTOS (Real-Time Operating Systems)

✓ Peripherals Interfacing

✓ Low-power optimization

✓ Memory Management

✓ Debugging & Testing

ICTP -MLAB

C4ES - C. Sisterna ICTP- MLAB 57

Zynq PSoC: Read/Write

From/To GPIO I/Os

C4ES - C. Sisterna 58

Example of Wr/Rd to/from GPIO

ICTP -MLAB

C4ES - C. Sisterna 59

1. Create a GPIO instance

2. Initialize the GPIO

3. Set data direction (optional)

4. Read the data

Steps for Reading from a GPIO

ICTP -MLAB

C4ES - C. Sisterna 60

Steps for Reading from a GPIO

ICTP -MLAB

3 421

Create a GPIO
Instance

Initialize the
GPIO

Set the I/O as
Input

Read the Input
Data

C4ES - C. Sisterna 61

1. Create a GPIO instance

Steps for Reading from a GPIO – Step 1

#include “xparameters.h”
#include “xgpio.h”

int main (void)
{

XGpio switches;
XGpio leds;
. . .

ICTP -MLAB

Create a GPIO
Instance

C4ES - C. Sisterna 62

2. Initialize the GPIO

Steps for Reading from a GPIO – Step 2

(int) XGpio_Initialize(XGpio *InstancePtr, u16 DeviceID);

InstancePtr: is a pointer to an XGpio instance (already declared).

DeviceID: is the unique ID of the device controlled by this XGpio component (declared in the
xparameters.h file)

@return
- XST_SUCCESS if the initialization was successfull.
- XST_DEVICE_NOT_FOUND if the device configuration data was not

xstatus.h

ICTP -MLAB

C4ES - C. Sisterna 63

Steps for Reading from a GPIO – Step 2

(int) XGpio_Initialize(XGpio *InstancePtr, u16 DeviceID);

// AXI GPIO switches initialization

XGpio_Initialize (&switches, XPAR_BOARD_SW_8B_DEVICE_ID);

sw
sw
sw
sw
sw

sw

ICTP -MLAB

C4ES - C. Sisterna 64

The xparameters.h file contains the address map for peripherals in the
created system.

This file is generated from the hardware platform created in Vivado

xparameters.h

xparameters.h file can be found underneath the
include folder in the ps7_cortexa9_0 folder of
the BSP main folder

Ctrl + Mouse Over

ICTP -MLAB

C4ES - C. Sisterna 65

xparameters.h

ICTP -MLAB

C4ES - C. Sisterna 66

Set data direction

Steps for Reading from a GPIO – Step 3

void XGpio_SetDataDirection (XGpio *InstancePtr, unsigned Channel, u32 DirectionMask);

InstancePtr: is a pointer to an XGpio instance to be working with.

Channel: contains the channel of the XGpio (1 o 2) to operate with.

DirectionMask: is a bitmask specifying which bits are inputs and which are outputs.
Bits set to ‘0’ are output, bits set to ‘1’ are inputs.

Return: none

// AXI GPIO switches: bits direction configuration

XGpio_SetDataDirection(&board_sw_8b, 1, 0xffffffff);

ICTP -MLAB

C4ES - C. Sisterna 67

Read the data

Steps for Reading from a GPIO – Step 4

u32 XGpio_DiscreteRead (XGpio *InstancePtr, unsigned Channel);

InstancePtr: is a pointer to an XGpio instance to be working with.

Channel: contains the channel of the XGpio (1 o 2) to operate with.

Return: read data

// AXI GPIO: read data from the switches

sw_check = XGpio_DiscreteRead(&board_sw_8b, 1);

ICTP -MLAB

C4ES - C. Sisterna 68

Steps for Writing to a GPIO

ICTP -MLAB

3 421

Create a GPIO
Instance

Initialize the
GPIO

Set the I/O as
Output

Write the
Output Data

C4ES - C. Sisterna 69

1. Create a GPIO instance

Steps for Writing to a GPIO – Step 1

#include “xgpio.h”
int main (void)
{

XGpio switches;
XGpio leds;
. . .

ICTP -MLAB

Create a GPIO
Instance

C4ES - C. Sisterna 70

Initialize the GPIO

Steps for Writing to a GPIO – Step 2

(int) XGpio_Initialize(XGpio *InstancePtr, u16 DeviceID);

InstancePtr: is a pointer to an XGpio instance.

DeviceID: is the unique id of the device controlled by this XGpio component

@return
- XST_SUCCESS if the initialization was successfull.
- XST_DEVICE_NOT_FOUND if the device configuration data was not xstatus.h

ICTP -MLAB

C4ES - C. Sisterna 71

Steps for Writing to a GPIO – Step 2

(int) XGpio_Initialize (XGpio *InstancePtr, u16 DeviceID);

// AXI GPIO leds initialization

XGpio_Initialize (&board_leds_8b, XPAR_BOARD_LEDS_8B_DEVICE_ID);

ICTP -MLAB

C4ES - C. Sisterna 72

Write the data

Steps for Writing to a GPIO – Step 3

void XGpio_DiscreteWrite (XGpio *InstancePtr, unsigned Channel, u32 Data);

InstancePtr: is a pointer to an XGpio instance to be worked on.

Channel: contains the channel of the XGpio (1 o 2) to operate with.

Return: none

Data: Data is the value to be written to the discrete register

// AXI GPIO: write data (sw_check) to the LEDs

XGpio_DiscreteWrite(& board_leds_8b, 1, sw_check);

ICTP -MLAB

C4ES - C. Sisterna 73

GPIO Read / Write Full Example

C4ES - C. Sisterna 74

GPIO? Read / Write Full Example

C4ES - C. Sisterna 75

Complete GPIO Rd/Wr Example

file:///D:/ictp_labs/lab_gpio_inout/lab_gpio_in_out/c_src/sol/lab_gpio_in_out_Solution.c
file:///D:/ictp_labs/lab_gpio_inout/lab_gpio_in_out/c_src/sol/lab_gpio_in_out_Solution.c
file:///D:/ictp_labs/lab_gpio_inout/lab_gpio_in_out/c_src/sol/lab_gpio_in_out_Solution.c

C4ES - C. Sisterna ICTP- MLAB 76

‘C’ Drivers for IP Cores

C4ES - C. Sisterna 7777

SPI IP Core - Example

ICTP -MLAB

C4ES - C. Sisterna 7878

SPI IP Core - Example

ICTP -MLAB

C4ES - C. Sisterna 79

SPI IP Core - Example

C4ES - C. Sisterna ICTP- MLAB 80

‘C’ Drivers for
Custom IP Cores

C4ES - C. Sisterna 8181

Custom IP Core

ICTP -MLAB

C4ES - C. Sisterna 8282

My IP – Memory Address Range

ICTP -MLAB

C4ES - C. Sisterna 83

▪ The driver code are generated automatically when the IP template is
created.

▪ The driver includes higher level functions which can be called from the
user application.

▪ The driver will implement the low level functionality used to control your
peripheral.

Custom IP Drivers

led_ip\ip_repo\led_ip_1.0\drivers\led_ip_v1_0\src

led_ip.c

led_ip.h
LED_IP_mWriteReg(…)

LED_IP_mReadReg(…)

ICTP -MLAB

C4ES - C. Sisterna 84

Custom IP Drivers: *.c

led_ip\ip_repo\led_ip_1.0\drivers\led_ip_v1_0\src\led_ip.c

ICTP -MLAB

C4ES - C. Sisterna 85

Custom IP Drivers: *.h

led_ip\ip_repo\led_ip_1.0\drivers\led_ip_v1_0\src\led_ip.h

ICTP -MLAB

C4ES - C. Sisterna 86

Custom IP Drivers: *.h

led_ip\ip_repo\led_ip_1.0\drivers\led_ip_v1_0\src\led_ip.h

ICTP -MLAB

C4ES - C. Sisterna 87

Custom IP Drivers: *.h

led_ip\ip_repo\led_ip_1.0\drivers\led_ip_v1_0\src\led_ip.h

ICTP -MLAB

C4ES - C. Sisterna 88

Custom IP Drivers: *.h

led_ip\ip_repo\led_ip_1.0\drivers\led_ip_v1_0\src\led_ip.h

ICTP -MLAB

C4ES - C. Sisterna 89

Custom IP Drivers: *.h

led_ip\ip_repo\led_ip_1.0\drivers\led_ip_v1_0\src\led_ip.h

ICTP -MLAB

C4ES - C. Sisterna 9090

‘C’ Code for Writing to My_IP

ICTP -MLAB

C4ES - C. Sisterna 91

o For this driver, you can see the macros are aliases to the lower-level functions
Xil_Out32() and Xil_In32()

o The macros in this file make up the higher-level API of the led_ip driver.

o If you are writing your own driver for your own IP, you will need to use low level
functions like these to read and write from your IP as required. The low-level hardware
access functions are wrapped in your driver making it easier to use your IP in an
Application project.

IP Drivers – Xil_Out32/Xil_In32

#define LED_IP_mWriteReg(BaseAddress, RegOffset, Data) Xil_Out32((BaseAddress) + (RegOffset), (Xuint32)(Data))

#define LED_IP_mReadReg(BaseAddress, RegOffset) Xil_In32((BaseAddress) + (RegOffset))

ICTP -MLAB

C4ES - C. Sisterna 92

IP Drivers – Xil_In32 (xil_io.h/xil_io.c)

/***/
/**
* Performs an input operation for a 32-bit memory location by reading from the
* specified address and returning the Value read from that address.
*
* @param Addr contains the address to perform the input operation at.
*
* @return The Value read from the specified input address.
*
* @note None.
*
**/

u32 Xil_In32(INTPTR Addr)
{

return *(volatile u32 *) Addr;
}

ICTP -MLAB

C4ES - C. Sisterna 93

IP Drivers – Xil_Out32 (xil_io.h/xil_io.c)

/***/
/**
* Performs an output operation for a 32-bit memory location by writing the
* specified Value to the the specified address.
*
* @param Addr contains the address to perform the output operation at.
* @param Value contains the Value to be output at the specified address.
*
* @return None.
*
* @note None.
**/

void Xil_Out32(INTPTR Addr, u32 Value)
{

u32 *LocalAddr = (u32 *)Addr;

*LocalAddr = Value;
}

ICTP -MLAB

C4ES - C. Sisterna 94

o Select <project_name>_bsp in the project view pane. Right-click

o Select Board Support Package Settings

o Select Drivers on the Overview pane

o If the led_ip driver has not already been selected, select Generic under

the Driver Column for led_ip to access the dropdown menu. From the

dropdown menu, select led_ip, and click OK>

IP Drivers – Vitis ‘Activation’

ICTP -MLAB

C4ES - C. Sisterna 95

IP Drivers – Vitis ‘Activation’

ICTP -MLAB

C4ES - C. Sisterna 96

I/O Read Macro

Read from an Input

int switch_s1;

. . .

#define SWITCH_S1_BASE = 0x00011000;

. .

#define SWITCH_S1_BASE = 0x00011000;

#define my_iord(addr) (*(volatile int *)(addr))

. . .

switch_s1 = *(volatile int *)(0x00011000);

switch_s1 = *(volatile int *)(SWITCH_S1_BASE);

switch_s1 = my_iord(SWITCH_S1_BASE); //

Macro

ICTP -MLAB

C4ES - C. Sisterna 97

I/O Write Macro

Write to an Output

char pattern = 0x01;

. . .

#define LED_L1_BASE = 0x11000110;

. . .

#define LED_L1_BASE = 0x11000110;

#define my_iowr(addr, data) (*(int *)(addr) = (data))

. . .

*(0x11000110) = pattern;

*(LED_L1_BASE) = pattern;

my_iowr(LED_L1_BASE, (int)pattern); //

Macro

ICTP -MLAB

C4ES - C. Sisterna 98

Zynq System Level Address Map

UNSL - UNSJ

C4ES - C. Sisterna 99C4ES - C. Sisterna ICTP- MLAB 99

Efficient Hardware Interaction

Real-Time Performance

Resources Optimization

Portability Across Zynq Variants

Integration with Programmable Logic (PL)

Hardware-Interrupt Support

Simplified Development with Xilinx Tools

Robustness in Harsh Environments

Benefits of Using Embedded C in a Zynq

C4ES - C. Sisterna 100

Bibliography

❑ “Introducción a la Programación en Lenguaje C para Ingeniería
Electrónica”, S. Burgos, Omar Berardi. Dictumediciones, 2015.

❑ Xilinx Standard C Libraries

❑ “Standalone Library Documentation BSP and Libraries Document
Collection”. AMD UG643 (V2025.1).

❑ AMD Xilinx Vitis Embedded Software Documentation (2025.1).

❑ "Embedded Systems with ARM Cortex-M Microcontrollers in
Assembly Language and C" by Yifeng Zhu (3rd Edition, 2021).

https://docs.amd.com/r/2021.1-English/oslib_rm/Xilinx-Standard-C-Libraries
https://docs.amd.com/viewer/book-attachment/II1mdICn2VZwySl6~VATdg/PG~vKeiUDIsVp16WRQVnCg-II1mdICn2VZwySl6~VATdg

	Slide 1: ‘C’ for Embedded Systems
	Slide 2: Agenda
	Slide 3: Embedded C
	Slide 4: Why do we need ‘C’ Language ?
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Reviewing Embedded ‘C’ Basic Concepts
	Slide 9: ‘Bits, Nibbles, Bytes, Word
	Slide 10: Hexadecimal Representation Code
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: ‘C’ Modifiers - Type Modifiers
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: ‘C’ Directives
	Slide 21
	Slide 22: Use of #include directive - Examples
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Variables: Globals / Locals
	Slide 27
	Slide 28
	Slide 29: Global and Local Variables Declarations
	Slide 30: Global and Local Variables
	Slide 31: ‘C’ Modifiers
	Slide 32
	Slide 33: ‘C’ Modifiers - Storage-Class Modifiers
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40: Embedded ‘C’ Techniques for Low Level Operations
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46: Another Way ….
	Slide 47: Embedded ‘C’ Basic Program Template
	Slide 48: Embedded System Application
	Slide 49: Example Embedded System Application
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56: Advanced Techniques for Embedded C
	Slide 57: Zynq PSoC: Read/Write From/To GPIO I/Os
	Slide 58: Example of Wr/Rd to/from GPIO
	Slide 59: Steps for Reading from a GPIO
	Slide 60: Steps for Reading from a GPIO
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68: Steps for Writing to a GPIO
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73: GPIO Read / Write Full Example
	Slide 74: GPIO? Read / Write Full Example
	Slide 75
	Slide 76: ‘C’ Drivers for IP Cores
	Slide 77
	Slide 78
	Slide 79: SPI IP Core - Example
	Slide 80: ‘C’ Drivers for Custom IP Cores
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99: Benefits of Using Embedded C in a Zynq
	Slide 100: Bibliography

