
Peripheral Interfaces &
IP Integration

ICTP-MLABPeripherals Interfaces and IP Integration – C. Sisterna

Cristian Sisterna

S e n i o r A s s o c i a t e , I C T P - MLA B

P r o f es s o r a t U n i v e r s i da d N a c i o na l S a n J u a n - A r g e n t i na

1

◦ Describe the AXI4 transactions

◦ Summarize the AXI4 valid/ready acknowledgment model

◦ Discuss the AXI4 transactional modes of overlap and
simultaneous operations

◦ Describe the operation of the AXI4 streaming protocol

◦ Design and Implementation of a Custom IP Core

Agenda

ICTP-MLABPeripherals Interfaces and IP Integration – C. Sisterna 2

• There is a need to get familiar with the way that different devices communicate

each other in an Embedded System like a Zynq based system

• Learning and understanding the communication among devices will facilitate the

design of Zynq based systems

• All the devices in a Zynq system communicate each other based in a device

interface standard developed by ARM, called AXI (ARM eXtended Interface):

• AXI define a Point to Point Master/Slave Interface

ICTP-MLAB

Need to Understand Device’s Connectivity

Peripherals Interfaces and IP Integration – C. Sisterna 3

ICTP-MLAB

Today’s System-On-Chip

CPU

Vide Controller

Ethernet
Controller

USB

SPI

DDR Controller

Shared DRAM
Memory

General Purpose
I/O

DAC

ADC

Peripherals Interfaces and IP Integration – C. Sisterna 4

Interface Options

ICTP-MLAB

Processor

P1

P2

P3

ArbiterPeripherals

PLBv46 – Bus Spec

PLB

PLB

PLB

PLB

Processor

AXI
Inteconnect

P1

P2

P3

M_AXI
M_AXI

M_AXI

M_AXI S_AXI

S_AXI

S_AXI

AXI4 Defines a

Point to Point

Master/Slave

Interface

S_AXI

S_AXI

M_AXI

Peripherals Interfaces and IP Integration – C. Sisterna 5

• A standard
• All units talk based on the same standard (same protocol, same language)

• All units can easily talk to each other

• Maintanence
• Design is easily maintained/updated

• Facilitate debug tasks

• Re-Use
• Developed cores can easily re-used in other systems

ICTP-MLAB

Connectivity -> Standard

Peripherals Interfaces and IP Integration – C. Sisterna 6

• Core Connect (IBM)
• PLB/OPB (Power PC-FPGA bus interface)

• WishBone
• OpenCore Cores

• AXI
• ARM standard (more to come . . .)

ICTP-MLAB

Common SoPC Interfaces

Peripherals Interfaces and IP Integration – C. Sisterna 7

ICTP-MLAB

AXI is Part of ARM’s AMBA

AMBA

APB AHB AXI

Older Performance Newer

AMBA 3.0
(2003)

AMBA: Advanced Microcontroller Bus Architecture
AXI: Advanced Extensible Interface

Peripherals Interfaces and IP Integration – C. Sisterna 8

ICTP-MLAB

AXI is Part of AMBA

AMBA

APB AHB AXI

AXI-4
Full

AXI-4
Stream

AXI-4
Lite

ATB AMBA 3.0
(2003)

AMBA 4.0
(2010)

Same Spec

Enhancements for FPGAs

Interface Features Burst Data Width Applications

AXI4 Full
Traditional Address/Data Burst

(single address, multiple data)
Up to 256 32 to 1024 bits

Embedded,

Memory

AXI4-Stream Data-Only, Burst Unlimited Any Number
DSP, Video,

Communications

AXI4-Lite
Traditional Address/Data—No Burst (single

address, single data)
1 32 or 64 bits

Small Control

Logic, FSM

Peripherals Interfaces and IP Integration – C. Sisterna 9

AXI is an interconnect system used to tie processors to peripherals

◦ AXI Full: Full performance bursting interconnect

◦ AXI Lite: Lower performance non bursting interconnect (saves programmable logic
resources)

◦ AXI Streaming: Non-addressed packet based or raw interface

ICTP-MLAB

AXI Interconnect

Peripherals Interfaces and IP Integration – C. Sisterna 10

Channel
◦ Independent collection of AXI signals associated to a VALID signal

AXI – Vocabulary

ICTP-MLABPeripherals Interfaces and IP Integration – C. Sisterna

Interface
◦ Collection of one or more channels that expose an IP core’s connecting as master or as

slave
◦ Each IP core may have multiple interfaces

Bus
◦ Multiple-bit signal (not an interface or channel)

Transfer
◦ Single clock cycle where information is communicated, qualified by a VALID handshake

Transaction
◦ Complete communication operation across a channel, composed of a one or more transfers

Burst
◦ Transaction that consists of more than one transfer

11

AXI Transactions / Master-Slave

ICTP-MLAB

AXI Slave
AXI

Master

Read Transaction

Write Transaction

Transactions: transfer of data from one point on the hardware to another point

Responds to the
initiate transaction

Initiates the
transaction

Peripherals Interfaces and IP Integration – C. Sisterna 12

ICTP-MLAB

AXI Interconnect

AXI
Master
DMA

AXI
Master

CPU

AXI Slave
SPI

AXI Slave
GPIO

AXI Slave
BRAM

?AXI
Interconnect

M_AXI S_AXI

M_AXI

S_AXI

S_AXI

M_AXI

S_AXI M_AXI

S_AXI M_AXI

Peripherals Interfaces and IP Integration – C. Sisterna 13

ICTP-MLAB

AXI Interconnect – Addressing & Decoding

Address Range: 4K

Address Offset: 0X4000_0000

Addresses: 0X4000_0000 – 0X4000_0FFF

Address Range: 4K

Address Offset: 0X4000_1000

Addresses: 0X4000_0000 – 0X4000_1FFF

Address Range: 64K

Address Offset: 0X4001_0000

Addresses: 0X4001_0000 – 0X4001_FFFF

Address Decoding Table

 GPIO: 0X4000_0000

 SPI: 0X4000_1000

 BRAM: 0X4001_0000

Peripherals Interfaces and IP Integration – C. Sisterna 14

• Different Number of (up to 16)
• Slave Ports

• Master Ports

• Data Width Conversion

• Conversion from AXI3 to AXI4

• Register Slices (pipelining), Input/Output FIFOs

• Clock Domains Transfer

ICTP-MLAB

AXI Interconnect Main Features

Peripherals Interfaces and IP Integration – C. Sisterna 15

AXI Interface Example

Peripherals Interfaces and IP Integration – C. Sisterna ICTP-MLAB 16

AXI Slave Signals

ICTP-MLABPeripherals Interfaces and IP Integration – C. Sisterna 17

Basic AXI Rd/Wr Process

Peripherals Interfaces and IP Integration – C. Sisterna ICTP-MLAB 18

Master asserts and hold VALID when data is available

ICTP-MLAB

AXI Channels Use A Basic “VALID/READY” Handshake

Master sends next DATA/other signals or deasserts VALID

Data and other signals transferred when VALID and READY = ‘1’

DATA

VALID

READY

AXI

Master

AXI

Slave

ACLK

Peripherals Interfaces and IP Integration – C. Sisterna

1

1

2

2 2 2

5

33

3

4

4 41

3 3

5 5 5

Slave asserts READY if able to accept data

Slave deasserts READY if no longer able to accept data

19

ICTP-MLAB

AXI Channels

AXI 4
Master

AXI 4
Slave

AXI4 Read

Read Address Channel

Read Data Channel

Write Address Channel

Write Data Channel

Write Response Channel

Address

and

Control

Read

Data

Read

Data
Read

Data

Read

Data

Address

and

Control

Write

Data

Write

Data
Write

Data

Write

Data

Write

Response

AXI4 Write

Peripherals Interfaces and IP Integration – C. Sisterna 20

ICTP-MLAB

AXI4 Lite

Read Address Channel

Read Data Channel

Address

and

Control

Read

Data

Read

Data
Read

Data

Read

Data

o No Burst

o Single address, single data

o Data Width 32 or 64 bits

(Xilinx IP only support 32)

o Very small size

o The AXI Interconnect is

automatically generated

Write Address Channel

Write Data Channel

Write Response Channel

Address

and

Control

Write

Data

Write

Data
Write

Data

Write

Data

Write

Response

Peripherals Interfaces and IP Integration – C. Sisterna 21

AXI 4
Master

AXI 4
Slave

ICTP-MLAB

AXI4 (Full)

Read Address Channel

Read Data Channel

Address

and

Control

Read

Data

Read

Data
Read

Data

Read

Data

o Sometimes called “Full AXI”

or “AXI Memory Mapped”

o Single address multiple data
o Burst up to 256 data

o Data Width parameterizable
o 32, 64, 128, 256, 512, 1024

bits

Write Address Channel

Write Data Channel

Write Response Channel

Address

and

Control

Write

Data

Write

Data
Write

Data

Write

Data

Write

Response

Peripherals Interfaces and IP Integration – C. Sisterna 22

AXI 4
Master

AXI 4
Slave

ICTP-MLAB

AXI4 Stream

Write Data Channel

Write

Data

Write

Data
Write

Data

Write

Data

AXI

Master
AXI

Slave

o No address channel, no read

and write, always just Master

to Slave
o Just an AXI4 Write Channel

o Unlimited burst length

o Supports sparse, continuous,

aligned, unaligned streams

Peripherals Interfaces and IP Integration – C. Sisterna 23

A
X

I

M
a

s
te

r

A
X

I

S
la

v
e

A
X

I

S
la

v
e

Data
Data

A
X

IS
_
S

A
X

IS
_

S

A
X

IS
_
M

Custom AXI IP Cores

ICTP-MLABPeripherals Interfaces and IP Integration – C. Sisterna 24

Soft IP Cores

Pros Cons

HDL
(hardware description
language)

End user can modify it
Vendor will not support if
IP is modified

Encrypted HDL

Configurable using
parameters Customization is limited to

the available parameters
Sported by the vendor

Gate-Level Netlist High performance
Customization is limited to
the available parameters

Synthesis , Place and Route are controlled by the end user

Different Soft IP Cores

Peripherals Interfaces and IP Integration – C. Sisterna ICTP-MLAB 25

❑ Consistent, easy access

❑ Support for multiple physical locations, including

shared network drives

❑ Access to the latest version of Xilinx-delivered IP

❑ Access to IP customization and generation using the

Vivado IDE

❑ IP example designs

❑ Catalog filter options that let you filter by Supported

Output Products, Supported Interfaces, Licensing,

Provider, or Status

ICTP-MLAB

IP Catalog Main Features

Peripherals Interfaces and IP Integration – C. Sisterna 26

❑ The IP Packager allows a core to be packaged and included in the IP
Catalog, or for distribution

❑ IP-XACT Industry Standard (IEEE) XML format to describe IP using meta-data
o Ports
o Interfaces
o Configurable Parameters
o Files, documentation

o IP-XACT only describes high level information about IP, not low level description, so
does not replace HDL or Software

❑ Complete set of files include
❑ Source code, Constraints, Test Benches (simulation files), documentation

❑ IP Packager can be run from Vivado on the current project, or on a
specified directory

IP Packager

ICTP-MLAB

My IP Generic Block Diagram

ICTP-MLAB

Simplest Case – Case 1

ICTP-MLAB

1. Write the functional VHDL code of

the function you want to implement.

In this example it is a simple PWM

function

Simplest Case – Case 1

ICTP-MLAB

my_pwm_ip_c1_0_S_AXI_inst.vhd: This VHDL file is the one where we will instantiate the
functionality described in the VHDL code.
my_pwm_ip_c1_v1_0.vhd: This VHDL file is the wrapper between our VHDL code and the
AXI bus interface.

2. Open the IP Packager, and create a new IP Core (pick a good name according the functionality)

Simplest Case – Case 1

ICTP-MLAB

3. In the VHDL code of the ‘my_pwm_ip_c1_v1_0_s_AXI.vhd’ file, where it says ‘Add user logic here’
add, the main process of the pwm_simple VHDL code.

slv_reg0 is the first

writing register

(address), through

which the duty_cycle

value is gotten (more

details in the next

slide)

Simplest Case – Case 1

ICTP-MLAB

slv_reg0 write decoding

Simplest Case – Case 1

ICTP-MLAB

4. In the entity of the file, add the generic: ‘dc_bits’ and the output: ‘pwm’

Simplest Case – Case 1

ICTP-MLAB

5. In the file my_pwm_ip_c1_v1_0.vhd, in the entity, add the generic: ‘dc_bits’ and the output: ‘pwm’

Simplest Case – Case 1

ICTP-MLAB

6. In the file my_pwm_ip_c1_v1_0.vhd, in the architecture, in the component declaration and in the

component instantiation (of the component my_pwm_ip_c1_v1_0_S_AXI), add the generic ‘dc_bits”

and the pwm output port.

Simplest Case – Case 1

ICTP-MLAB

7. Then, in the IP Packager, fill in the

requested information in the

Package IP tab.

8. Close the IP Packager.

Using My IP in Vivado

ICTP-MLAB

9. In the Vivado Project Manager, go to Project

Settings -> IP Repository.

10.Click on the + sign to add the repository

(directory) where you created the IP Core.

11.Click Ok. Then the IP Core Will be visible in the

Vivado IP Library.

Using My IP in Vivado

ICTP-MLAB

Using My IP in Vitis

ICTP-MLAB

.h file of the
created IP Core

write function

Using My IP in Vitis

ICTP-MLAB

It is necessary to
include the .h file

in the .c

My IP – Case 2

ICTP-MLAB

In this case, the VHDL Code, the ‘component’, is instantiated in the created IP Core file:

my_pwm_ip_c2_0_S_AXI_inst.vhd (this name can be any).

This case is very similar to ‘Case 1’, the only difference is that the PWM functionality is

implemented by instantiating the ‘pwm_simple’ component, instead of writing the PWM process

like in Case 1.

So, all the steps explained for Case 1 have to be follow, except the process

.

The ‘component’ is instantiated in the

my_pwm_ip_c2_0_S_AXI_inst.vhd file.

My IP – Case 2

ICTP-MLAB

My VHDL Code

AXI Functionality (<ip_name>_S_AXI_inst)

AXI Wrapper (<ip_name>_0)

Write registers

My IP – Case 2

ICTP-MLAB

My IP – Case 3

ICTP-MLAB

The PWM VHDL has more input and output signals that we would like to be controlled by the PS.

The PWM IP Core’s registers, defined by the HW designer, now has: .

2 registers to write to, 3 registers to read from.

My IP – Case 3 - VHDL

ICTP-MLAB

Peripherals Interfaces and IP Integration – C. Sisterna ICTP-MLAB

My IP – Case 3 – VHDL Code - Entity

46

Peripherals Interfaces and IP Integration – C. Sisterna ICTP-MLAB

My IP – Case 3 – VHDL Code - Architecture

47

Peripherals Interfaces and IP Integration – C. Sisterna ICTP-MLAB

My IP – Case 3 - Arch

48

Peripherals Interfaces and IP Integration – C. Sisterna ICTP-MLAB

My IP – Case 3 – VHDL Code - Architecture

49

Peripherals Interfaces and IP Integration – C. Sisterna ICTP-MLAB 50

My IP – Case 3 – Instantiation & VHDL Code

slv_reg0 and slv_reg2 are writable

registers, so, it is similar to the previous

cases.

slv_reg1, slv_reg3 and slv_reg4 are

readable, so, we will assign the values

from registers reg1_status_i,

reg3_ip_versión_i, and reg4_dc_value_i,

to them (details in the next slide)

Peripherals Interfaces and IP Integration – C. Sisterna ICTP-MLAB 51

My IP – Case 3 – Instantiation & VHDL Code

slv_reg1, slv_reg3 and slv_reg4 are

readable, so, we Will assign the values

from registers reg1_status_i,

reg3_ip_versión_i, and reg4_dc_value_i,

to them.

My IP – Case 3

ICTP-MLAB

The following steps are similar to the Case 1.

✓ Complete the information requested by IP Packager

✓ Close IP Packager

✓ In the Vivado project, go to Poject Manager -> Settings -> IP Repository, and there

add the directory where the IP Core lays.

✓ The core should be available in the Vivado Cores Library

✓ When the Vivado project is exported to Vitis, the .h header file is created, and it

contains the Read and Write functions to be used to have access to the read and

write registers of the IP Core.

Apendix

Peripherals Interfaces and IP Integration – C. Sisterna ICTP-MLAB 53

❖ Create and Package IP Wizard

❖ Generates HDL template for
❖Slave/Master

❖AXI Lite/Full/Stream

❖ Optionally Generates
◦ Software Driver

◦ Only for AXI Lite and Full slave interface

◦ Test Software Application

◦ AXI4 BFM Example

IP Manager

ICTP-MLABPeripherals Interfaces and IP Integration – C. Sisterna 54

ICTP-MLAB

Create Custom AXI4 IP

Peripherals Interfaces and IP Integration – C. Sisterna 55

ICTP-MLAB

Create Custom AXI4 IP

Peripherals Interfaces and IP Integration – C. Sisterna 56

ICTP-MLAB

Create Custom AXI4 IP

Peripherals Interfaces and IP Integration – C. Sisterna 57

ICTP-MLAB

Edit Created Custom AXI4 IP

Peripherals Interfaces and IP Integration – C. Sisterna 58

ICTP-MLAB

Edit Created Custom AXI4 IP

Peripherals Interfaces and IP Integration – C. Sisterna 59

ICTP-MLAB

Hierarchy of My IP

Peripherals Interfaces and IP Integration – C. Sisterna 60

ICTP-MLAB

Package the IP

Peripherals Interfaces and IP Integration – C. Sisterna 61

ICTP-MLAB

Compatibility of My IP

Peripherals Interfaces and IP Integration – C. Sisterna 62

ICTP-MLAB

Updating Generated Files

Peripherals Interfaces and IP Integration – C. Sisterna 63

ICTP-MLAB

Checking Parameters and I/O Ports

Peripherals Interfaces and IP Integration – C. Sisterna

(This ends the Works on the edit_ip environment)

64

ICTP-MLAB

Add My IP to the Repository

Peripherals Interfaces and IP Integration – C. Sisterna

These steps shold be done in the Vivado Environment

65

ICTP-MLAB

led_ip Now Available in the IP List

Peripherals Interfaces and IP Integration – C. Sisterna 66

component.xml
◦ IP XACT description

.bd
◦ Block Diagram tcl file

drivers
◦ Vitis and software files (c code)
◦ Simple register/memory read/write

functionality
◦ Simple SelfTest code

hdl
◦ Verilog/VHDL source

xgui
◦ GUI tcl file

Files created

ICTP-MLABPeripherals Interfaces and IP Integration – C. Sisterna 67

• Create an AXI Slave/Master IP Core

• Use the Wizard to generate an AXI
Slave/Master ‘device’

• Set the number of registers

• Building the Complete Zynq system

• Creating a Zynq based System

• Adding the necessary Ips

• Adding our custom AXI IP Core

• Edit Address Space

ICTP-MLAB

Steps for Custom IP - Summary

• Customize the IP Core

• File structure of the IP Cores
• Edit the HDL generated by the wizard
• Updating the IP Core and repack
• Rebuild the system

• Programming the device

• Open Vitis. Creating a Application and BSP
project

• Write the “C” code to Wr/Rd the IP Cores
registers

• Edit Space

Peripherals Interfaces and IP Integration – C. Sisterna 68

AXI4-Lite Custom IP The VHDL
Underneath

Peripherals Interfaces and IP Integration – C. Sisterna ICTP-MLAB 69

AXI4-Lite Signal Names

ICTP-MLABPeripherals Interfaces and IP Integration – C. Sisterna 70

AXI4-Lite Signal Names

ICTP-MLABPeripherals Interfaces and IP Integration – C. Sisterna

o During the creation of a Xilinx IP block, the
Vivado tools can be used to map each AXI
signal onto the signal name that the designer
used when creating the IP

o However in order to make the life of the
designer much easier, the signal names
shown here are recommended when
designing a custom AXI slave in VHDL

o Using these signal names will allow the
Vivado design tools to automatically detect
the signal names during the “create and
package IP” step (described later on).

71

AXI4-Lite Address Decoding

ICTP-MLABPeripherals Interfaces and IP Integration – C. Sisterna

o In previous versions of the Xilinx design flow (where PLB and OPB peripherals were typically used)
it was necessary for each IP peripheral connected to the processor to individually decode all
transactions that were presented by a master on the bus (“multi-drop”). it was the responsibility
of each peripheral to accept or reject each bus transaction depending on the address that was
placed on the address bus.

o With AXI4-lite, the interconnect does not use a multi-drop architecture, but uses a scheme where
each transaction from the master(s) is specifically routed to a single slave IP depending on the
address provided by the master.

o This premise permits a completely different design methodology to be adopted by the creator of
a slave IP, in that any transactions which reach the slave’s interface ports are already known to be
destined for that peripheral.

o The designer merely needs to decode enough of the incoming address bus to determine which
of the registers in the slave IP should be read or written

72

ICTP-MLAB

My VHDL Code – Address Decoding

Address Decode & Write Enable

AXI4-Lite IP

Peripherals Interfaces and IP Integration – C. Sisterna 73

AXI4-Lite – Implementing Addressable Registers

ICTP-MLABPeripherals Interfaces and IP Integration – C. Sisterna

o Using the address decoding scheme above, it is extremely simple to implement registers in VHDL
which can receive data values written by a master on the AXI4-lite interconnect. The following
extract of code shows how an individual register can be quickly and easily implemented (in this
case mapped to BASEADDR + 0x00, as has been coded in the previous VHDL snippet).

Read Transaction

WriteTransaction

74

	Slide 1: Peripheral Interfaces & IP Integration
	Slide 2: Agenda
	Slide 3: Need to Understand Device’s Connectivity
	Slide 4: Today’s System-On-Chip
	Slide 5: Interface Options
	Slide 6: Connectivity -> Standard
	Slide 7: Common SoPC Interfaces
	Slide 8: AXI is Part of ARM’s AMBA
	Slide 9: AXI is Part of AMBA
	Slide 10: AXI Interconnect
	Slide 11: AXI – Vocabulary
	Slide 12: AXI Transactions / Master-Slave
	Slide 13: AXI Interconnect
	Slide 14: AXI Interconnect – Addressing & Decoding
	Slide 15: AXI Interconnect Main Features
	Slide 16: AXI Interface Example
	Slide 17: AXI Slave Signals
	Slide 18: Basic AXI Rd/Wr Process
	Slide 19: AXI Channels Use A Basic “VALID/READY” Handshake
	Slide 20: AXI Channels
	Slide 21: AXI4 Lite
	Slide 22: AXI4 (Full)
	Slide 23: AXI4 Stream
	Slide 24: Custom AXI IP Cores
	Slide 25: Different Soft IP Cores
	Slide 26: IP Catalog Main Features
	Slide 27: IP Packager
	Slide 28: My IP Generic Block Diagram
	Slide 29: Simplest Case – Case 1
	Slide 30: Simplest Case – Case 1
	Slide 31: Simplest Case – Case 1
	Slide 32: Simplest Case – Case 1
	Slide 33: Simplest Case – Case 1
	Slide 34: Simplest Case – Case 1
	Slide 35: Simplest Case – Case 1
	Slide 36: Simplest Case – Case 1
	Slide 37: Using My IP in Vivado
	Slide 38: Using My IP in Vivado
	Slide 39: Using My IP in Vitis
	Slide 40: Using My IP in Vitis
	Slide 41: My IP – Case 2
	Slide 42: My IP – Case 2
	Slide 43: My IP – Case 2
	Slide 44: My IP – Case 3
	Slide 45: My IP – Case 3 - VHDL
	Slide 46: My IP – Case 3 – VHDL Code - Entity
	Slide 47: My IP – Case 3 – VHDL Code - Architecture
	Slide 48: My IP – Case 3 - Arch
	Slide 49: My IP – Case 3 – VHDL Code - Architecture
	Slide 50: My IP – Case 3 – Instantiation & VHDL Code
	Slide 51: My IP – Case 3 – Instantiation & VHDL Code
	Slide 52: My IP – Case 3
	Slide 53: Apendix
	Slide 54: IP Manager
	Slide 55: Create Custom AXI4 IP
	Slide 56: Create Custom AXI4 IP
	Slide 57: Create Custom AXI4 IP
	Slide 58: Edit Created Custom AXI4 IP
	Slide 59: Edit Created Custom AXI4 IP
	Slide 60: Hierarchy of My IP
	Slide 61: Package the IP
	Slide 62: Compatibility of My IP
	Slide 63: Updating Generated Files
	Slide 64: Checking Parameters and I/O Ports
	Slide 65: Add My IP to the Repository
	Slide 66: led_ip Now Available in the IP List
	Slide 67: Files created
	Slide 68: Steps for Custom IP - Summary
	Slide 69: AXI4-Lite Custom IP The VHDL Underneath
	Slide 70: AXI4-Lite Signal Names
	Slide 71: AXI4-Lite Signal Names
	Slide 72: AXI4-Lite Address Decoding
	Slide 73: My VHDL Code – Address Decoding
	Slide 74: AXI4-Lite – Implementing Addressable Registers

