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Introduction & Motivation



Introduction
▶ Artificial Intelligence (AI) and Internet of Things (IoT) convergence:

▶ Inference, reasoning, and decision-making closer to the data sources.
▶ Optimization of resource allocation - Cloud → Edge.
▶ Benefits - Reduce the communication pressure and latency, faster response time...
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Motivation

▶ Problem - Integrating DL-based inference on resource-constrained IoT edge devices.
▶ Memory, computational capabilities...

▶ Solution - Distributed inference approaches:
▶ Collaborative DL model execution across IoT devices.
▶ Reduce dependence on cloud resources and enhance data privacy.

▶ Split learning (SL) - Training workload is delegated between edge nodes and servers:
▶ Raw data locally stored.
▶ Problem - Significant challenges due to unpredictable wireless channel conditions.
▶ Solution - Channel integration into training pipeline.
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Theoretical Background



Split Learning & Inference

▶ Total L layers:
▶ Edge side - E
▶ Server side - S
▶ L = E + S (E < S)

▶ F = fE ◦ fS
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Split Learning - (High) Mathematical Formulation

ŷ = fS(ẑ)

fS : Rn → R∗

ẑ = W(z)

z = fE(x)

fE : RN → Rn, n < N

x ∈ RN
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fS : Rn → R∗
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Split Learning—Based RNNs

Figure 1: LSTM–based split learning/inference algorithms: a) LSTMSPLIT2 b) Fedsl 3

2L. Jiang, et al. , "LSTMSPLIT: effective SPLIT learning based LSTM on sequential time-series data," 2022
3A. Abedi and S. S. Khan, "Fedsl: Federated split learning on distributed sequential data in recurrent neural

networks,"Multimed. Tools. Appl., vol. 83, pp. 28891–28911, Sept. 2023. 8



Split Learning with Channel
Integration



Motivation

▶ Challenge - Random and time-varying nature of the wireless channel.

▶ Steps toward a solution:
▶ Integrate diverse channel conditions during the offline SL phase.
▶ Learn optimal intermediate representations for feature transmission.
▶ Design a robust server-side subnetwork resilient to channel variations.
▶ Mitigate channel perturbations during the online split inference phase.

▶ Ultimate goal: Minimize the mean-squared error (MSE) for a given channel W :

L(y, ŷ) = 1
P

∑
D

(y − ŷ)2
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System Model

→
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Proposed Framework - Erasure Channel

▶ Erasure channel:
▶ n-dimensional binary vector q ∈ {0, 1}n
▶ Each symbol of q - Bernoulli distribution
▶ Erasure probability p

▶ ẑ = W(z) = z ⊙ q

▶ Training integration:
▶ Dropout layer between the edge and server
▶ Hidden units are randomly dropped with prob. p
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Proposed Framework - AWGN Channel

▶ AWGN channel (and its extension):
▶ M–dimensional real vector n ∈ Rn.
▶ Introduction of occasional deep fades.
▶ UAV–based scenarios

▶ ẑ = W(z) = z + n

▶ n contains:
▶ n1 i.i.d. samples of a Gaussian variable N1(0, σ2

1).
▶ n2 i.i.d. samples of a Gaussian variable N2(0, σ2

2).
▶ σ2

1 < σ2
2 , n = n1 + n2

▶ Training integration:
▶ Non-trainable noise layer
▶ Symbols of z corrupted independently.
▶ Random nature of the channel - Regularization.
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Proposed Framework - Early–Exit Strategy

▶ Motivation:
▶ IoT devices operate in challenging environments.

▶ Impact of adverse channel conditions on overall
performances?

▶ Should we send (highly corrupted) intermediate
representation?

▶ Solution - Early–Exit Strategy:
▶ Additional NN output at the edge device - fee.
▶ ŷee = fee(z)
▶ CSI knowledge, local decision (prediction MSE).
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Proposed Framework - Early–Exit Strategy

▶ Training integration - Joint training with overall
pipeline:
▶ Compound loss function.
▶ Without prior channel knowledge:

Lee = L(ŷ, y) + L(ŷee, y)

▶ With prior channel knowledge:

Lee = λL(ŷ, y) + (1 − λ)L(ŷee, y),

▶ λ ∈ [0, 1] - Weight parameter, shape system
behavior.

▶ Flexible trade-off - EE and full system performance.
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Heterogeneous IoT Devices
▶ IoT network consists of C edge devices:

▶ Independent local datasets.
▶ zi = fEi(xi)

▶ Server side - Concatenation:

Ẑ = W(Z) = (ẑ1, ẑ2, . . . , ẑC)

▶ Separate prediction for each of C devices:

(ŷ1, ŷ2, . . . , ŷC) = fS(ẑ1, ẑ2, . . . , ẑC)

▶ Joint optimization of ({fEi}i=1,...,C, fS).
▶ Training integration - Loss function:

Lhet =
i=C∑
i=1

Li(yi, ŷi)
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Performance Evaluation



Experimental Setup - Use Case 1

▶ Generic Time–Series IoT System:
▶ Is this approach effective?
▶ Amazon Stock Data dataset (6516 instances).
▶ Predict Open using previous 30 days of Close.
▶ LSTM–based neural network4.

▶ Training/Validation/Testing - 60/10/30%.

4More details about the data preprocessing and training procedure: V. Ninkovic, D. Vukobratovic, D.
Miskovic and M. Zennaro, "COMSPLIT: A Communication-Aware Split Learning Design for Heterogeneous IoT
Platforms," IEEE Internet of Things Journal, vol. 12, no. 5, pp. 5305-5319, 2025.
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Use Case 1 - Erasure Channel

Figure 2: Erasure channel: MSE versus symbol erasure probability (p) performances for various
training symbol erasure probability ptr values introduced during training and early–exit strategy 17



Use Case 1 - AWGN Channel

Figure 3: AWGN channel: MSE versus SNR performances for various SNR1 and SNR2 = SNR1 − 5 dB
values introduced during training and early–exit strategy (n1 = n2 = 5). 18



Use Case 1 - Heterogeneous Setup

Figure 4: Heterogeneous IoT Devices: MSE versus symbol erasure probability p performances for 2
devices (C(fE1) < C(fE2)) under different ptr 19



Experimental Setup - Use Case 2

▶ Is this approach effective on real–world data?

▶ Towards real-world deployment: Water Quality Monitoring IoT System.

▶ Dataset perfectly suited to the environmental problem:
▶ Pollution of the Danube river near Novi Sad
▶ 3,264 instances - Each instance represents a daily measurement from 2013 to 2022
▶ Eight different water quality parameters - Temperature, pH value, electrical conductivity,

dissolved oxygen, oxygen saturation, ammonium, and nitrite

▶ Estimation of dissolved oxygen based on previous 30 days:
▶ Data storage limitations.
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Experimental Setup - Use Case 2

Figure 5: Water quality monitoring IoT system - Initial setup with a) smart buoy and b) UAV
equipped with communication equipment

21



Use Case 2 - Danube River

Figure 6: Erasure channel: MSE versus symbol erasure probability (p) performances for various ptr
values introduced during training and early–exit strategy 22



Use Case 2 - Danube River

Figure 7: Heterogeneous IoT Devices: MSE versus symbol erasure probability p performances for 2
devices (C(fE1) < C(fE2)) under different ptr 23



(Instead of) Conclusion



Discussion & Ongoing Work

▶ Integration of SL with UAV relaying in IoT networks?5

▶ FPGA deployment of (fE, fS)?6

▶ Real-world design and deployment of end-to-end system.

▶ Challenge(s):
▶ How to efficiently protect the symbols of z?
▶ How to maximize the informativeness of z for efficient transmission?

▶ Solution(s) - When Learning Meets the Channel: Edge AI through Split and Semantic
Design (Part II)

5V. Ninkovic, D. Vukobratovic and D. Miskovic, "UAV-assisted Distributed Learning for Environmental
Monitoring in Rural Environments," in Proc. 2024 7th BalkanCom, Ljubljana, Slovenia, 2024, pp. 296-300

6R. S. Molina, V. Ninkovic, D. Vukobratovic, M. L. Crespo and M. Zennaro, "Efficient Split Learning LSTM
Models for FPGA-based Edge IoT Devices," in Proc. 2025 IEEE ICMLCN, Barcelona, Spain, 2025, pp. 1-6
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Appendix: More Explanations and
Interesting Results...



Use Case 1 - Erasure Channel

Figure 8: MSE versus erasure probability p for different compression rates obtained at ptr = 0.1.
31



Use Case 1 - AWGN Channel

Figure 9: MSE versus SNR performances for various n1 and n2 values trained at SNR1 = −5 dB.
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Early–Exit - λ Influence

Table 1: Earl–exit versus full performances regarding loss function parameter λ.

λ Early–exit MSE Full system MSE (ptr = 0.1)
0.1 0.00102 0.00093
0.5 0.00194 0.00085
0.9 0.004 0.00052
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