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Focus: Communications for Al-driven systems.

Key concepts:
Channel-aware training of neural networks.

Designing robust latent representation.

Promising performances in controlled settings.
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Focus: Communications for Al-driven systems.

Key concepts:
Channel-aware training of neural networks.

Designing robust latent representation.

Promising performances in controlled settings.

Goal: Toward real-world implementation.
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(Quick) Recap

Focus: Communications for Al-driven systems.

Key concepts:
Channel-aware training of neural networks.

Designing robust latent representation.

Promising performances in controlled settings.

Goal: Toward real-world implementation.

Challenges:
Channel-coded latent transmission?

Max-info latent under bandwidth constraints?
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Introduction 2

Why are these challenges crucial?

Beyond-5G/6G must support intelligent loT devices with with strict constraints:
Latency.
Energy consumption.

Bandwidth usage.

Shift from accurate signal reconstruction to task-oriented communication.

Semantic communication: Send only information necessary for the task.

Solution: Synergy of SL, AE-based PHY layer design and semantic communication:
Semantic- and channel-aware learning architecture for loT edge-to-cloud forecasting.
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System Overview - Semantic Part
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Semantic Communication 2,

Redefines objectives of communication systems:
Focus: From signal-level accuracy to the successful completion of different tasks.

Instead to recover the input (x), task-relevant output is approximated (?'(x)).

Transmission of only task-essential information:
Improves spectral and computational efficiency.

Enhances robustness to channel impairments.

Strengthens data privacy.
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Semantic Communication 2,

Redefines objectives of communication systems:
Focus: From signal-level accuracy to the successful completion of different tasks.

Instead to recover the input (x), task-relevant output is approximated (?'(x)).

Transmission of only task-essential information:
Improves spectral and computational efficiency.

Enhances robustness to channel impairments.

Strengthens data privacy.
Mathematical and theoretical foundation - Information Bottleneck (IB) principle:

min/(x;z) subjectto [/(z;T(x)) > e, (1)
I(-, ) - Mutual Information (MI).

IB framework - Extract compact z that preserves maximal information for predicting
T(x).
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System Overview - Channel Part
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AE-Based PHY Modeling 2B

Flexible framework for designing the PHY layer as a differentiable neural network:
Separate modulation and coding blocks — Single end-to- end trainable system?.

fch and gp realized as symmetric AE neural network:
Semantic representation z € R — Transmitted signals € R”

7. 0’Shea and J. Hoydis, "An introduction to deep learning for the physical layer," IEEE Trans. Cogn.
Commun. Netw., vol. 3, no. 4, pp. 563-575, Dec. 2017.



AE-Based PHY Modeling 2B

Flexible framework for designing the PHY layer as a differentiable neural network:
Separate modulation and coding blocks — Single end-to- end trainable system?.

fch and gp realized as symmetric AE neural network:
Semantic representation z € R — Transmitted signals € R”

Redefinition of the original training procedure - MSE loss:

Law =Y l12— 2zl (2)

kek

7. 0’Shea and J. Hoydis, "An introduction to deep learning for the physical layer," IEEE Trans. Cogn.
Commun. Netw., vol. 3, no. 4, pp. 563-575, Dec. 2017.
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System Model

Decomposition of fg and fs:
fe = fsem © fen

fs = Gch © Gsem

SL and semantic communication connection(s):

Meaningful compression: x € R" — z € R¥, K < N.

Task-oriented: z encodes only task-relevant
semantics.

Decoder at server: server-side network acts as the
semantic decoder.

AE-based PHY modeling included.
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System Model

Overall inference system:

fsem f

All components of the system - fsem, fch, 9chs Gsem:

Jointly optimized to minimize composite loss
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Predict the subsequent Open (T(x) = x¢11) value from previous N = 20 Close values.
Neural network architecture:

Semantic part - Two-layer LSTM network (K = 10 hidden states) followed by a FC layer:
fsem - LSTM layer.

Jsem - LSTM layer + FC layer.

Channel part - Simple AE architecture (with symmetric FC layers):
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Experimental Setup & Training Procedure 25

Amazon Stock Dataset:
18 years of data.

Predict the subsequent Open (T(x) = x¢11) value from previous N = 20 Close values.
Neural network architecture:

Semantic part - Two-layer LSTM network (K = 10 hidden states) followed by a FC layer:
fsem - LSTM layer.

Jsem - LSTM layer + FC layer.

Channel part - Simple AE architecture (with symmetric FC layers):
fen and gch comprise a single hidden layer with 10 neurons.

Latent dimension n controls the compression level and bandwidth usage-n = 5orn = 15.
Centralized baseline scenario - Semantic part solely on the server, for comparison.

Loss function:

L= L(T,T(x)+ Lae(2,2) = E [(T — xe41)] +E[[12 - 23] (4)
S——r

Task Loss AE Rec. Loss
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MSE

10—2,2

10—2,4

-©- Raw input - n = 5

—&— Raw input - n = 15

- %~ LSTM-based input - n = 5
—#— LSTM-based input - n = 15

RE
MARKABLE
Ve

13



Performance Evaluation - AE Reconstruction MSE 25
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Extension 1 - Are All Symbols

Equally Important?
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Experimental Setup & Training procedure 25

We reuse dataset and NN architecture from the vanilla approach.

Key question: Are all symbols of z equally informative for the final performance?

Solution: AE-based unequal error protection (UEP) codes?.
Not all parts of the message are equally protected.

Training procedure - composite loss function:
Luep =X > =z + @ =X Y 2 -zl (5)
ke’Cimp k§é,€imp
1 > X\ > 0.5 - weighting parameter (flexible trade-off between classes).

Problem: iy, is fixed in conventional UEP schemes, but in a dynamic loT system
symbol importance evolves over time.

2V. Ninkovié, D. Vukobratovié, C. Hager, H. Wymeersch and A. Graell i Amat, "Autoencoder-Based Unequal
Error Protection Codes," IEEE Commun. Lett., vol. 25, no. 11, pp. 3575-3579, Nov. 2021 15



Training Procedure - Dynamic UEP 2,

Proposed solution:

Recall the IB principle:
min/(x;z) subjectto /(z;T(x)) > e, (6)

L most task-relevant latent symbols (L < K) are identified dynamically via Ml estimation.
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Proposed solution:

Recall the IB principle:
min/(x;z) subjectto /(z;T(x)) > e, (6)

L most task-relevant latent symbols (L < K) are identified dynamically via Ml estimation.

1(z; T(x)) estimated via the Donsker-Varadhan (DV) lower bound:

1(z; T(x)) = Epz, 7y [fo (2, T(x))] — log EP(z)P(T(x))[efe(z’r/(x))]v (7)

fo(z, T(x)) - Neural discriminator implemented as a three-layer FC + ReLU network.

Training batch: Compute gradients of 1(z; T(x)) w.rt. z, select the L most task-relevant
latent dimensions, and update the ranking dynamically.
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Training Procedure - Dynamic UEP 2,

Proposed solution (continued)?:

3V. Ninkovic, D. Vukobratovic, D. Miskovic, and C. Wang, "Adaptive Unequal Error Protection for Semantic
Split Learning over Wireless Channels", submitted at 2026 IEEE ICC.
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Training Procedure - Dynamic UEP 2,

Proposed solution (continued)?:
AE reconstruction loss (Eq. 5) remains compound, with Cipp (|Kimp| = L) determined
adaptively.
Overall loss function:
L = Liask + Luep + Ly (8)

3V. Ninkovic, D. Vukobratovic, D. Miskovic, and C. Wang, "Adaptive Unequal Error Protection for Semantic
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Training Procedure - Dynamic UEP 2,

Proposed solution (continued)?:
AE reconstruction loss (Eq. 5) remains compound, with Cipp (|Kimp| = L) determined
adaptively.
Overall loss function:
L = Liask + Luep + Ly (8)

Ly — negative DV bound (Eq. (7)) used to train fy:
Enables stable estimation of /(z; T(x)).

Allows reliable identification of Kimp.

3V. Ninkovic, D. Vukobratovic, D. Miskovic, and C. Wang, "Adaptive Unequal Error Protection for Semantic
Split Learning over Wireless Channels", submitted at 2026 IEEE ICC.

17



Impact of Dynamic UEP on Performance - Task MSE
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Impact of Dynamic UEP on Performance - AE

Reconstruction MSE
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Extension 2 - Semantic & AE-PHY
in UAV-Assisted loT
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Integration of multiple principles:

SL and semantic communications for
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AE-based physical-layer/channel coding.

Early Exit mechanism.
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System Model
Push toward real-world deployment.

UAV-assisted loT system:

UAV acts both as a relay and as part of the
inference system.
Buoy — UAV — Server.

Integration of multiple principles:

SL and semantic communications for
information (pre)processing.

AE-based physical-layer/channel coding.
Early Exit mechanism.

Three deployment scenarios:
Semantics processed at the server.

Semantics processed at the UAV.

Semantics processed at the edge (loT device).

f3(-)- Server

$
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Experimental Setup & Training Procedure 25

Dataset: Pollution of the Danube river near Novi Sad.
3,264 instances - Each instance represents a daily measurement from 2013 to 2022

Estimation of dissolved oxygen based on previous N = 10 days.
Neural network architecture:

Semantic part- LSTM layer (with 10 hidden states) + FC layer:
Server side - Always FC layer.

LSTM layer position depends on implementation scenario.

Channel part:
Two AE modules (AE1 between buoy and UAV, AE2 between UAV and server).

Symmetric AE architecture with one hidden FC layer.

Early Exit - Additional FC layer.
Loss function:

L= Liask + Lee, + Leg, + Lag, + Lag, (9)
~~ ~~~ ~~ ' S~~~

Taskloss  EEatbuoy EEatUAV — AElrecon.  AE2recon. 22



Performance Evaluation - Task MSE 2B

Scenario a) Scenario b) Scenario ¢)
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Performance Evaluation - AE Reconstruction MSE* 25
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*V. Ninkovic, R. S. Molina, et al. "Semantic IoT Framework for Environmental Monitoring: FPGA-Accelerated
Distributed Learning at the Edge," manuscript in preparation
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Next Steps & Open Problems

Step toward practical task-oriented loT monitoring.

Further move toward real-world implementation — FPGA deployment®.

®Already implemented; details will be presented by Romina Soledad Molina
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Next Steps & Open Problems 2

Step toward practical task-oriented loT monitoring.

Further move toward real-world implementation — FPGA deployment®.

Addressing real wireless channel complexity:

Controlled lab environment as an initial stage.
Real-world field deployment as the next step.

Fits within the broader vision of 6G communication architectures.

Next steps — multimodal data processing, multi-task learning, and adaptive
prioritization across heterogeneous devices.

®Already implemented; details will be presented by Romina Soledad Molina
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