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Introduction & Motivation




Introduction 2

Artificial Intelligence (Al) and Internet of Things (IoT) convergence:
Inference, reasoning, and decision-making closer to the data sources.
Optimization of resource allocation - Cloud — Edge.
Benefits - Reduce the communication pressure and latency, faster response time...
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Motivation 2,

Problem - Integrating DL-based inference on resource-constrained loT edge devices.

Memory, computational capabilities...

Solution - Distributed inference approaches:

Collaborative DL model execution across loT devices.
Reduce dependence on cloud resources and enhance data privacy.

Split learning (SL) - Training workload is delegated between edge nodes and servers:
Raw data locally stored.
Problem - Significant challenges due to unpredictable wireless channel conditions.
Solution - Channel integration into training pipeline.
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Split Learning & Inference
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Split Learning—Based RNNs a5
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Figure 1: LSTM-based split learning/inference algorithms: a) LSTMSPLIT? b) Fedsl 3

2|, Jiang, et al. , "LSTMSPLIT: effective SPLIT learning based LSTM on sequential time-series data," 2022
3A. Abediand S. S. Khan, "Fedsl: Federated split learning on distributed sequential data in recurrent neural

networks," Multimed. Tools. Appl., vol. 83, pp. 28891-28911, Sept. 2023.



Split Learning with Channel

Integration




Motivation 2,

Challenge - Random and time-varying nature of the wireless channel.

Steps toward a solution:
Integrate diverse channel conditions during the offline SL phase.
Learn optimal intermediate representations for feature transmission.
Design a robust server-side subnetwork resilient to channel variations.

Mitigate channel perturbations during the online split inference phase.

Ultimate goal: Minimize the mean-squared error (MSE) for a given channel W:



System Model 2
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Proposed Framework - Erasure Channel

Erasure channel:
n-dimensional binary vector g € {0,1}"
Each symbol of g - Bernoulli distribution
Erasure probability p
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Proposed Framework - Erasure Channel
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Proposed Framework - Erasure Channel

Erasure channel:
n-dimensional binary vector g € {0,1}"
Each symbol of g - Bernoulli distribution
Erasure probability p

z2=W(z)=z04q

Training integration:
Dropout layer between the edge and server
Hidden units are randomly dropped with prob. p
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Proposed Framework - AWGN Channel

AWGN channel (and its extension):
M-dimensional real vectorn € R".
Introduction of occasional deep fades.
UAV-based scenarios
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Proposed Framework - AWGN Channel 2B

AWGN channel (and its extension):

M-dimensional real vectorn € R”. (f)
Introduction of occasional deep fades.
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Proposed Framework - AWGN Channel

AWGN channel (and its extension):

M-dimensional real vectorn € R”.
Introduction of occasional deep fades.
UAV-based scenarios
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Proposed Framework - AWGN Channel

AWGN channel (and its extension):

M-dimensional real vectorn € R”.
Introduction of occasional deep fades.
UAV-based scenarios

z=W(z)=2z+n

n contains:

ny i.i.d. samples of a Gaussian variable NV (0, o%).
n, i.i.d. samples of a Gaussian variable N;(0, o3).

o2 <oi,n=n;+n,

Training integration:
Non-trainable noise layer
Symbols of z corrupted independently.
Random nature of the channel - Regularization.
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Proposed Framework - Early-Exit Strategy

Motivation:
Server side — Output DNN

Wireless Channel

IoT devices operate in challenging environments.

Jee

Prediction

Edge side — Input DNN

re (i
MARKABLE
Ve

13



Proposed Framework - Early-Exit Strategy

Motivation:
Server side — Output DNN

Wireless Channel

loT devices operate in challenging environments.
Impact of adverse channel conditions on overall
performances?
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Proposed Framework - Early-Exit Strategy 2B

Motivation:

loT devices operate in challenging environments. SRAESide=<OutpuiiiiiN

Impact of adverse channel conditions on overall
performances?
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Proposed Framework - Early-Exit Strategy 2B

Motivation:

loT devices operate in challenging environments. SRAESide=<OutpuiiiiiN

Impact of adverse channel conditions on overall
performances?

% Wireless Channel
|
Should we send (highly corrupted) intermediate x
:
I
I
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representation?

Solution - Early-Exit Strategy:
Additional NN output at the edge device - fe.
)A/ee = fee(z)
CSl knowledge, local decision (prediction MSE).
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Proposed Framework - Early-Exit Strategy

Training integration - Joint training with overall
pipeline:
Compound loss function.

Without prior channel knowledge:
Lee = L(T,Y) + L(Tee, y)
With prior channel knowledge:
Lee = AL(Y,y) + (L= N)L(ee, ¥),

A € [0, 1] - Weight parameter, shape system
behavior.

Flexible trade-off - EE and full system performance.
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Heterogeneous loT Devices o

loT network consists of C edge devices:
Independent local datasets.
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Performance Evaluation




Experimental Setup - Use Case 1 2

Generic Time-Series loT System:
Is this approach effective?
Amazon Stock Data dataset (6516 instances).
Predict Open using previous 30 days of Close.

LSTM-based neural network?®.

Training/Validation/Testing - 60/10/30%.

*More details about the data preprocessing and training procedure: V. Ninkovic, D. Vukobratovic, D.
Miskovic and M. Zennaro, "COMSPLIT: ACommunication-Aware Split Learning Design for Heterogeneous loT
Platforms," IEEE Internet of Things Journal, vol. 12, no. 5, pp. 5305-5319, 2025.
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Use Case 1 - Erasure Channel n5
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Figure 2: Erasure channel: MSE versus symbol erasure probability (p) performances for various
training symbol erasure probability p; values introduced during training and early-exit strategy 17



Use Case 1 - AWGN Channel sy
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Figure 3: AWGN channel: MSE versus SNR performances for various SNR; and SNR, = SNR; — 5dB
values introduced during training and early-exit strategy (n; = n, = 5).
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Use Case 1 - Heterogeneous Setup sy
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Figure 4: Heterogeneous loT Devices: MSE versus symbol erasure probability p performances for 2
devices (C(fg,) < C(fe,)) under different py,
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Experimental Setup - Use Case 2 2,

Is this approach effective on real-world data?



Experimental Setup - Use Case 2

Is this approach effective on real-world data?

Towards real-world deployment: Water Quality Monitoring IoT System.
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Experimental Setup - Use Case 2 2

Is this approach effective on real-world data?

Towards real-world deployment: Water Quality Monitoring IoT System.

Dataset perfectly suited to the environmental problem:
Pollution of the Danube river near Novi Sad
3,264 instances - Each instance represents a daily measurement from 2013 to 2022

Eight different water quality parameters - Temperature, pH value, electrical conductivity,
dissolved oxygen, oxygen saturation, ammonium, and nitrite
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Experimental Setup - Use Case 2 2

Is this approach effective on real-world data?

Towards real-world deployment: Water Quality Monitoring IoT System.

Dataset perfectly suited to the environmental problem:
Pollution of the Danube river near Novi Sad
3,264 instances - Each instance represents a daily measurement from 2013 to 2022

Eight different water quality parameters - Temperature, pH value, electrical conductivity,
dissolved oxygen, oxygen saturation, ammonium, and nitrite

Estimation of dissolved oxygen based on previous 30 days:
Data storage limitations.
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Experimental Setup - Use Case 2 sy

UAV-assisted link
(Relay) 4

UAV
.fI‘E Direct link

Smart Buoy Server Side

)

Is

Figure 5: Water quality monitoring loT system - Initial setup with a) smart buoy and b) UAV

21
equipped with communication equipment



Use Case 2 - Danube River sy
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Figure 6: Erasure channel: MSE versus symbol erasure probability (p) performances for various py
values introduced during training and early-exit strategy 22



Use Case 2 - Danube River 2,
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Figure 7: Heterogeneous loT Devices: MSE versus symbol erasure probability p performances for 2

devices (C(fg,) < C(fe,)) under different py, 23



(Instead of) Conclusion




Discussion & Ongoing Work 2B

Integration of SL with UAV relaying in loT networks?°

*V. Ninkovic, D. Vukobratovic and D. Miskovic, "UAV-assisted Distributed Learning for Environmental
Monitoring in Rural Environments," in Proc. 2024 7th BalkanCom, Ljubljana, Slovenia, 2024, pp. 296-300

®R. S. Molina, V. Ninkovic, D. Vukobratovic, M. L. Crespo and M. Zennaro, "Efficient Split Learning LSTM
Models for FPGA-based Edge IoT Devices," in Proc. 2025 IEEE ICMLCN, Barcelona, Spain, 2025, pp. 1-6
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FPGA deployment of (f¢, fs)?°
Real-world design and deployment of end-to-end system.
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How to efficiently protect the symbols of z?

How to maximize the informativeness of z for efficient transmission?
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Appendix: More Explanations and

Interesting Results...




Use Case 1 - Erasure Channel 2,
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0 0.2 0.4 0.6 0.8
p

Figure 8: MSE versus erasure probability p for different compression rates obtained at p;- = 0.1.
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Use Case 1 - AWGN Channel 2,

10—t I

—— Training - M, =7, My = 3
Training - M; =5, My =5 |
—&&— Training - M; = 3, My =7

SNR; [dB]

Figure 9: MSE versus SNR performances for various n; and n; values trained at SNR; = —5 dB.
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Early-Exit - A Influence

Table 1: Earl-exit versus full performances regarding loss function parameter A.

A\ | Early-exit MSE | Full system MSE (p; = 0.1)
0.1 0.00102 0.00093
0.5 0.00194 0.00085
0.9 0.004 0.00052
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