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◦ Describe the AXI4 transactions

◦ Summarize the AXI4 valid/ready acknowledgment model

◦ Discuss the AXI4 transactional modes of overlap and 
simultaneous operations

◦ Describe the operation of the AXI4 streaming protocol

◦ Design and Implementation of a Custom IP Core

Agenda
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• There is a need to get familiar with the way that different devices communicate 

each other in an Embedded System like a Zynq based system

• Learning and understanding the communication among devices will facilitate the 

design of Zynq based systems

• All the devices in a Zynq system communicate each other based in a device 

interface standard developed by ARM, called AXI (ARM eXtended Interface):

• AXI define a Point to Point Master/Slave Interface

ICTP-MLAB

Need to Understand Device’s Connectivity
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Today’s System-On-Chip

CPU

Vide Controller

Ethernet 
Controller

USB

SPI

DDR Controller

Shared DRAM 
Memory

General Purpose 
I/O

DAC

ADC   
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Interface Options
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Processor

P1

P2

P3

ArbiterPeripherals

PLBv46 – Bus Spec

PLB

PLB

PLB

PLB

Processor

AXI 
Inteconnect

P1

P2

P3

M_AXI
M_AXI 

M_AXI

M_AXI S_AXI 

S_AXI 

S_AXI 

AXI4 Defines a 

Point to Point 

Master/Slave 

Interface

S_AXI 

S_AXI 

M_AXI
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• A standard
• All units talk based on the same standard (same protocol, same language)

• All units can easily talk to each other

• Maintanence
• Design is easily maintained/updated

• Facilitate debug tasks

• Re-Use
• Developed cores can easily re-used in other systems

ICTP-MLAB

Connectivity  -> Standard
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• Core Connect (IBM)
• PLB/OPB (Power PC-FPGA bus interface)

• WishBone
• OpenCore Cores 

• AXI
• ARM standard (more to come . . . )
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Common SoPC Interfaces
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AXI is Part of  ARM’s AMBA

AMBA

APB AHB AXI

Older Performance                  Newer

AMBA 3.0
(2003)

AMBA:  Advanced Microcontroller Bus Architecture
AXI:  Advanced Extensible Interface
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AXI is Part of  AMBA

AMBA

APB AHB AXI

AXI-4
Full

AXI-4
Stream

AXI-4
Lite

ATB AMBA 3.0
(2003)

AMBA 4.0
(2010)

Same Spec

Enhancements for FPGAs

Interface Features Burst Data Width Applications

AXI4 Full
Traditional Address/Data Burst 

(single address, multiple data)
Up to 256 32 to 1024 bits

Embedded, 

Memory

AXI4-Stream Data-Only, Burst Unlimited Any Number
DSP, Video, 

Communications

AXI4-Lite
Traditional Address/Data—No Burst (single 

address, single data)
1 32 or 64 bits

Small Control 

Logic, FSM 
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AXI is an interconnect system used to tie processors to peripherals

◦ AXI Full: Full performance bursting interconnect 

◦ AXI Lite: Lower performance non bursting interconnect (saves programmable logic 
resources)

◦ AXI Streaming: Non-addressed packet based or raw interface

ICTP-MLAB

AXI Interconnect
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Channel
◦ Independent collection of AXI signals associated to a VALID signal

AXI – Vocabulary
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Interface 
◦ Collection of one or more channels that expose an IP core’s connecting as master or as 

slave
◦ Each IP core may have multiple interfaces

Bus
◦ Multiple-bit signal (not an interface or channel)

Transfer
◦ Single clock cycle where information is communicated, qualified by a VALID handshake

Transaction
◦ Complete communication operation across a channel, composed of a one or more transfers

Burst
◦ Transaction that consists of more than one transfer

11



AXI Transactions / Master-Slave
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AXI   Slave
AXI 

Master

Read Transaction

Write Transaction

Transactions: transfer of data from one point on the hardware to another point

Responds to the 
initiate transaction

Initiates the  
transaction
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AXI Interconnect

AXI 
Master
DMA

AXI 
Master

CPU

AXI   Slave
SPI

AXI   Slave
GPIO

AXI   Slave
BRAM

?AXI   
Interconnect

M_AXI S_AXI 

M_AXI

S_AXI 

S_AXI 

M_AXI

S_AXI M_AXI

S_AXI M_AXI
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AXI Interconnect – Addressing & Decoding

Address Range: 4K

Address Offset: 0X4000_0000

Addresses: 0X4000_0000 – 0X4000_0FFF

Address Range: 4K

Address Offset:  0X4000_1000

Addresses:         0X4000_0000 – 0X4000_1FFF

Address Range: 64K

Address Offset: 0X4001_0000

Addresses:        0X4001_0000 – 0X4001_FFFF

Address Decoding Table

  GPIO:  0X4000_0000  

  SPI:     0X4000_1000

  BRAM: 0X4001_0000
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• Different Number of (up to 16)
• Slave Ports

• Master Ports

• Data Width Conversion

• Conversion from AXI3 to AXI4

• Register Slices (pipelining), Input/Output FIFOs

• Clock Domains Transfer

ICTP-MLAB

AXI Interconnect Main Features
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AXI Interface Example
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AXI Slave Signals 
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Basic AXI Rd/Wr Process
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Master asserts and hold VALID when data is available
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AXI Channels Use A Basic “VALID/READY” Handshake 

Master sends next DATA/other signals or deasserts VALID

Data and other signals transferred when VALID and READY = ‘1’

DATA

VALID

READY

AXI 

Master

AXI 

Slave

ACLK
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33
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4

4 41
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5 5 5

Slave asserts READY if able to accept data

Slave deasserts READY if no longer able to accept data
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AXI Channels

AXI 4 
Master

AXI 4
Slave

AXI4 Read

Read Address Channel

Read Data Channel

Write Address Channel

Write Data Channel

Write Response Channel

Address 

and 

Control

Read 

Data

Read 

Data
Read 

Data

Read 

Data

Address 

and 

Control

Write 

Data

Write 

Data
Write 

Data

Write 

Data

Write 

Response

AXI4 Write
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AXI4 Lite

Read Address Channel

Read Data Channel

Address 

and 

Control

Read 

Data

Read 

Data
Read 

Data

Read 

Data

o No Burst

o Single address, single data 

o Data Width 32 or 64 bits 

(Xilinx IP only support 32)

o Very small size

o The AXI Interconnect is 

automatically generated

Write Address Channel

Write Data Channel

Write Response Channel

Address 

and 

Control

Write 

Data

Write 

Data
Write 

Data

Write 

Data

Write 

Response
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AXI4 (Full) 

Read Address Channel

Read Data Channel

Address 

and 

Control

Read 

Data

Read 

Data
Read 

Data

Read 

Data

o Sometimes called “Full AXI” 

or  “AXI Memory Mapped”

o Single address multiple data 
o Burst up to 256 data

o Data Width parameterizable
o 32, 64, 128, 256, 512, 1024 

bits

Write Address Channel

Write Data Channel

Write Response Channel

Address 

and 

Control

Write 

Data

Write 

Data
Write 

Data

Write 

Data

Write 

Response
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AXI4 Stream 

Write Data Channel

Write 

Data

Write 

Data
Write 

Data

Write 

Data

AXI 

Master
AXI 

Slave

o No address channel, no read 

and write, always just Master 

to Slave
o Just an AXI4 Write Channel

o Unlimited burst length

o Supports sparse, continuous, 

aligned, unaligned streams
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Custom AXI IP Cores           
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Soft IP Cores

Pros Cons

HDL
(hardware description 
language)

End user can modify it
Vendor will not support if 
IP is modified

Encrypted HDL

Configurable using 
parameters Customization is limited to 

the available parameters
Sported by the vendor

Gate-Level Netlist High performance
Customization is limited to 
the available parameters

Synthesis , Place and Route are controlled by the end user

Different Soft IP Cores 
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❑ Consistent, easy access

❑ Support for multiple physical locations, including 

shared network drives 

❑ Access to the latest version of Xilinx-delivered IP

❑ Access to IP customization and generation using the 

Vivado IDE 

❑ IP example designs 

❑ Catalog filter options that let you filter by Supported 

Output Products, Supported Interfaces, Licensing, 

Provider, or Status

ICTP-MLAB

IP Catalog Main Features 

Peripherals Interfaces and IP Integration – C. Sisterna 26



❑ The IP Packager allows a core to be packaged and included in the IP 
Catalog, or for distribution

❑ IP-XACT Industry Standard (IEEE) XML format to describe IP using meta-data
o Ports
o Interfaces 
o Configurable Parameters
o Files, documentation

o IP-XACT only describes high level information about IP, not low level description, so 
does not replace HDL or Software

❑ Complete set of files include
❑ Source code, Constraints, Test Benches (simulation files), documentation

❑ IP Packager can be run from Vivado on the current project, or on a 
specified directory

IP Packager

ICTP-MLAB



My IP Generic Block Diagram 
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Simplest Case – Case 1 

ICTP-MLAB

1. Write the functional VHDL code of 

the function you want to implement. 

In this example it is a simple PWM 

function 



Simplest Case – Case 1 
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my_pwm_ip_c1_0_S_AXI_inst.vhd: This VHDL file is the one where we will instantiate the 
functionality described in the VHDL code. 
my_pwm_ip_c1_v1_0.vhd: This VHDL file is the wrapper between our VHDL code and the 
AXI bus interface. 

2. Open the IP Packager, and create a new IP Core (pick a good name according the functionality)



Simplest Case – Case 1 
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3. In the VHDL code of the ‘my_pwm_ip_c1_v1_0_s_AXI.vhd’ file, where it says ‘Add user logic here’ 
add, the main process of the pwm_simple VHDL code.

slv_reg0 is the first 

writing register 

(address), through 

which the duty_cycle 

value is gotten (more 

details in the next 

slide)



Simplest Case – Case 1 
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slv_reg0 write decoding



Simplest Case – Case 1 
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4. In the entity of the file, add the generic: ‘dc_bits’ and the output: ‘pwm’



Simplest Case – Case 1 
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5. In the file my_pwm_ip_c1_v1_0.vhd, in the entity, add the generic: ‘dc_bits’ and the output: ‘pwm’



Simplest Case – Case 1 
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6. In the file my_pwm_ip_c1_v1_0.vhd, in the architecture, in the component declaration and in the  

component instantiation (of the component my_pwm_ip_c1_v1_0_S_AXI), add the generic ‘dc_bits” 

and the pwm output port. 



Simplest Case – Case 1 
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7. Then, in the IP Packager, fill in the 

requested information in the 

Package IP tab.

8. Close the IP Packager. 



Using My IP in Vivado
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9. In the Vivado Project Manager, go to Project 

Settings -> IP Repository.

10.Click on the + sign to add the repository 

(directory) where you created the IP Core. 

11.Click Ok. Then the IP Core Will be visible in the 

Vivado IP Library. 



Using My IP in Vivado
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Using My IP in Vitis
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.h file of the
created IP Core

write function



Using My IP in Vitis
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It is necessary to
include the .h file 

in the .c 



My IP – Case 2
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In this case, the VHDL Code, the ‘component’, is instantiated in the created IP Core file:  

my_pwm_ip_c2_0_S_AXI_inst.vhd (this name can be any).

This case is very similar to ‘Case 1’, the only difference is that the PWM functionality is 

implemented by instantiating the ‘pwm_simple’ component, instead of writing the PWM process 

like in Case 1. 

So, all the steps explained for Case 1 have to be follow, except the process

. 

The ‘component’ is instantiated in the 

my_pwm_ip_c2_0_S_AXI_inst.vhd file.



My IP – Case 2
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My VHDL Code

AXI Functionality (<ip_name>_S_AXI_inst)

AXI Wrapper (<ip_name>_0)

Write registers



My IP – Case 2
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My IP – Case 3
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The PWM VHDL has more input and output signals that we would like to be controlled by the PS. 

The PWM IP Core’s registers, defined by the HW designer, now has: . 

2 registers to write to, 3 registers to read from. 



My IP – Case 3 - VHDL
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My IP – Case 3 – VHDL Code - Entity
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My IP – Case 3 – VHDL Code - Architecture
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My IP – Case 3 - Arch
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My IP – Case 3 – VHDL Code - Architecture
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My IP – Case 3 – Instantiation & VHDL Code

slv_reg0 and slv_reg2 are writable

registers, so, it is similar to the previous

cases.

slv_reg1, slv_reg3 and slv_reg4 are 

readable, so, we will assign the values

from registers reg1_status_i, 

reg3_ip_versión_i, and reg4_dc_value_i, 

to them (details in the next slide)
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My IP – Case 3 – Instantiation & VHDL Code

slv_reg1, slv_reg3 and slv_reg4 are 

readable, so, we Will assign the values

from registers reg1_status_i, 

reg3_ip_versión_i, and reg4_dc_value_i, 

to them.



My IP – Case 3

ICTP-MLAB

The following steps are similar to the Case 1.

✓ Complete the information requested by IP Packager

✓ Close IP Packager

✓ In the Vivado project, go to Poject Manager -> Settings -> IP Repository, and there 

add the directory where the IP Core lays. 

✓ The core should be available in the Vivado Cores Library

✓ When the Vivado project is exported to Vitis, the .h header file is created, and it 

contains the Read and Write functions to be used to have access to the read and 

write registers of the IP Core. 



Apendix
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❖ Create and Package IP Wizard

❖ Generates HDL template for
❖Slave/Master

❖AXI Lite/Full/Stream

❖ Optionally Generates 
◦ Software Driver

◦ Only for AXI Lite and Full slave interface

◦ Test Software Application

◦ AXI4 BFM Example 

IP Manager
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Create Custom  AXI4 IP
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Create Custom  AXI4 IP
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Create Custom  AXI4 IP
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Edit Created Custom  AXI4 IP
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Edit Created Custom  AXI4 IP
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Hierarchy of  My IP
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Package the IP
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Compatibility of  My IP 
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Updating Generated Files
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Checking Parameters and I/O Ports
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(This ends the Works on the edit_ip environment)
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Add My IP to the Repository 
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These steps shold be done in the Vivado Environment
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led_ip Now Available in the IP List
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component.xml
◦ IP XACT description

.bd
◦ Block Diagram tcl file

drivers
◦ Vitis and software files (c code)
◦ Simple register/memory read/write 

functionality
◦ Simple SelfTest code

hdl
◦ Verilog/VHDL source

xgui
◦ GUI tcl file

Files created
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• Create an AXI Slave/Master IP Core

• Use the Wizard to generate an AXI 
Slave/Master ‘device’

• Set the number of registers

• Building the Complete Zynq system

• Creating a Zynq based System

• Adding the necessary Ips

• Adding our custom AXI IP Core

• Edit Address Space

ICTP-MLAB

Steps for Custom IP - Summary

• Customize the IP Core

• File structure of the IP Cores
• Edit the HDL generated by the wizard
• Updating the IP Core and repack
• Rebuild the system

• Programming the device

• Open Vitis. Creating a Application and BSP 
project

• Write the “C” code to Wr/Rd the IP Cores 
registers

• Edit Space
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AXI4-Lite Custom IP   The VHDL 
Underneath 
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AXI4-Lite Signal Names
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AXI4-Lite Signal Names
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o During the creation of a Xilinx IP block, the 
Vivado tools can be used to map each AXI 
signal onto the signal name that the designer 
used when creating the IP

o  However in order to make the life of the 
designer much easier, the signal names 
shown here are recommended when 
designing a custom AXI slave in VHDL

o  Using these signal names will allow the 
Vivado design tools to automatically detect 
the signal names during the “create and 
package IP” step (described later on). 
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AXI4-Lite Address Decoding
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o In previous versions of the Xilinx design flow (where PLB and OPB peripherals were typically used) 
it was necessary for each IP peripheral connected to the processor to individually decode all 
transactions that were presented by a master on the bus (“multi-drop”). it was the responsibility 
of each peripheral to accept or reject each bus transaction depending on the address that was 
placed on the address bus. 

o With AXI4-lite, the interconnect does not use a multi-drop architecture, but uses a scheme where 
each transaction from the master(s) is specifically routed to a single slave IP depending on the 
address provided by the master.

o This premise permits a completely different design methodology to be adopted by the creator of 
a slave IP, in that any transactions which reach the slave’s interface ports are already known to be 
destined for that peripheral.

o The designer merely needs to decode enough of the incoming address bus to determine which 
of the registers in the slave IP should be read or written

72
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My VHDL Code – Address Decoding

Address Decode & Write Enable

AXI4-Lite IP
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AXI4-Lite – Implementing Addressable Registers

ICTP-MLABPeripherals Interfaces and IP Integration – C. Sisterna

o Using the address decoding scheme above, it is extremely simple to implement registers in VHDL 
which can receive data values written by a master on the AXI4-lite interconnect. The following 
extract of code shows how an individual register can be quickly and easily implemented (in this 
case mapped to BASEADDR + 0x00, as has been coded in the previous VHDL snippet). 

Read Transaction 

WriteTransaction 
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