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Introduction & Motivation



(Quick) Recap

▶ Focus: Communications for AI-driven systems.

▶ Key concepts:
▶ Channel-aware training of neural networks.
▶ Designing robust latent representation.
▶ Promising performances in controlled settings.

▶ Goal: Toward real-world implementation.

▶ Challenges:
▶ Channel-coded latent transmission?
▶ Max-info latent under bandwidth constraints?
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Introduction

▶ Why are these challenges crucial?

▶ Beyond-5G/6G must support intelligent IoT devices with with strict constraints:
▶ Latency.
▶ Energy consumption.
▶ Bandwidth usage.

▶ Shift from accurate signal reconstruction to task-oriented communication.

▶ Semantic communication: Send only information necessary for the task.

▶ Solution: Synergy of SL, AE–based PHY layer design and semantic communication:
▶ Semantic- and channel-aware learning architecture for IoT edge-to-cloud forecasting.
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Background & System Model



System Overview

T̂ = fS(s̃)

fS = Rn → R∗

ŝ = W(s)

Compact and informative representation?

s = fE(x)

fE : RN → Rn, n < N

x ∈ RN

4



System Overview

T̂ = fS(s̃)

fS = Rn → R∗
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System Overview - Semantic Part
T̂ = fS(s̃)

T̂ = gsem(ẑ), gsem : RK → R∗

fS = Rn → R∗

ŝ = W(s)

s = fE(x)

z = fsem(x), fsem : RN → RK

fE : RN → Rn, n < N

x ∈ RN 5



Semantic Communication
▶ Redefines objectives of communication systems:

▶ Focus: From signal–level accuracy to the successful completion of different tasks.
▶ Instead to recover the input (x), task-relevant output is approximated (T̂(x)).

▶ Transmission of only task-essential information:
▶ Improves spectral and computational efficiency.
▶ Enhances robustness to channel impairments.
▶ Strengthens data privacy.

▶ Mathematical and theoretical foundation - Information Bottleneck (IB) principle:

min I(x; z) subject to I(z; T(x)) ≥ ϵ, (1)

▶ I(·, ·) - Mutual Information (MI).

▶ IB framework - Extract compact z that preserves maximal information for predicting
T(x).
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System Overview - Semantic Part
T̂ = fS(s̃)

T̂ = gsem(ẑ), gsem : RK → R∗

fS = Rn → R∗

ŝ = W(s)

Wireless channel influence?

s = fE(x)

z = fsem(x), fsem : RN → RK

fE : RN → Rn, n < N

x ∈ RN 7



System Overview - Channel Part
T̂ = fS(s̃)

T̂ = gsem(ẑ), gsem : RK → R∗

ẑ = gch(s̃), gch : Rn → RK

fS = Rn → R∗

ŝ = W(s)

s = fE(x)

s = fch(z), fch : RK → Rn

z = fsem(x), fsem : RN → RK

fE : RN → Rn, n < N

x ∈ RN 8



AE-Based PHY Modeling

▶ Flexible framework for designing the PHY layer as a differentiable neural network:
▶ Separate modulation and coding blocks → Single end-to- end trainable system1.

▶ fch and gch realized as symmetric AE neural network:
▶ Semantic representation z ∈ RK → Transmitted signal s ∈ Rn

▶ Redefinition of the original training procedure - MSE loss:

LAE =
∑
k∈K

∥ẑk − zk∥2 (2)

1T. O’Shea and J. Hoydis, "An introduction to deep learning for the physical layer," IEEE Trans. Cogn.
Commun. Netw., vol. 3, no. 4, pp. 563-575, Dec. 2017.
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System Model

▶ Decomposition of fE and fS:
▶ fE = fsem ◦ fch

▶ fS = gch ◦ gsem

▶ SL and semantic communication connection(s):

▶ Meaningful compression: x ∈ RN → z ∈ RK , K < N.
▶ Task-oriented: z encodes only task-relevant

semantics.
▶ Decoder at server: server-side network acts as the

semantic decoder.

▶ AE–based PHY modeling included.
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System Model

▶ Overall inference system:

x fsem−−→ z fch−→ s
W(·)−−−→ s̃ gch−−→ ẑ gsem−−→ T̂. (3)

▶ All components of the system - fsem, fch, gch, gsem:
▶ Jointly optimized to minimize composite loss

L(T̂, T(x))a.

▶ Goal: Balance between semantic fidelity, channel
resilience, and task reliability.

aThe specific loss components depend on the considered scenario. 11
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Vanilla Approach – Does It Work?



Experimental Setup & Training Procedure
▶ Amazon Stock Dataset:

▶ 18 years of data.
▶ Predict the subsequent Open (T(x) = xt+1) value from previous N = 20 Close values.

▶ Neural network architecture:
▶ Semantic part - Two–layer LSTM network (K = 10 hidden states) followed by a FC layer:

▶ fsem - LSTM layer.
▶ gsem - LSTM layer + FC layer.

▶ Channel part - Simple AE architecture (with symmetric FC layers):
▶ fch and gch comprise a single hidden layer with 10 neurons.
▶ Latent dimension n controls the compression level and bandwidth usage - n = 5 or n = 15.

▶ Centralized baseline scenario – Semantic part solely on the server, for comparison.

▶ Loss function:

L = L( ˆT, T(x))︸ ︷︷ ︸
Task Loss

+LAE(z, ẑ)︸ ︷︷ ︸
AE Rec. Loss

= E
[
(T̂ − xt+1)

2]+ E
[
∥ẑ − z∥2

2
]

(4)
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Performance Evaluation - Task MSE

13



Performance Evaluation - AE Reconstruction MSE
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Extension 1 – Are All Symbols
Equally Important?



Experimental Setup & Training procedure

▶ We reuse dataset and NN architecture from the vanilla approach.

▶ Key question: Are all symbols of z equally informative for the final performance?

▶ Solution: AE-based unequal error protection (UEP) codes2.
▶ Not all parts of the message are equally protected.
▶ Training procedure – composite loss function:

LUEP = λ
∑

k∈Kimp

∥ẑk − zk∥2 + (1 − λ)
∑

k/∈Kimp

∥ẑk − zk∥2, (5)

▶ 1 ≥ λ > 0.5 – weighting parameter (flexible trade-off between classes).

▶ Problem: Kimp is fixed in conventional UEP schemes, but in a dynamic IoT system
symbol importance evolves over time.

2V. Ninković, D. Vukobratović, C. Häger, H. Wymeersch and A. Graell i Amat, "Autoencoder-Based Unequal
Error Protection Codes," IEEE Commun. Lett., vol. 25, no. 11, pp. 3575–3579, Nov. 2021 15
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Training Procedure - Dynamic UEP

▶ Proposed solution:
▶ Recall the IB principle:

min I(x; z) subject to I(z; T(x)) ≥ ϵ, (6)

▶ Lmost task-relevant latent symbols (L < K) are identified dynamically via MI estimation.

▶ Î(z; T(x)) estimated via the Donsker–Varadhan (DV) lower bound:

Î(z; T(x)) = EP(z,T(x))[fθ(z, T(x))]− logEP(z)P(T(x))[efθ(z,T
′(x))], (7)

▶ fθ(z, T(x)) - Neural discriminator implemented as a three-layer FC + ReLU network.
▶ Training batch: Compute gradients of Î(z; T(x)) w.r.t. z, select the Lmost task-relevant

latent dimensions, and update the ranking dynamically.
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Training Procedure - Dynamic UEP

▶ Proposed solution (continued)3:

▶ AE reconstruction loss (Eq. 5) remains compound, with Kimp (|Kimp| = L) determined
adaptively.

▶ Overall loss function:
L = Ltask + LUEP + LMI. (8)

▶ LMI — negative DV bound (Eq. (7)) used to train fθ:
▶ Enables stable estimation of I(z; T(x)).
▶ Allows reliable identification of Kimp.

3V. Ninkovic, D. Vukobratovic, D. Miskovic, and C. Wang, "Adaptive Unequal Error Protection for Semantic
Split Learning over Wireless Channels", submitted at 2026 IEEE ICC.
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3V. Ninkovic, D. Vukobratovic, D. Miskovic, and C. Wang, "Adaptive Unequal Error Protection for Semantic
Split Learning over Wireless Channels", submitted at 2026 IEEE ICC.
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Impact of Dynamic UEP on Performance - Task MSE
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Impact of Dynamic UEP on Performance - AE
Reconstruction MSE
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Extension 2 – Semantic & AE-PHY
in UAV-Assisted IoT



System Model
▶ Push toward real-world deployment.

▶ UAV-assisted IoT system:
▶ UAV acts both as a relay and as part of the

inference system.
▶ Buoy → UAV → Server.

▶ Integration of multiple principles:
▶ SL and semantic communications for

information (pre)processing.
▶ AE-based physical-layer/channel coding.
▶ Early Exit mechanism.

▶ Three deployment scenarios:
▶ Semantics processed at the server.
▶ Semantics processed at the UAV.
▶ Semantics processed at the edge (IoT device).
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System Model
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Experimental Setup & Training Procedure
▶ Dataset: Pollution of the Danube river near Novi Sad.

▶ 3,264 instances - Each instance represents a daily measurement from 2013 to 2022
▶ Estimation of dissolved oxygen based on previous N = 10 days.

▶ Neural network architecture:
▶ Semantic part - LSTM layer (with 10 hidden states) + FC layer:

▶ Server side - Always FC layer.
▶ LSTM layer position depends on implementation scenario.

▶ Channel part:
▶ Two AE modules (AE1 between buoy and UAV, AE2 between UAV and server).
▶ Symmetric AE architecture with one hidden FC layer.

▶ Early Exit - Additional FC layer.

▶ Loss function:

L = Ltask︸︷︷︸
Task loss

+ LEE1︸︷︷︸
EE at buoy

+ LEE2︸︷︷︸
EE at UAV

+ LAE1︸ ︷︷ ︸
AE1 recon.

+ LAE2︸ ︷︷ ︸
AE2 recon.

(9)
22



Performance Evaluation - Task MSE
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Performance Evaluation - AE Reconstruction MSE4

4V. Ninkovic, R. S. Molina, et al. "Semantic IoT Framework for Environmental Monitoring: FPGA-Accelerated
Distributed Learning at the Edge," manuscript in preparation
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Discussion



Next Steps & Open Problems

▶ Step toward practical task-oriented IoT monitoring.
▶ Further move toward real-world implementation — FPGA deployment5.

▶ Addressing real wireless channel complexity:
▶ Controlled lab environment as an initial stage.
▶ Real-world field deployment as the next step.

▶ Fits within the broader vision of 6G communication architectures.

▶ Next steps — multimodal data processing, multi-task learning, and adaptive
prioritization across heterogeneous devices.

5Already implemented; details will be presented by Romina Soledad Molina
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