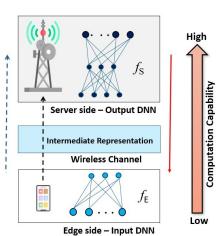


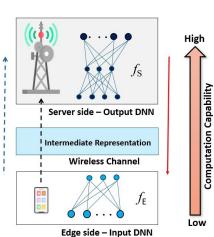
Overview

- 1. Introduction & Motivation
- 2. Background & System Model
- 3. Vanilla Approach Does It Work?
- 4. Extension 1 Are All Symbols Equally Important?
- 5. Extension 2 Semantic & AE-PHY in UAV-Assisted IoT
- 6. Discussion

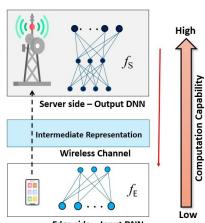
Backward
Propagation
---*
Activation
(Forward)
Propagation



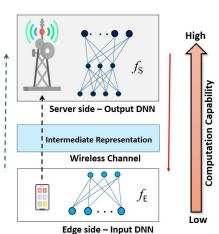
► **Focus:** Communications for Al-driven systems.



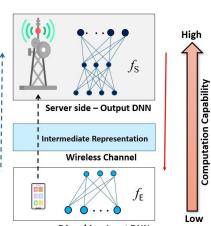
- ► **Focus:** Communications for AI-driven systems.
- Key concepts:
 - Channel-aware training of neural networks.
 - Designing robust latent representation.
 - Promising performances in controlled settings.



- ► **Focus:** Communications for AI-driven systems.
- Key concepts:
 - Channel-aware training of neural networks.
 - Designing robust latent representation.
 - Promising performances in controlled settings.
- ► **Goal:** Toward real-world implementation.



- ► **Focus:** Communications for AI-driven systems.
- Key concepts:
 - Channel-aware training of neural networks.
 - Designing robust latent representation.
 - Promising performances in controlled settings.
- ► **Goal:** Toward real-world implementation.
- ► Challenges:
 - Channel-coded latent transmission?
 - Max-info latent under bandwidth constraints?



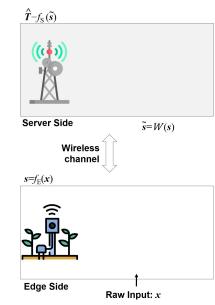
► Why are these challenges crucial?

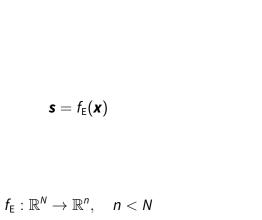
- Why are these challenges crucial?
- ▶ Beyond-5G/6G must support intelligent IoT devices with with strict constraints:
 - Latency.
 - Energy consumption.
 - Bandwidth usage.

- Why are these challenges crucial?
- ▶ Beyond-5G/6G must support intelligent IoT devices with with strict constraints:
 - Latency.
 - Energy consumption.
 - Bandwidth usage.
- ▶ Shift from accurate signal reconstruction to **task-oriented communication**.

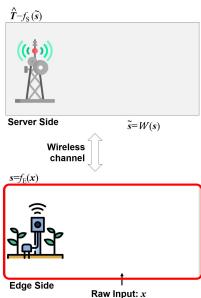
- Why are these challenges crucial?
- ▶ Beyond-5G/6G must support intelligent IoT devices with with strict constraints:
 - Latency.
 - Energy consumption.
 - Bandwidth usage.
- ► Shift from accurate signal reconstruction to **task-oriented communication**.
- **Semantic communication:** Send only information necessary for the task.

- Why are these challenges crucial?
- Beyond-5G/6G must support intelligent IoT devices with with strict constraints:
 - Latency.
 - Energy consumption.
 - Bandwidth usage.
- Shift from accurate signal reconstruction to task-oriented communication.
- **Semantic communication:** Send only information necessary for the task.
- ► **Solution:** Synergy of SL, AE-based PHY layer design and semantic communication:
 - Semantic- and channel-aware learning architecture for IoT edge-to-cloud forecasting.





 $\mathbf{x} \in \mathbb{R}^N$



$$\hat{T} = f_{S}(\tilde{\mathbf{s}})$$

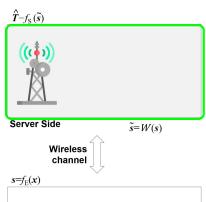
$$f_{\mathsf{S}} = \mathbb{R}^n o \mathbb{R}^*$$

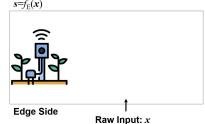
 $\hat{\mathbf{s}} = \mathcal{W}(\mathbf{s})$

$$\mathbf{s} = f_{\mathsf{E}}(\mathbf{x})$$

$$f_{\mathsf{E}} : \mathbb{R}^{\mathsf{N}} \to \mathbb{R}^{\mathsf{n}}, \quad n < \mathsf{N}$$

 $\mathbf{x} \in \mathbb{R}^{\mathsf{N}}$





$$\hat{T} = f_{S}(\tilde{\mathbf{s}})$$

$$f_{S} = \mathbb{R}^{n} \to \mathbb{R}^{*}$$

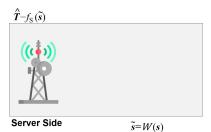
 $\hat{s} = \mathcal{W}(s)$

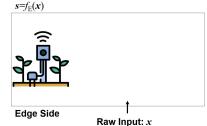
Compact and informative representation?

$$\mathbf{s} = f_{\mathsf{E}}(\mathbf{x})$$

$$f_{\mathsf{E}} : \mathbb{R}^{\mathsf{N}} \to \mathbb{R}^{\mathsf{n}}, \quad \mathsf{n} < \mathsf{N}$$

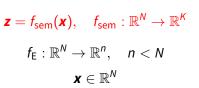
 $\mathbf{x} \in \mathbb{R}^{\mathsf{N}}$

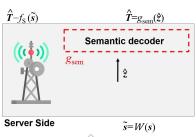


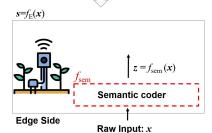


System Overview - Semantic Part

$$\hat{T} = f_{\mathsf{S}}(\tilde{\mathbf{s}})$$
 $\hat{T} = g_{\mathsf{sem}}(\hat{\mathbf{z}}), \quad g_{\mathsf{sem}} : \mathbb{R}^{\mathcal{K}} o \mathbb{R}^*$
 $f_{\mathsf{S}} = \mathbb{R}^n o \mathbb{R}^*$
 $\hat{\mathbf{s}} = \mathcal{W}(\mathbf{s})$
 $\mathbf{s} = f_{\mathsf{E}}(\mathbf{x})$







Wireless channel

- Redefines objectives of communication systems:
 - Focus: From signal-level accuracy to the successful completion of different tasks.
 - Instead to recover the input (\mathbf{x}) , task-relevant output is approximated $(\hat{T}(\mathbf{x}))$.
- Transmission of only task-essential information:
 - Improves spectral and computational efficiency.
 - Enhances robustness to channel impairments.
 - Strengthens data privacy.

- ▶ Redefines objectives of communication systems:
 - Focus: From signal-level accuracy to the successful completion of different tasks.
 - Instead to recover the input (x), task-relevant output is approximated $(\hat{T}(x))$.
- Transmission of only task-essential information:
 - Improves spectral and computational efficiency.
 - Enhances robustness to channel impairments.
 - Strengthens data privacy.
- ► Mathematical and theoretical foundation Information Bottleneck (IB) principle:

$$\min I(\mathbf{x}; \mathbf{z})$$
 subject to $I(\mathbf{z}; T(\mathbf{x})) \ge \epsilon$, (1)

- Redefines objectives of communication systems:
 - Focus: From signal-level accuracy to the successful completion of different tasks.
 - Instead to recover the input (x), task-relevant output is approximated $(\hat{T}(x))$.
- ► Transmission of only task-essential information:
 - Improves spectral and computational efficiency.
 - Enhances robustness to channel impairments.
 - Strengthens data privacy.
- ► Mathematical and theoretical foundation Information Bottleneck (IB) principle:

$$\min I(\boldsymbol{x}; \boldsymbol{z})$$
 subject to $I(\boldsymbol{z}; T(\boldsymbol{x})) \ge \epsilon$, (1)

 $\vdash I(\cdot, \cdot)$ - Mutual Information (MI).

- ► Redefines objectives of communication systems:
 - Focus: From signal-level accuracy to the successful completion of different tasks.
 - Instead to recover the input (x), task-relevant output is approximated $(\hat{T}(x))$.
- ► Transmission of only task-essential information:
 - Improves spectral and computational efficiency.
 - Enhances robustness to channel impairments.
 - Strengthens data privacy.
- Mathematical and theoretical foundation Information Bottleneck (IB) principle:

$$\min I(\boldsymbol{x}; \boldsymbol{z})$$
 subject to $I(\boldsymbol{z}; T(\boldsymbol{x})) \ge \epsilon$, (1)

- $I(\cdot, \cdot)$ Mutual Information (MI).
- ▶ **IB framework** Extract compact z that preserves maximal information for predicting T(x).

System Overview - Semantic Part

$$\hat{T} = f_{S}(\tilde{s})$$

$$\hat{\mathcal{T}} = g_{\mathsf{sem}}(\hat{\pmb{z}}), \quad g_{\mathsf{sem}}: \mathbb{R}^{\mathsf{K}}
ightarrow \mathbb{R}^*$$

$$f_S = \mathbb{R}^n \to \mathbb{R}^*$$

$$\hat{\boldsymbol{s}} = \mathcal{W}(\boldsymbol{s})$$

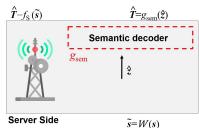
Wireless channel influence?

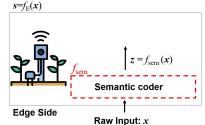
$$\mathbf{s} = f_{\mathsf{E}}(\mathbf{x})$$

$$\mathbf{z} = f_{\mathsf{sem}}(\mathbf{x}), f_{\mathsf{sem}} : \mathbb{R}^N \to \mathbb{R}^K$$

$$f_{\mathsf{F}}: \mathbb{R}^{\mathsf{N}} \to \mathbb{R}^{\mathsf{n}}, \quad \mathsf{n} < \mathsf{N}$$

$$\mathbf{x} \in \mathbb{R}^N$$





System Overview - Channel Part

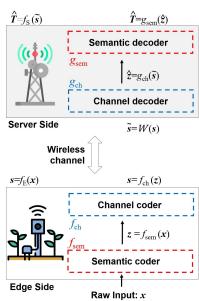
$$\hat{T} = f_{S}(\tilde{\mathbf{s}})$$
 $\hat{T} = g_{\text{sem}}(\hat{\mathbf{z}}), \quad g_{\text{sem}} : \mathbb{R}^{K} \to \mathbb{R}^{*}$
 $\hat{\mathbf{z}} = g_{\text{ch}}(\tilde{\mathbf{s}}), \quad g_{\text{ch}} : \mathbb{R}^{n} \to \mathbb{R}^{K}$
 $f_{S} = \mathbb{R}^{n} \to \mathbb{R}^{*}$
 $\hat{\mathbf{s}} = \mathcal{W}(\mathbf{s})$

$$\mathbf{s} = f_{E}(\mathbf{x})$$

$$\mathbf{s} = f_{\text{ch}}(\mathbf{z}), \quad f_{\text{ch}} : \mathbb{R}^{K} \to \mathbb{R}^{n}$$

$$\mathbf{z} = f_{\text{sem}}(\mathbf{x}), \quad f_{\text{sem}} : \mathbb{R}^{N} \to \mathbb{R}^{K}$$
 $f_{E} : \mathbb{R}^{N} \to \mathbb{R}^{n}, \quad n < N$

$$\mathbf{x} \in \mathbb{R}^{N}$$



AE-Based PHY Modeling

- Flexible framework for designing the PHY layer as a differentiable neural network:
 - ightharpoonup Separate modulation and coding blocks ightharpoonup Single end-to- end trainable system¹.
- $ightharpoonup f_{ch}$ and g_{ch} realized as symmetric AE neural network:
 - lacksquare Semantic representation $oldsymbol{z} \in \mathbb{R}^{K}
 ightarrow Transmitted signal <math>oldsymbol{s} \in \mathbb{R}^{n}$

¹T. O'Shea and J. Hoydis, "An introduction to deep learning for the physical layer," *IEEE Trans. Cogn. Commun. Netw.*, vol. 3, no. 4, pp. 563-575, Dec. 2017.

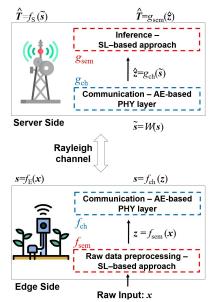
AE-Based PHY Modeling

- Flexible framework for designing the PHY layer as a differentiable neural network:
 - ightharpoonup Separate modulation and coding blocks ightharpoonup Single end-to- end trainable system¹.
- $ightharpoonup f_{ch}$ and g_{ch} realized as symmetric AE neural network:
 - Semantic representation $\mathbf{z} \in \mathbb{R}^K \to \mathsf{Transmitted}$ signal $\mathbf{s} \in \mathbb{R}^n$
- Redefinition of the original training procedure MSE loss:

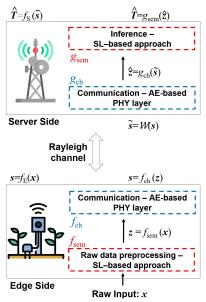
$$\mathcal{L}_{AE} = \sum_{k \in K} \|\hat{z}_k - z_k\|^2 \tag{2}$$

¹T. O'Shea and J. Hoydis, "An introduction to deep learning for the physical layer," *IEEE Trans. Cogn. Commun. Netw.*, vol. 3, no. 4, pp. 563-575, Dec. 2017.

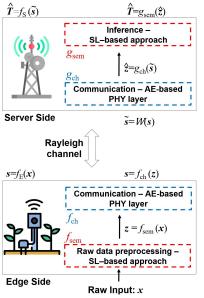
- ▶ Decomposition of f_F and f_S :
 - $ightharpoonup f_{\mathsf{E}} = f_{\mathsf{sem}} \circ f_{\mathsf{ch}}$
 - $ightharpoonup f_{\mathsf{S}} = g_{\mathsf{ch}} \circ g_{\mathsf{sem}}$
- ► SL and semantic communication connection(s):



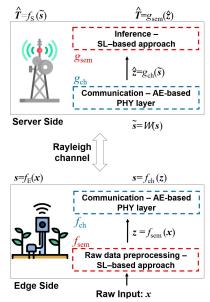
- ▶ Decomposition of f_F and f_S :
 - $ightharpoonup f_{\mathsf{E}} = f_{\mathsf{sem}} \circ f_{\mathsf{ch}}$
 - $ightharpoonup f_{\mathsf{S}} = g_{\mathsf{ch}} \circ g_{\mathsf{sem}}$
- SL and semantic communication connection(s):
 - Meaningful compression: $\mathbf{x} \in \mathbb{R}^N \to \mathbf{z} \in \mathbb{R}^K$, K < N.



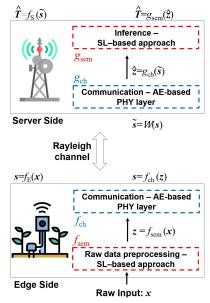
- ▶ Decomposition of f_E and f_S :
 - $ightharpoonup f_{\mathsf{E}} = f_{\mathsf{sem}} \circ f_{\mathsf{ch}}$
 - $ightharpoonup f_{\mathsf{S}} = q_{\mathsf{ch}} \circ q_{\mathsf{sem}}$
- SL and semantic communication connection(s):
 - Meaningful compression: $\mathbf{x} \in \mathbb{R}^N \to \mathbf{z} \in \mathbb{R}^K$, K < N.
 - ► **Task-oriented: z** encodes only task-relevant semantics.



- ▶ Decomposition of f_E and f_S :
 - $ightharpoonup f_{\mathsf{E}} = f_{\mathsf{sem}} \circ f_{\mathsf{ch}}$
 - $ightharpoonup f_{\mathsf{S}} = g_{\mathsf{ch}} \circ g_{\mathsf{sem}}$
- SL and semantic communication connection(s):
 - Meaningful compression: $\mathbf{x} \in \mathbb{R}^N \to \mathbf{z} \in \mathbb{R}^K$, K < N.
 - ► **Task-oriented: z** encodes only task-relevant semantics.
 - **Decoder at server:** server-side network acts as the semantic decoder.



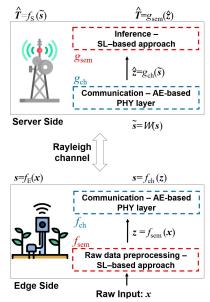
- ▶ Decomposition of f_E and f_S :
 - $ightharpoonup f_{\mathsf{E}} = f_{\mathsf{sem}} \circ f_{\mathsf{ch}}$
 - $ightharpoonup f_{\mathsf{S}} = g_{\mathsf{ch}} \circ g_{\mathsf{sem}}$
- ► SL and semantic communication connection(s):
 - Meaningful compression: $\mathbf{x} \in \mathbb{R}^N \to \mathbf{z} \in \mathbb{R}^K$, K < N.
 - ► **Task-oriented: z** encodes only task-relevant semantics.
 - **Decoder at server:** server-side network acts as the semantic decoder.
- AE-based PHY modeling included.



Overall inference system:

$$\mathbf{z} \xrightarrow{f_{\text{sem}}} \mathbf{z} \xrightarrow{f_{\text{ch}}} \mathbf{s} \xrightarrow{\mathcal{W}(\cdot)} \tilde{\mathbf{s}} \xrightarrow{g_{\text{ch}}} \hat{\mathbf{z}} \xrightarrow{g_{\text{sem}}} \hat{\mathcal{T}}.$$
 (3)

- ightharpoonup All components of the system f_{sem} , f_{ch} , g_{ch} , g_{sem} :
 - Jointly optimized to minimize composite loss $\mathcal{L}(\hat{T}, T(\mathbf{x}))^a$.

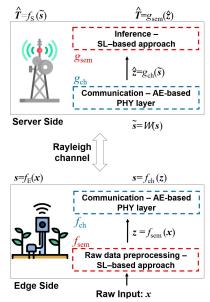


^aThe specific loss components depend on the considered scenario.

Overall inference system:

$$\mathbf{z} \xrightarrow{f_{\text{sem}}} \mathbf{z} \xrightarrow{f_{\text{ch}}} \mathbf{s} \xrightarrow{\mathcal{W}(\cdot)} \tilde{\mathbf{s}} \xrightarrow{g_{\text{ch}}} \hat{\mathbf{z}} \xrightarrow{g_{\text{sem}}} \hat{\mathcal{T}}.$$
 (3)

- ightharpoonup All components of the system f_{sem} , f_{ch} , g_{ch} , g_{sem} :
 - Jointly optimized to minimize composite loss $\mathcal{L}(\hat{T}, T(\mathbf{x}))^a$.

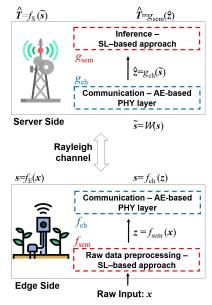


^aThe specific loss components depend on the considered scenario.

Overall inference system:

$$\mathbf{z} \xrightarrow{f_{\text{sem}}} \mathbf{z} \xrightarrow{f_{\text{ch}}} \mathbf{s} \xrightarrow{\mathcal{W}(\cdot)} \tilde{\mathbf{s}} \xrightarrow{g_{\text{ch}}} \hat{\mathbf{z}} \xrightarrow{g_{\text{sem}}} \hat{\mathcal{T}}.$$
 (3)

- All components of the system f_{sem} , f_{ch} , g_{ch} , g_{sem} :
 - Jointly optimized to minimize composite loss $\mathcal{L}(\hat{T}, T(\mathbf{x}))^a$.
- Goal: Balance between semantic fidelity, channel resilience, and task reliability.



^aThe specific loss components depend on the considered scenario.

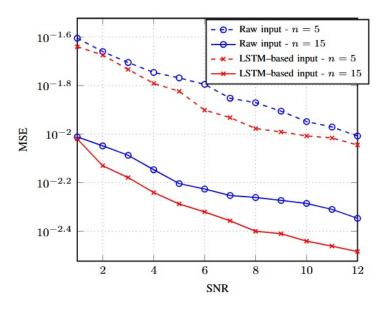
- Amazon Stock Dataset:
 - ▶ 18 years of data.
 - Predict the subsequent *Open* $(T(\mathbf{x}) = x_{t+1})$ value from previous N = 20 *Close* values.

- Amazon Stock Dataset:
 - ▶ 18 years of data.
 - Predict the subsequent Open $(T(\mathbf{x}) = x_{t+1})$ value from previous N = 20 Close values.
- Neural network architecture:
 - **Semantic part** Two-layer LSTM network (K = 10 hidden states) followed by a FC layer:
 - $ightharpoonup f_{\text{sem}}$ LSTM layer.
 - $ightharpoonup g_{\text{sem}}$ LSTM layer + FC layer.
 - ► **Channel part** Simple AE architecture (with symmetric FC layers):
 - $ightharpoonup f_{ch}$ and g_{ch} comprise a single hidden layer with 10 neurons.
 - Latent dimension n controls the compression level and bandwidth usage n = 5 or n = 15.
 - Centralized baseline scenario Semantic part solely on the server, for comparison.

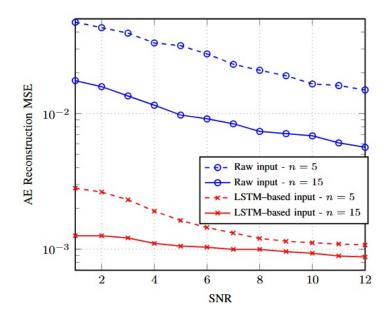
- Amazon Stock Dataset:
 - ▶ 18 years of data.
 - Predict the subsequent Open $(T(\mathbf{x}) = x_{t+1})$ value from previous N = 20 Close values.
- Neural network architecture:
 - **Semantic part** Two-layer LSTM network (K = 10 hidden states) followed by a FC layer:
 - $ightharpoonup f_{\text{sem}}$ LSTM layer.
 - $ightharpoonup g_{\text{sem}}$ LSTM layer + FC layer.
 - ► **Channel part** Simple AE architecture (with symmetric FC layers):
 - $ightharpoonup f_{ch}$ and g_{ch} comprise a single hidden layer with 10 neurons.
 - Latent dimension n controls the compression level and bandwidth usage n = 5 or n = 15.
 - Centralized baseline scenario Semantic part solely on the server, for comparison.
- Loss function:

$$\mathcal{L} = \underbrace{\mathcal{L}(T, \hat{T}(\mathbf{x}))}_{\text{Tack Loss}} + \underbrace{\mathcal{L}_{AE}(\mathbf{z}, \hat{\mathbf{z}})}_{\text{AF Rec Loss}} = \mathbb{E}\left[(\hat{T} - x_{t+1})^2\right] + \mathbb{E}\left[\|\hat{\mathbf{z}} - \mathbf{z}\|_2^2\right]$$
(4)

Performance Evaluation - Task MSE



Performance Evaluation - AE Reconstruction MSE



Extension 1 – Are All Symbols Equally Important?

We reuse dataset and NN architecture from the vanilla approach.

²V. Ninković, D. Vukobratović, C. Häger, H. Wymeersch and A. Graell i Amat, "Autoencoder-Based Unequal Error Protection Codes," *IEEE Commun. Lett.*, vol. 25, no. 11, pp. 3575–3579, Nov. 2021

- ► We reuse dataset and NN architecture from the vanilla approach.
- Key question: Are all symbols of z equally informative for the final performance?

²V. Ninković, D. Vukobratović, C. Häger, H. Wymeersch and A. Graell i Amat, "Autoencoder-Based Unequal Error Protection Codes," *IEEE Commun. Lett.*, vol. 25, no. 11, pp. 3575–3579, Nov. 2021

- ▶ We reuse dataset and NN architecture from the vanilla approach.
- ► **Key question:** Are all symbols of **z** equally informative for the final performance?
- ► **Solution:** AE-based unequal error protection (UEP) codes².
 - Not all parts of the message are equally protected.
 - Training procedure composite loss function:

$$\mathcal{L}_{\text{UEP}} = \lambda \sum_{k \in \mathcal{K}_{\text{imp}}} \|\hat{z}_k - z_k\|^2 + (1 - \lambda) \sum_{k \notin \mathcal{K}_{\text{imp}}} \|\hat{z}_k - z_k\|^2, \tag{5}$$

²V. Ninković, D. Vukobratović, C. Häger, H. Wymeersch and A. Graell i Amat, "Autoencoder-Based Unequal Error Protection Codes," *IEEE Commun. Lett.*, vol. 25, no. 11, pp. 3575–3579, Nov. 2021

- We reuse dataset and NN architecture from the vanilla approach.
- ► **Key question:** Are all symbols of **z** equally informative for the final performance?
- ► **Solution:** AE-based unequal error protection (UEP) codes².
 - Not all parts of the message are equally protected.
 - Training procedure composite loss function:

$$\mathcal{L}_{\text{UEP}} = \lambda \sum_{k \in \mathcal{K}_{\text{imp}}} \|\hat{z}_k - z_k\|^2 + (1 - \lambda) \sum_{k \notin \mathcal{K}_{\text{imp}}} \|\hat{z}_k - z_k\|^2, \tag{5}$$

▶ 1 $\geq \lambda >$ 0.5 – weighting parameter (flexible trade-off between classes).

²V. Ninković, D. Vukobratović, C. Häger, H. Wymeersch and A. Graell i Amat, "Autoencoder-Based Unequal Error Protection Codes," *IEEE Commun. Lett.*, vol. 25, no. 11, pp. 3575–3579, Nov. 2021

- ▶ We reuse dataset and NN architecture from the vanilla approach.
- ► **Key question:** Are all symbols of **z** equally informative for the final performance?
- ► **Solution:** AE-based unequal error protection (UEP) codes².
 - Not all parts of the message are equally protected.
 - Training procedure composite loss function:

$$\mathcal{L}_{\text{UEP}} = \lambda \sum_{k \in \mathcal{K}_{\text{imp}}} \|\hat{z}_k - z_k\|^2 + (1 - \lambda) \sum_{k \notin \mathcal{K}_{\text{imp}}} \|\hat{z}_k - z_k\|^2, \tag{5}$$

- ▶ $1 \ge \lambda > 0.5$ weighting parameter (flexible trade-off between classes).
- **Problem:** $\mathcal{K}_{\mathrm{imp}}$ is fixed in conventional UEP schemes, but in a dynamic IoT system symbol importance evolves over time.

²V. Ninković, D. Vukobratović, C. Häger, H. Wymeersch and A. Graell i Amat, "Autoencoder-Based Unequal Error Protection Codes," *IEEE Commun. Lett.*, vol. 25, no. 11, pp. 3575–3579, Nov. 2021

Proposed solution:

► Recall the IB principle:

$$\min I(\mathbf{x}; \mathbf{z})$$
 subject to $I(\mathbf{z}; T(\mathbf{x})) \ge \epsilon$, (6)

ightharpoonup L most task-relevant latent symbols (L < K) are identified dynamically via MI estimation.

Proposed solution:

Recall the IB principle:

$$\min I(\mathbf{x}; \mathbf{z})$$
 subject to $I(\mathbf{z}; T(\mathbf{x})) \ge \epsilon$, (6)

- ho L most task-relevant latent symbols (L < K) are identified dynamically via MI estimation.
- $\hat{I}(z; T(x))$ estimated via the Donsker-Varadhan (DV) lower bound:

$$\hat{I}(\mathbf{z}; T(\mathbf{x})) = \mathbb{E}_{P(\mathbf{z}, T(\mathbf{x}))}[f_{\theta}(\mathbf{z}, T(\mathbf{x}))] - \log \mathbb{E}_{P(\mathbf{z})P(T(\mathbf{x}))}[e^{f_{\theta}(\mathbf{z}, T'(\mathbf{x}))}], \tag{7}$$

Proposed solution:

Recall the IB principle:

$$\min I(\mathbf{x}; \mathbf{z})$$
 subject to $I(\mathbf{z}; T(\mathbf{x})) \ge \epsilon$, (6)

- \triangleright L most task-relevant latent symbols (L < K) are identified dynamically via MI estimation.
- $\hat{I}(z; T(x))$ estimated via the Donsker-Varadhan (DV) lower bound:

$$\hat{I}(\mathbf{z}; T(\mathbf{x})) = \mathbb{E}_{P(\mathbf{z}, T(\mathbf{x}))}[f_{\theta}(\mathbf{z}, T(\mathbf{x}))] - \log \mathbb{E}_{P(\mathbf{z})P(T(\mathbf{x}))}[e^{f_{\theta}(\mathbf{z}, T'(\mathbf{x}))}], \tag{7}$$

 $f_{\theta}(\mathbf{z}, T(\mathbf{x}))$ - Neural discriminator implemented as a three-layer FC + ReLU network.

Proposed solution:

► Recall the IB principle:

$$\min I(\mathbf{x}; \mathbf{z})$$
 subject to $I(\mathbf{z}; T(\mathbf{x})) \ge \epsilon$, (6)

- ho L most task-relevant latent symbols (L < K) are identified dynamically via MI estimation.
- $\hat{I}(z; T(x))$ estimated via the Donsker-Varadhan (DV) lower bound:

$$\hat{I}(\mathbf{z}; T(\mathbf{x})) = \mathbb{E}_{P(\mathbf{z}, T(\mathbf{x}))}[f_{\theta}(\mathbf{z}, T(\mathbf{x}))] - \log \mathbb{E}_{P(\mathbf{z})P(T(\mathbf{x}))}[e^{f_{\theta}(\mathbf{z}, T'(\mathbf{x}))}], \tag{7}$$

- $f_{\theta}(\mathbf{z}, T(\mathbf{x}))$ Neural discriminator implemented as a three-layer FC + ReLU network.
- **Training batch:** Compute gradients of $\hat{I}(z; T(x))$ w.r.t. z, select the L most task-relevant latent dimensions, and update the ranking dynamically.

► Proposed solution (continued)³:

³V. Ninkovic, D. Vukobratovic, D. Miskovic, and C. Wang, "Adaptive Unequal Error Protection for Semantic Split Learning over Wireless Channels", submitted at *2026 IEEE ICC*.

- ► Proposed solution (continued)³:
 - AE reconstruction loss (Eq. 5) remains compound, with $\mathcal{K}_{\mathrm{imp}}$ ($|\mathcal{K}_{\mathrm{imp}}| = L$) determined adaptively.

³V. Ninkovic, D. Vukobratovic, D. Miskovic, and C. Wang, "Adaptive Unequal Error Protection for Semantic Split Learning over Wireless Channels", submitted at *2026 IEEE ICC*.

► Proposed solution (continued)³:

- AE reconstruction loss (Eq. 5) remains compound, with $\mathcal{K}_{\mathrm{imp}}$ ($|\mathcal{K}_{\mathrm{imp}}| = L$) determined adaptively.
- Overall loss function:

$$\mathcal{L} = \mathcal{L}_{task} + \mathcal{L}_{UEP} + \mathcal{L}_{MI}. \tag{8}$$

³V. Ninkovic, D. Vukobratovic, D. Miskovic, and C. Wang, "Adaptive Unequal Error Protection for Semantic Split Learning over Wireless Channels", submitted at *2026 IEEE ICC*.

► Proposed solution (continued)³:

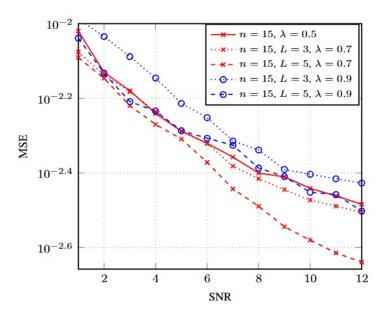
- AE reconstruction loss (Eq. 5) remains compound, with $\mathcal{K}_{\mathrm{imp}}$ ($|\mathcal{K}_{\mathrm{imp}}| = L$) determined adaptively.
- Overall loss function:

$$\mathcal{L} = \mathcal{L}_{\mathsf{task}} + \mathcal{L}_{\mathsf{UEP}} + \mathcal{L}_{\mathsf{MI}}. \tag{8}$$

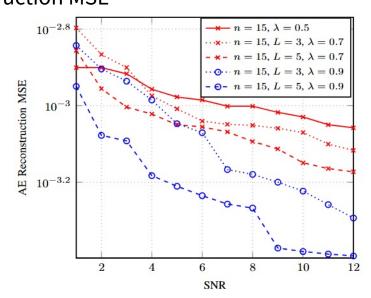
- $ightharpoonup \mathcal{L}_{MI}$ negative DV bound (Eq. (7)) used to train f_{θ} :
 - Enables stable estimation of $I(\mathbf{z}; T(\mathbf{x}))$.
 - ightharpoonup Allows reliable identification of $\mathcal{K}_{\mathrm{imp}}$.

³V. Ninkovic, D. Vukobratovic, D. Miskovic, and C. Wang, "Adaptive Unequal Error Protection for Semantic Split Learning over Wireless Channels", submitted at *2026 IEEE ICC*.

Impact of Dynamic UEP on Performance - Task MSE

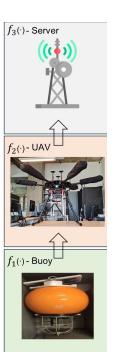


Impact of Dynamic UEP on Performance - AE Reconstruction MSE

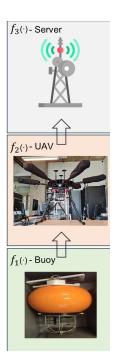


Extension 2 – Semantic & AE-PHY in UAV-Assisted IoT

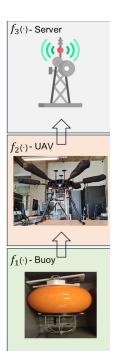
Push toward real-world deployment.



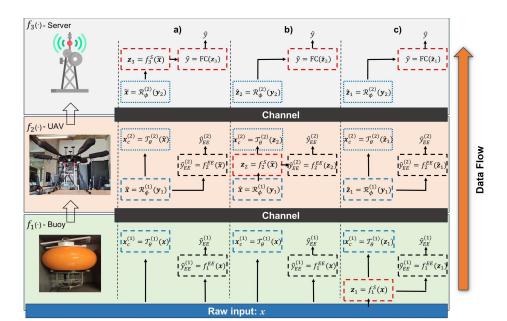
- Push toward real-world deployment.
- UAV-assisted IoT system:
 - ► UAV acts both as a relay and as part of the inference system.
 - ▶ Buoy \rightarrow UAV \rightarrow Server.



- Push toward real-world deployment.
- ► UAV-assisted IoT system:
 - UAV acts both as a relay and as part of the inference system.
 - ▶ Buoy \rightarrow UAV \rightarrow Server.
- Integration of multiple principles:
 - SL and semantic communications for information (pre)processing.
 - AE-based physical-layer/channel coding.
 - Early Exit mechanism.



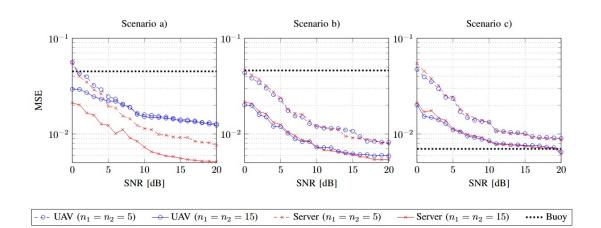
- Push toward real-world deployment.
- UAV-assisted IoT system:
 - UAV acts both as a relay and as part of the inference system.
 - ▶ Buoy \rightarrow UAV \rightarrow Server.
- Integration of multiple principles:
 - SL and semantic communications for information (pre)processing.
 - AE-based physical-layer/channel coding.
 - Early Exit mechanism.
- Three deployment scenarios:
 - Semantics processed at the server.
 - Semantics processed at the UAV.
 - Semantics processed at the edge (IoT device).



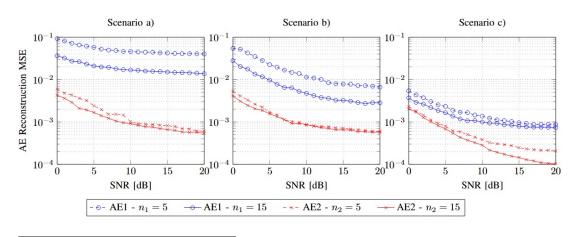
- Dataset: Pollution of the Danube river near Novi Sad.
 - 3,264 instances Each instance represents a daily measurement from 2013 to 2022
 - Estimation of dissolved oxygen based on previous N = 10 days.
- Neural network architecture:
 - **Semantic part** LSTM layer (with 10 hidden states) + FC layer:
 - Server side Always FC layer.
 - LSTM layer position depends on implementation scenario.
 - Channel part:
 - Two AE modules (AE1 between buoy and UAV, AE2 between UAV and server).
 - Symmetric AE architecture with one hidden FC layer.
 - Early Exit Additional FC layer.
- Loss function:

$$\mathcal{L} = \underbrace{\mathcal{L}_{task}}_{task} + \underbrace{\mathcal{L}_{EE_1}}_{test} + \underbrace{\mathcal{L}_{EE_2}}_{test} + \underbrace{\mathcal{L}_{AE_1}}_{test} + \underbrace{\mathcal{L}_{AE_2}}_{test}$$
(9)

Performance Evaluation - Task MSE



Performance Evaluation - AE Reconstruction MSE⁴



⁴V. Ninkovic, R. S. Molina, et al. "Semantic IoT Framework for Environmental Monitoring: FPGA-Accelerated Distributed Learning at the Edge," manuscript in preparation

- Step toward practical task-oriented IoT monitoring.
- ► Further move toward real-world implementation FPGA deployment⁵.

⁵Already implemented; details will be presented by Romina Soledad Molina

- Step toward practical task-oriented IoT monitoring.
- ► Further move toward real-world implementation FPGA deployment⁵.
- Addressing real wireless channel complexity:
 - Controlled lab environment as an initial stage.
 - Real-world field deployment as the next step.

⁵Already implemented; details will be presented by Romina Soledad Molina

- Step toward practical task-oriented IoT monitoring.
- ► Further move toward real-world implementation FPGA deployment⁵.
- Addressing real wireless channel complexity:
 - Controlled lab environment as an initial stage.
 - Real-world field deployment as the next step.
- Fits within the broader vision of 6G communication architectures.

⁵Already implemented; details will be presented by Romina Soledad Molina

- Step toward practical task-oriented IoT monitoring.
- ► Further move toward real-world implementation FPGA deployment⁵.
- Addressing real wireless channel complexity:
 - Controlled lab environment as an initial stage.
 - Real-world field deployment as the next step.
- ► Fits within the broader vision of 6G communication architectures.
- Next steps multimodal data processing, multi-task learning, and adaptive prioritization across heterogeneous devices.

⁵Already implemented; details will be presented by Romina Soledad Molina

Acknowledgment⁶

Dejan Vukobratovic, PhD

Dragisa Miskovic, PhD

Chao Wang, PhD

Romina Soledad Molina, PhD

Maria Liz Crespo, PhD

Marco Zennaro, PhD

⁶This work has received funding from: the Horizon 2020 grant agreement No 101086387 - REMARKABLE; the Serbian Ministry of Science, Technological Development and Innovation (No. 00101957 2025 13440 003 000 620 021) & Intergovernmental International Science and Technology Innovation Cooperation of National Key Research & Development Program of China under Grant 2024YFE0197400.

References - Edge AI & UAV-Assisted IoT Monitoring I

- J. Roostaei *et al.*, "IoT-based edge computing (IoTEC) for improved environmental monitoring," *Sustain. Comput.: Inform. Syst.*, vol. 38, Apr. 2023, Art. no. 100870.
- H. Xing, G. Zhu, D. Liu, H. Wen, K. Huang, and K. Wu, "Task-oriented integrated sensing, computation and communication for wireless edge Al," *IEEE Netw.*, vol. 37, no. 4, pp. 135–144, Jul./Aug. 2023.
- O. Gupta and R. Raskar, "Distributed learning of deep neural network over multiple agents," *J. Netw. Comput. Appl.*, vol. 116, pp. 1–8, Aug. 2018.
- L. Cheng et al., "Advancements in accelerating deep neural network inference on AIoT devices: A survey," *IEEE Trans. Sustain. Comput.*, vol. 9, no. 6, pp. 830–847, Nov./Dec. 2024.
- Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, "Edge intelligence: Paving the last mile of artificial intelligence with edge computing," *Proc. IEEE*, vol. 107, no. 8, pp. 1738–1762, Aug. 2019.
- X. Hou *et al.*, "Split federated learning for UAV-enabled integrated sensing, computation, and communication," *arXiv preprint* arXiv:2504.01443, 2025.

References - Edge AI & UAV-Assisted IoT Monitoring II

J. Suo, X. Zhang, W. Shi, and W. Zhou, "E3-UAV: An edge-based energy-efficient object detection system for unmanned aerial vehicles," *IEEE Internet Things J.*, vol. 11, no. 3, pp. 4398–4413, Feb. 2024.

J. Tang *et al.*, "Multi-UAV-assisted federated learning for energy-aware distributed edge training," *IEEE Trans. Netw. Serv. Manage.*, vol. 21, no. 1, pp. 280–294, Feb. 2024.

X. Hu, K.-K. Wong, and Z. Zheng, "Wireless-powered mobile edge computing with cooperated UAV," in *Proc. IEEE 20th Int. Workshop Signal Process. Adv. Wireless Commun. (SPAWC)*, Cannes, France, 2019, pp. 1–5.

Z. Ma et al., "An UAVs-assisted edge computing network with multi-agent reinforcement learning," in *IoTCIT 2023, LN Eng. Electron.*, vol. 1197, pp. 115–130, 2024.

V. Ninkovic, D. Vukobratovic, and D. Miskovic, "UAV-assisted distributed learning for environmental monitoring in rural environments," in *Proc. 7th Int. Balkan Conf. Commun. Netw. (BalkanCom)*, Ljubljana, Slovenia, 2024, pp. 296–300.

References - Semmantic Communications I

- D. Gündüz et al., "Beyond Transmitting Bits: Context, Semantics, and Task-Oriented Communications," *IEEE J. Sel. Areas Commun.*, vol. 41, no. 1, pp. 5-41, 2023.
- W. Weaver, "Recent contributions to the mathematical theory of communication," ETC: Rev. Gen. Semantics, pp. 261–281, 1953.
- M. Kountouris and N. Pappas, "Semantics-empowered communication for networked intelligent systems," *IEEE Commun. Mag.*, vol. 59, no. 6, pp. 96–102, 2021.
- W. Yang *et al.*, "Semantic communication meets edge intelligence," *IEEE Wireless Commun.*, vol. 29, no. 5, pp. 28–35, Oct. 2022.
- W. Xu *et al.*, "Edge learning for B5G networks with distributed signal processing: Semantic communication, edge computing, and wireless sensing," *IEEE J. Sel. Topics Signal Process.*, vol. 17, no. 1, pp. 9–39, Jan. 2023.
- H. Xie, Z. Qin, X. Tao, and K. B. Letaief, "Task-oriented multi-user semantic communications," *IEEE J. Sel. Areas Commun.*, vol. 40, no. 9, pp. 2584–2597, Sept. 2022.

References - Semmantic Communications II

- L. X. Nguyen *et al.*, "An efficient federated learning framework for training semantic communication systems," *IEEE Trans. Veh. Technol.*, vol. 73, no. 10, pp. 15872–15877, Oct. 2024.
- W. Wu *et al.*, "Split learning over wireless networks: Parallel design and resource management," *IEEE J. Sel. Areas Commun.*, vol. 41, no. 4, pp. 1051–1066, Apr. 2023.
- L. Wang, W. Wu, F. Zhou, Z. Yang, Z. Qin, and Q. Wu, "Adaptive resource allocation for semantic communication networks," *IEEE Trans. Commun.*, vol. 72, no. 11, pp. 6900–6916, Nov. 2024.
- J. Huang *et al.*, "Dynamic UAV-assisted cooperative edge AI inference," *IEEE Trans. Wireless Commun.*, vol. 24, no. 1, pp. 615–628, Jan. 2025.
- Z. Cao, H. Zhang, L. Liang, H. Wang, S. Jin, and G. Y. Li, "Task-oriented semantic communication for stereo-vision 3D object detection," *IEEE Trans. Commun.*, to appear, 2025.
- C.-H. Lee, J.-W. Lin, P.-H. Chen, and Y.-C. Chang, "Deep learning-constructed joint transmission-recognition for Internet of Things," *IEEE Access*, vol. 7, pp. 76547–76561, 2019.

References - AE-Based PHY Modeling I

- T. O'Shea and J. Hoydis, "An introduction to deep learning for the physical layer," *IEEE Trans. Cogn. Commun. Netw.*, vol. 3, no. 4, pp. 563-575, 2017.
- V. Ninkovic *et al.*, "Autoencoder-Based Unequal Error Protection Codes," *IEEE Commun. Lett.*, vol. 25, no. 11, pp.3575-3579, 2021.
- V. Ninkovic and D. Vukobratovic, "Structured superposition of autoencoders for UEP codes at intermediate blocklengths," *IEEE Commun. Lett.*, early access, 2025.
- F. Wang *et al.*, "Explicit semantic-base-empowered communications for 6G mobile networks," arXiv preprint arXiv:2408.05596v2, 2025.
- J. Xu, T.-Y. Tung, B. Ai, W. Chen, Y. Sun, and D. Gündüz, "Deep joint source-channel coding for semantic communications," *IEEE Commun. Mag.*, vol. 61, no. 11, pp. 42–48, Nov. 2023.

Thank you for your attention!

- ✓ vukan.ninkovic@ivi.ac.rs
- **■** *ninkovic@uns.ac.rs*

